
ABSTRACT

ACCURACY OF SEMI-INFINITE DIFFUSION THEORY TO ESTIMATE
TISSUE HEMODYNAMICS IN LAYERED SLAB MODELS

by Md. Mainul Hasan Sabbir

Diffuse optical spectroscopy (DOS) is awidely used non-invasive technique to study themorphology
and function of biological tissues. DOS measurements are usually acquired using fiber-based
measurements of diffuse reflectance which are then analyzed using theoretical models of photon
propagation to compute the absorption and scattering coefficients. These optical properties in turn
can be related to important physiological parameters, such as hemoglobin concentration or oxygen
saturation. Diffusion theory (DT) is widely utilized for quantifying DOS reflectance measurements
from biological tissues given its compact analytic nature, but DT represents the tissue media using
homogeneous optical properties. Many biological tissues, such as brain, have layered structure
with inhomogeneous optical properties. Monte Carlo (MC) methods are also widely utilized
rigorous solvers for photon transport in turbid media which can easily be used to incorporate spatial
heterogeneity in the medium. In this study, two-layered slab tissue models will be utilized to
simulate diffuse reflectance at multiple wavelengths. By analyzing reflectance spectra using DT,
the accuracy of the diffusion theory to estimate physiological parameters will be studied.
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Chapter 1

Introduction

1.1 Background and Motivation

Next time you go to a clinic, you will observe that your doctor probably use pulse oximeter

to measure oxygen saturation level (figure 1.1a) or hemoglobinometer to measure hemoglobin

concentration. Physiological parameters such as, total hemoglobin concentration (HbT), oxygen

saturation ((C$2) are crucial in many diagnostic and therapeutic applications[1–4]. The technique

involved behind these instruments is called Diffuse optical spectroscopy (DOS). DOS is a widely

(a) (b) (c)

Figure 1.1: (a) Portable pulse oximeter to monitor tissue oxygenation [5]. (b) Measurement of brain
activity using diffuse optical spectroscopy [3]. (c) Schematic diagram of diffuse optical spectroscopy.
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used noninvasive technique that utilizes light-tissue interaction [6–9]. Biological tissues interact

with light in the form of absorption or scattering of photons. The unabsorbed fraction of the

incident photons emerges from the tissue surface as diffuse reflectance, R(t, d, _).

Light-tissue interaction is governed by wavelength-dependent quantities, that is, scattering and

absorption coefficient (definitions are in section 1.3) [10, 11]. Theoretical models are required to

estimate optical coefficients from the diffuse reflectance obtained from DOS measurements [12].

Using these coefficients, physiological parameters (i.e., HbT, (C$2) can be derived [13]. The

radiative transport equation (RTE) analytically describes photon propagation in biological tissue

[10, 11]. However, it has been analytically solved only for a few simple cases and it is computa-

tionally intensive to solve it numerically. Due to the long simulation time needed with numerical

methods, the RTE is often approximated by the diffusion theory [14].

Diffusion theory (DT) is a widely employed model to obtain optical properties of biological tissues

by analyzing diffuse reflectance spectra [10, 11]. The advantage of using the DT is that its solution

can be obtained in analytical form for relevant geometries and it is computationally efficient [15–

17]. If the optical properties of a homogeneous medium (optical properties are the same within the

medium) are known, DT can model the diffuse reflectance spectra, hence operating as a forward

model. Conversely, if the diffuse reflectance spectra of a media is known, DT can operate as an

inverse model that can extract optical properties by iteratively running forward models to match

measured diffuse reflectance with the calculated diffuse reflectance from DT [12].

An alternative approach to solve the RTE can be obtained numerically that can provide diffuse

reflectance spectra given the optical properties of a medium. This approach is known as the Monte

Carlo (MC) method that solves the RTE by random sampling with any desired accuracy if the

required computational load is affordable [18]. It is regarded as the gold standard method to model

photon transport in biological tissues. For this reason, the MC method is widely utilized as a

reference to validate other less rigorous methods such as DT [16, 17, 19]. Another advantage of

2



the MCmethod is that it can simulate photon transport both in homogeneous and nonhomogeneous

tissuemodels [18]. However, inverseMCmethod is computationally intensive for multi-wavelength

analyses to obtain optical properties, therefore, the derived clinical parameters (HbT, (C$2), though

it is accurate [20].

