|
FloatProcessor |
|
package ij.process; import java.util.*; import java.awt.*; import java.awt.image.*; import ij.gui.*; /** This is an 32-bit floating-point image and methods that operate on that image. */ public class FloatProcessor extends ImageProcessor { private float min, max, snapshotMin, snapshotMax; private float[] pixels; private byte[] pixels8; private float[] snapshotPixels = null; private byte[] LUT = null; private float fillColor = Float.MAX_VALUE; //private float bgColor = Float.MIN_VALUE; private boolean fixedScale = false; /** Creates a new FloatProcessor using the specified pixel array and ColorModel. Set 'cm' to null to use the default grayscale LUT. */ public FloatProcessor(int width, int height, float[] pixels, ColorModel cm) { if (pixels!=null && width*height!=pixels.length) throw new IllegalArgumentException(WRONG_LENGTH); this.width = width; this.height = height; this.pixels = pixels; this.cm = cm; resetRoi(); if (pixels!=null) findMinAndMax(); } /** Creates a blank FloatProcessor using the default grayscale LUT that displays zero as black. Call invertLut() to display zero as white. */ public FloatProcessor(int width, int height) { this(width, height, new float[width*height], null); } /** Creates a FloatProcessor from an int array using the default grayscale LUT. */ public FloatProcessor(int width, int height, int[] pixels) { this(width, height); for (int i=0; i<pixels.length; i++) this.pixels[i] = (float)(pixels[i]); findMinAndMax(); } /** Creates a FloatProcessor from a double array using the default grayscale LUT. */ public FloatProcessor(int width, int height, double[] pixels) { this(width, height); for (int i=0; i<pixels.length; i++) this.pixels[i] = (float)pixels[i]; findMinAndMax(); } /** Creates a FloatProcessor from a float[][] array using the default LUT. */ public FloatProcessor(float[][] array) { width = array.length; height = array[0].length; pixels = new float[width*height]; int i=0; for (int y=0; y<height; y++) { for (int x=0; x<width; x++) { pixels[i++] = array[x][y]; } } resetRoi(); findMinAndMax(); } /** Creates a FloatProcessor from an int[][] array. */ public FloatProcessor(int[][] array) { this(array.length, array[0].length); setIntArray(array); findMinAndMax(); } /** Calculates the minimum and maximum pixel value for the entire image. Returns without doing anything if fixedScale has been set true as a result of calling setMinAndMax(). In this case, getMin() and getMax() return the fixed min and max defined by setMinAndMax(), rather than the calculated min and max. @see #getMin() @see #getMin() */ public void findMinAndMax() { if (fixedScale) return; min = Float.MAX_VALUE; max = -Float.MAX_VALUE; for (int i=0; i < width*height; i++) { float value = pixels[i]; if (!Float.isInfinite(value)) { if (value<min) min = value; if (value>max) max = value; } } showProgress(1.0); } /** Sets the min and max variables that control how real pixel values are mapped to 0-255 screen values. Use resetMinAndMax() to enable auto-scaling; @see ij.plugin.frame.ContrastAdjuster */ public void setMinAndMax(double min, double max) { if (min==0.0 && max==0.0) {resetMinAndMax(); return;} this.min = (float)min; this.max = (float)max; fixedScale = true; resetThreshold(); } /** Recalculates the min and max values used to scale pixel values to 0-255 for display. This ensures that this FloatProcessor is set up to correctly display the image. */ public void resetMinAndMax() { fixedScale = false; findMinAndMax(); resetThreshold(); } /** Returns the smallest displayed pixel value. */ public double getMin() { return min; } /** Returns the largest displayed pixel value. */ public double getMax() { return max; } public Image createImage() { boolean firstTime = pixels8==null; if (firstTime || !lutAnimation) { // scale from float to 8-bits int size = width*height; if (pixels8==null) pixels8 = new byte[size]; float value; int ivalue; float scale = 255f/(max-min); for (int i=0; i<size; i++) { value = pixels[i]-min; if (value<0f) value = 0f; ivalue = (int)(value*scale); if (ivalue>255) ivalue = 255; pixels8[i] = (byte)ivalue; } } if (cm==null) makeDefaultColorModel(); if (source==null) { source = new MemoryImageSource(width, height, cm, pixels8, 0, width); source.setAnimated(true); source.setFullBufferUpdates(true); img = Toolkit.getDefaultToolkit().createImage(source); } else if (newPixels) { source.newPixels(pixels8, cm, 0, width); newPixels = false; } else source.newPixels(); lutAnimation = false; return img; } /** Returns a new, blank FloatProcessor with the specified width and height. */ public ImageProcessor createProcessor(int width, int height) { ImageProcessor ip2 = new FloatProcessor(width, height, new float[width*height], getColorModel()); ip2.setMinAndMax(getMin(), getMax()); return ip2; } public void snapshot() { snapshotWidth=width; snapshotHeight=height; snapshotMin=min; snapshotMax=max; if (snapshotPixels==null || (snapshotPixels!=null && snapshotPixels.length!=pixels.length)) snapshotPixels = new float[width * height]; System.arraycopy(pixels, 0, snapshotPixels, 0, width*height); } public void reset() { if (snapshotPixels==null) return; min=snapshotMin; max=snapshotMax; System.arraycopy(snapshotPixels,0,pixels,0,width*height); } public void reset(ImageProcessor mask) { if (mask==null || snapshotPixels==null) return; if (mask.getWidth()!=roiWidth||mask.getHeight()!=roiHeight) throw new IllegalArgumentException(maskSizeError(mask)); byte[] mpixels = (byte[])mask.getPixels(); for (int y=roiY, my=0; y<(roiY+roiHeight); y++, my++) { int i = y * width + roiX; int mi = my * roiWidth; for (int x=roiX; x<(roiX+roiWidth); x++) { if (mpixels[mi++]==0) pixels[i] = snapshotPixels[i]; i++; } } } public void setSnapshotPixels(Object pixels) { snapshotPixels = (float[])pixels; snapshotWidth=width; snapshotHeight=height; } public Object getSnapshotPixels() { return snapshotPixels; } /** Returns a pixel value that must be converted using Float.intBitsToFloat(). */ public int getPixel(int x, int y) { if (x>=0 && x<width && y>=0 && y<height) return Float.floatToIntBits(pixels[y*width+x]); else return 0; } public final int get(int x, int y) { return Float.floatToIntBits(pixels[y*width+x]); } public final void set(int x, int y, int value) { pixels[y*width + x] = Float.intBitsToFloat(value); } public final int get(int index) { return Float.floatToIntBits(pixels[index]); } public final void set(int index, int value) { pixels[index] = Float.intBitsToFloat(value); } public final float getf(int x, int y) { return pixels[y*width+x]; } public final void setf(int x, int y, float value) { pixels[y*width + x] = value; } public final float getf(int index) { return pixels[index]; } public final void setf(int index, float value) { pixels[index] = value; } /** Returns the value of the pixel at (x,y) in a one element int array. iArray is an optiona preallocated array. */ public int[] getPixel(int x, int y, int[] iArray) { if (iArray==null) iArray = new int[1]; iArray[0] = (int)getPixelValue(x, y); return iArray; } /** Sets a pixel in the image using a one element int array. */ public void putPixel(int x, int y, int[] iArray) { putPixelValue(x, y, iArray[0]); } /** Uses bilinear interpolation to find the pixel value at real coordinates (x,y). */ public double getInterpolatedPixel(double x, double y) { if (x<0.0) x = 0.0; if (x>=width-1.0) x = width-1.001; if (y<0.0) y = 0.0; if (y>=height-1.0) y = height-1.001; return getInterpolatedPixel(x, y, pixels); } /** Stores the specified value at (x,y). The value is expected to be a float that has been converted to an int using Float.floatToIntBits(). */ public void putPixel(int x, int y, int value) { if (x>=0 && x<width && y>=0 && y<height) pixels[y*width + x] = Float.intBitsToFloat(value); } /** Stores the specified real value at (x,y). */ public void putPixelValue(int x, int y, double value) { if (x>=0 && x<width && y>=0 && y<height) pixels[y*width + x] = (float)value; } /** Returns the value of the pixel at (x,y) as a float. */ public float getPixelValue(int x, int y) { if (x>=0 && x<width && y>=0 && y<height) return pixels[y*width + x]; else return 0f; } /** Draws a pixel in the current foreground color. */ public void drawPixel(int x, int y) { if (x>=clipXMin && x<=clipXMax && y>=clipYMin && y<=clipYMax) putPixel(x, y, Float.floatToIntBits(fillColor)); } /** Returns a reference to the float array containing this image's pixel data. */ public Object getPixels() { return (Object)pixels; } /** Returns a copy of the pixel data. Or returns a reference to the snapshot buffer if it is not null and 'snapshotCopyMode' is true. @see ImageProcessor#snapshot @see ImageProcessor#setSnapshotCopyMode */ public Object getPixelsCopy() { if (snapshotCopyMode && snapshotPixels!=null) { snapshotCopyMode = false; return snapshotPixels; } else { float[] pixels2 = new float[width*height]; System.arraycopy(pixels, 0, pixels2, 0, width*height); return pixels2; } } public void setPixels(Object pixels) { this.pixels = (float[])pixels; resetPixels(pixels); if (pixels==null) snapshotPixels = null; if (pixels==null) pixels8 = null; } /** Copies the image contained in 'ip' to (xloc, yloc) using one of the transfer modes defined in the Blitter interface. */ public void copyBits(ImageProcessor ip, int xloc, int yloc, int mode) { //if (!(ip instanceof FloatProcessor)) // throw new IllegalArgumentException("32-bit (real) image required"); new FloatBlitter(this).copyBits(ip, xloc, yloc, mode); } public void applyTable(int[] lut) {} private void process(int op, double value) { float c, v1, v2; boolean resetMinMax = roiWidth==width && roiHeight==height && !(op==FILL); c = (float)value; for (int y=roiY; y<(roiY+roiHeight); y++) { int i = y * width + roiX; for (int x=roiX; x<(roiX+roiWidth); x++) { v1 = pixels[i]; switch(op) { case INVERT: v2 = max - (v1 - min); break; case FILL: v2 = fillColor; break; case ADD: v2 = v1 + c; break; case MULT: v2 = v1 * c; break; case GAMMA: if (v1<=0f) v2 = 0f; else v2 = (float)Math.exp(c*Math.log(v1)); break; case LOG: if (v1<=0f) v2 = 0f; else v2 = (float)Math.log(v1); break; case EXP: v2 = (float)Math.exp(v1); break; case SQR: v2 = v1*v1; break; case SQRT: if (v1<=0f) v2 = 0f; else v2 = (float)Math.sqrt(v1); break; case ABS: v2 = (float)Math.abs(v1); break; case MINIMUM: if (v1<value) v2 = (float)value; else v2 = v1; break; case MAXIMUM: if (v1>value) v2 = (float)value; else v2 = v1; break; default: v2 = v1; } pixels[i++] = v2; } } if (resetMinMax) findMinAndMax(); } public void invert() {process(INVERT, 0.0);} public void add(int value) {process(ADD, value);} public void add(double value) {process(ADD, value);} public void multiply(double value) {process(MULT, value);} public void and(int value) {} public void or(int value) {} public void xor(int value) {} public void gamma(double value) {process(GAMMA, value);} public void log() {process(LOG, 0.0);} public void exp() {process(EXP, 0.0);} public void sqr() {process(SQR, 0.0);} public void sqrt() {process(SQRT, 0.0);} public void abs() {process(ABS, 0.0);} public void min(double value) {process(MINIMUM, value);} public void max(double value) {process(MAXIMUM, value);} /** Fills the current rectangular ROI. */ public void fill() {process(FILL, 0.0);} /** Fills pixels that are within roi and part of the mask. Does nothing if the mask is not the same as the the ROI. */ public void fill(ImageProcessor mask) { if (mask==null) {fill(); return;} int roiWidth=this.roiWidth, roiHeight=this.roiHeight; int roiX=this.roiX, roiY=this.roiY; if (mask.getWidth()!=roiWidth||mask.getHeight()!=roiHeight) return; byte[] mpixels = (byte[])mask.getPixels(); for (int y=roiY, my=0; y<(roiY+roiHeight); y++, my++) { int i = y * width + roiX; int mi = my * roiWidth; for (int x=roiX; x<(roiX+roiWidth); x++) { if (mpixels[mi++]!=0) pixels[i] = fillColor; i++; } } } /** 3x3 convolution contributed by Glynne Casteel. */ public void convolve3x3(int[] kernel) { float p1, p2, p3, p4, p5, p6, p7, p8, p9; float k1=kernel[0], k2=kernel[1], k3=kernel[2], k4=kernel[3], k5=kernel[4], k6=kernel[5], k7=kernel[6], k8=kernel[7], k9=kernel[8]; float scale = 0f; for (int i=0; i<kernel.length; i++) scale += kernel[i]; if (scale==0) scale = 1f; int inc = roiHeight/25; if (inc<1) inc = 1; float[] pixels2 = (float[])getPixelsCopy(); int offset; float sum; int rowOffset = width; for (int y=yMin; y<=yMax; y++) { offset = xMin + y * width; p1 = 0f; p2 = pixels2[offset-rowOffset-1]; p3 = pixels2[offset-rowOffset]; p4 = 0f; p5 = pixels2[offset-1]; p6 = pixels2[offset]; p7 = 0f; p8 = pixels2[offset+rowOffset-1]; p9 = pixels2[offset+rowOffset]; for (int x=xMin; x<=xMax; x++) { p1 = p2; p2 = p3; p3 = pixels2[offset-rowOffset+1]; p4 = p5; p5 = p6; p6 = pixels2[offset+1]; p7 = p8; p8 = p9; p9 = pixels2[offset+rowOffset+1]; sum = k1*p1 + k2*p2 + k3*p3 + k4*p4 + k5*p5 + k6*p6 + k7*p7 + k8*p8 + k9*p9; sum /= scale; pixels[offset++] = sum; } if (y%inc==0) showProgress((double)(y-roiY)/roiHeight); } showProgress(1.0); } /** Filters using a 3x3 neighborhood. */ public void filter(int type) { float p1, p2, p3, p4, p5, p6, p7, p8, p9; int inc = roiHeight/25; if (inc<1) inc = 1; float[] pixels2 = (float[])getPixelsCopy(); int offset; float sum1, sum2; int rowOffset = width; for (int y=yMin; y<=yMax; y++) { offset = xMin + y * width; p1 = 0f; p2 = pixels2[offset-rowOffset-1]; p3 = pixels2[offset-rowOffset]; p4 = 0f; p5 = pixels2[offset-1]; p6 = pixels2[offset]; p7 = 0f; p8 = pixels2[offset+rowOffset-1]; p9 = pixels2[offset+rowOffset]; for (int x=xMin; x<=xMax; x++) { p1 = p2; p2 = p3; p3 = pixels2[offset-rowOffset+1]; p4 = p5; p5 = p6; p6 = pixels2[offset+1]; p7 = p8; p8 = p9; p9 = pixels2[offset+rowOffset+1]; switch (type) { case BLUR_MORE: pixels[offset++] = (p1+p2+p3+p4+p5+p6+p7+p8+p9)/9f; break; case FIND_EDGES: sum1 = p1 + 2*p2 + p3 - p7 - 2*p8 - p9; sum2 = p1 + 2*p4 + p7 - p3 - 2*p6 - p9; pixels[offset++] = (float)Math.sqrt(sum1*sum1 + sum2*sum2); break; } } if (y%inc==0) showProgress((double)(y-roiY)/roiHeight); } if (type==BLUR_MORE) showProgress(1.0); else findMinAndMax(); } /** Rotates the image or ROI 'angle' degrees clockwise. @see ImageProcessor#setInterpolate */ public void rotate(double angle) { float[] pixels2 = (float[])getPixelsCopy(); double centerX = roiX + (roiWidth-1)/2.0; double centerY = roiY + (roiHeight-1)/2.0; int xMax = roiX + this.roiWidth - 1; double angleRadians = -angle/(180.0/Math.PI); double ca = Math.cos(angleRadians); double sa = Math.sin(angleRadians); double tmp1 = centerY*sa-centerX*ca; double tmp2 = -centerX*sa-centerY*ca; double tmp3, tmp4, xs, ys; int index, ixs, iys; double dwidth=width,dheight=height; double xlimit = width-1.0, xlimit2 = width-1.001; double ylimit = height-1.0, ylimit2 = height-1.001; for (int y=roiY; y<(roiY + roiHeight); y++) { index = y*width + roiX; tmp3 = tmp1 - y*sa + centerX; tmp4 = tmp2 + y*ca + centerY; for (int x=roiX; x<=xMax; x++) { xs = x*ca + tmp3; ys = x*sa + tmp4; if ((xs>=-0.01) && (xs<dwidth) && (ys>=-0.01) && (ys<dheight)) { if (interpolate) { if (xs<0.0) xs = 0.0; if (xs>=xlimit) xs = xlimit2; if (ys<0.0) ys = 0.0; if (ys>=ylimit) ys = ylimit2; pixels[index++] = (float)getInterpolatedPixel(xs, ys, pixels2); } else { ixs = (int)(xs+0.5); iys = (int)(ys+0.5); if (ixs>=width) ixs = width - 1; if (iys>=height) iys = height -1; pixels[index++] = pixels2[width*iys+ixs]; } } else pixels[index++] = 0; } if (y%20==0) showProgress((double)(y-roiY)/roiHeight); } showProgress(1.0); } public void flipVertical() { int index1,index2; float tmp; for (int y=0; y<roiHeight/2; y++) { index1 = (roiY+y)*width+roiX; index2 = (roiY+roiHeight-1-y)*width+roiX; for (int i=0; i<roiWidth; i++) { tmp = pixels[index1]; pixels[index1++] = pixels[index2]; pixels[index2++] = tmp; } } } public void noise(double range) { Random rnd=new Random(); for (int y=roiY; y<(roiY+roiHeight); y++) { int i = y * width + roiX; for (int x=roiX; x<(roiX+roiWidth); x++) { float RandomBrightness = (float)(rnd.nextGaussian()*range); pixels[i] = pixels[i] + RandomBrightness; i++; } } resetMinAndMax(); } public ImageProcessor crop() { ImageProcessor ip2 = createProcessor(roiWidth, roiHeight); float[] pixels2 = (float[])ip2.getPixels(); for (int ys=roiY; ys<roiY+roiHeight; ys++) { int offset1 = (ys-roiY)*roiWidth; int offset2 = ys*width+roiX; for (int xs=0; xs<roiWidth; xs++) pixels2[offset1++] = pixels[offset2++]; } return ip2; } /** Returns a duplicate of this image. */ public synchronized ImageProcessor duplicate() { ImageProcessor ip2 = createProcessor(width, height); float[] pixels2 = (float[])ip2.getPixels(); System.arraycopy(pixels, 0, pixels2, 0, width*height); return ip2; } /** Scales the image or selection using the specified scale factors. @see ImageProcessor#setInterpolate */ public void scale(double xScale, double yScale) { double xCenter = roiX + roiWidth/2.0; double yCenter = roiY + roiHeight/2.0; int xmin, xmax, ymin, ymax; if ((xScale>1.0) && (yScale>1.0)) { //expand roi xmin = (int)(xCenter-(xCenter-roiX)*xScale); if (xmin<0) xmin = 0; xmax = xmin + (int)(roiWidth*xScale) - 1; if (xmax>=width) xmax = width - 1; ymin = (int)(yCenter-(yCenter-roiY)*yScale); if (ymin<0) ymin = 0; ymax = ymin + (int)(roiHeight*yScale) - 1; if (ymax>=height) ymax = height - 1; } else { xmin = roiX; xmax = roiX + roiWidth - 1; ymin = roiY; ymax = roiY + roiHeight - 1; } float[] pixels2 = (float[])getPixelsCopy(); boolean checkCoordinates = (xScale < 1.0) || (yScale < 1.0); int index1, index2, xsi, ysi; double ys, xs; double xlimit = width-1.0, xlimit2 = width-1.001; double ylimit = height-1.0, ylimit2 = height-1.001; for (int y=ymin; y<=ymax; y++) { ys = (y-yCenter)/yScale + yCenter; ysi = (int)ys; if (ys<0.0) ys = 0.0; if (ys>=ylimit) ys = ylimit2; index1 = y*width + xmin; index2 = width*(int)ys; for (int x=xmin; x<=xmax; x++) { xs = (x-xCenter)/xScale + xCenter; xsi = (int)xs; if (checkCoordinates && ((xsi<xmin) || (xsi>xmax) || (ysi<ymin) || (ysi>ymax))) pixels[index1++] = (float)min; else { if (interpolate) { if (xs<0.0) xs = 0.0; if (xs>=xlimit) xs = xlimit2; pixels[index1++] = (float)getInterpolatedPixel(xs, ys, pixels2); } else pixels[index1++] = pixels2[index2+xsi]; } } if (y%20==0) showProgress((double)(y-ymin)/height); } showProgress(1.0); } /** Uses bilinear interpolation to find the pixel value at real coordinates (x,y). */ private final double getInterpolatedPixel(double x, double y, float[] pixels) { int xbase = (int)x; int ybase = (int)y; double xFraction = x - xbase; double yFraction = y - ybase; int offset = ybase * width + xbase; double lowerLeft = pixels[offset]; double lowerRight = pixels[offset + 1]; double upperRight = pixels[offset + width + 1]; double upperLeft = pixels[offset + width]; double upperAverage = upperLeft + xFraction * (upperRight - upperLeft); double lowerAverage = lowerLeft + xFraction * (lowerRight - lowerLeft); return lowerAverage + yFraction * (upperAverage - lowerAverage); } /** Creates a new FloatProcessor containing a scaled copy of this image or selection. */ public ImageProcessor resize(int dstWidth, int dstHeight) { double srcCenterX = roiX + roiWidth/2.0; double srcCenterY = roiY + roiHeight/2.0; double dstCenterX = dstWidth/2.0; double dstCenterY = dstHeight/2.0; double xScale = (double)dstWidth/roiWidth; double yScale = (double)dstHeight/roiHeight; if (interpolate) { dstCenterX += xScale/2.0; dstCenterY += yScale/2.0; } ImageProcessor ip2 = createProcessor(dstWidth, dstHeight); float[] pixels2 = (float[])ip2.getPixels(); double xs, ys; double xlimit = width-1.0, xlimit2 = width-1.001; double ylimit = height-1.0, ylimit2 = height-1.001; int index1, index2; for (int y=0; y<=dstHeight-1; y++) { ys = (y-dstCenterY)/yScale + srcCenterY; if (interpolate) { if (ys<0.0) ys = 0.0; if (ys>=ylimit) ys = ylimit2; } index1 = width*(int)ys; index2 = y*dstWidth; for (int x=0; x<=dstWidth-1; x++) { xs = (x-dstCenterX)/xScale + srcCenterX; if (interpolate) { if (xs<0.0) xs = 0.0; if (xs>=xlimit) xs = xlimit2; pixels2[index2++] = (float)getInterpolatedPixel(xs, ys, pixels); } else pixels2[index2++] = pixels[index1+(int)xs]; } if (y%20==0) showProgress((double)y/dstHeight); } showProgress(1.0); return ip2; } /** Sets the foreground fill/draw color. */ public void setColor(Color color) { int bestIndex = getBestIndex(color); if (bestIndex>0 && getMin()==0.0 && getMax()==0.0) { fillColor = bestIndex; setMinAndMax(0.0,255.0); } else if (bestIndex==0 && getMin()>0.0 && (color.getRGB()&0xffffff)==0) fillColor = 0f; else fillColor = (float)(min + (max-min)*(bestIndex/255.0)); } /** Sets the default fill/draw value. */ public void setValue(double value) { fillColor = (float)value; } /** Does nothing. The rotate() and scale() methods always zero fill. */ public void setBackgroundValue(double value) { } public void setThreshold(double minThreshold, double maxThreshold, int lutUpdate) { if (minThreshold==NO_THRESHOLD) {resetThreshold(); return;} if (max>min) { double minT = Math.round(((minThreshold-min)/(max-min))*255.0); double maxT = Math.round(((maxThreshold-min)/(max-min))*255.0); super.setThreshold(minT, maxT, lutUpdate); // update LUT } else super.resetThreshold(); this.minThreshold = Math.round(minThreshold); this.maxThreshold = Math.round(maxThreshold); } /** Performs a convolution operation using the specified kernel. */ public void convolve(float[] kernel, int kernelWidth, int kernelHeight) { snapshot(); new ij.plugin.filter.Convolver().convolve(this, kernel, kernelWidth, kernelHeight); } /** Not implemented. */ public void threshold(int level) {} /** Not implemented. */ public void autoThreshold() {} /** Not implemented. */ public void medianFilter() {} /** Not implemented. */ public int[] getHistogram() {return null;} /** Not implemented. */ public void erode() {} /** Not implemented. */ public void dilate() {} /** Returns this FloatProcessor. * @param channelNumber Ignored (needed for compatibility with ColorProcessor.toFloat) * @param fp Ignored (needed for compatibility with the other ImageProcessor types). * @return This FloatProcessor */ public FloatProcessor toFloat(int channelNumber, FloatProcessor fp) { return this; } /** Sets the pixels, and min&max values from a FloatProcessor. * Also the values are taken from the FloatProcessor. * @param channelNumber Ignored (needed for compatibility with ColorProcessor.toFloat) * @param fp The FloatProcessor where the image data are read from. */ public void setPixels(int channelNumber, FloatProcessor fp) { if (fp.getPixels() != getPixels()) setPixels(fp.getPixels()); setMinAndMax(fp.getMin(), fp.getMax()); } /** Returns the smallest possible positive nonzero pixel value. */ public double minValue() { return Float.MIN_VALUE; } /** Returns the largest possible positive finite pixel value. */ public double maxValue() { return Float.MAX_VALUE; } }
|
FloatProcessor |
|