In practice, measurements of diffuse reflectance are analyzed utilizing DT to obtain optical proper-

ties, though it assumes biological tissue as a homogeneous one-layered mediumwith a semi-infinite

geometry (by convention, the length dimension of the tissue along the Z axis is considered infinite)

[10, 11]. However, many tissues have layered tissue structure. For example, a brain tissue has

layers of scalp and skull and a muscle tissue has layers of skin and subcutaneous fat. The optical

properties varies over the layers because of the presence of chromophores. Chromophores, mainly

hemoglobin and melalin, are responsible for the absorption of light, hence have an impact on the

diffuse reflectance spectra [21]. Therefore, the question is that how well diffusion theory works if

layered tissue models are used instead of semi-infinite tissue models and how much impact layered

tissue structure has on the derived clinical parameters.

The main goal of this thesis is to analyze diffuse reflectance spectra of layered slab tissue models

using DT to determine the extent of error in total hemoglobin concentration (HbT) and oxygen

saturation ((C$2). So, by utilizing in-house developed layered MC model, diffuse reflectance

spectra at multiple wavelengths for several HbT and (C$2 values will be simulated for both semi-

infinite and two-layered tissue models. Then by developing an inverse model using DT, the optical

properties of all the tissue models will be recovered. Then the extracted absorption coefficients

will be used to examine the errors between recovered and input HbT and (C$2 values.

1.2 Thesis Organization

In this chapter, a short introduction on the relevant definitions, measurement techniques used in

this study as well as the objectives are provided. Chapter 2 describes theoretical and computational

models and it is followed by preliminary validations. In chapter 3, the development of semi-infinite
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and layered slab models are discussed. Chapter 4 describes the procedure to derive physiological

parameters from recovered optical properties as well as the analyses and results. Finally, chapter 5

concludes this thesis with a summary of the findings and possible avenues of future investigation.

1.3 Definitions

This section defines relevant optical parameters and optical properties that are used to describe the

photon propagation in a tissue. The unit of measurement of all the parameters are shown in the

table 1.1.

Absorption (`0 (_)) and Scattering (`B (_)) Coefficient: The absorption and scattering coefficient

express the inverse mean free path traveled by a photon between successive absorption or scattering

events within the medium respectively.

Anisotropy factor, g: It defines the mean cosine of scattering angle by photon from an incoming

direction. It is a dimensionless quantity.

6 = 〈cos \〉 (1.1)

Reduced Scattering Coefficient, `B′ (_) : It is defined as `′B = `B (1 − 6).

Quantity Symbol Unit
Absorption coefficient `0 2<−1

Scattering coefficient `B 2<−1

Reduced scattering coefficient `B′ 2<−1

Anisotropy factor g Dimensionless
Radiance ! (r, ŝ, C) ,2<−2(A−1

Fluence Rate Φ(r, C) ,2<−2

Total Hemoglobin Concentration �1) `"

Oxygen Saturation (C$2 Dimensionless

Table 1.1: Summary of the units of the described quantities used in this study.

Radiance, ! (r, ŝ, C): Radiance is the quantity used to describe the propagation of photon energy.

It is defined as the average power that at position r and time t flows through the unit area oriented

in the direction of the unit vector B̂ moving within the unit solid angle around B̂.
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Fluence Rate, Φ(r, C): Fluence rate is defined as the integral of the radiance over all directions.

Φ(r, C) =
∫

! (r, ŝ, C) (1.2)

Total Hemoglobin Concentration, �1) : The total hemoglobin concentration is defined as the sum

of the concentration of oxyhemoglobin(�1$2) and deoxyhemoglobin (�1).

[�1)] = [�1$2] + [�1] (1.3)

Oxygen Saturation, (C$2: The oxygen saturation is the ratio of the concentration of oxyhemoglobin

(�1$2) and the total hemoglobin concentration (�1)).

(C$2 =
[�1$2]

[�1$2] + [�1]
=
[�1$2]
[�1)] (1.4)

1.4 Measurement Techniques

(a) Steady state diffuse optical spectroscopy. (b) Time-domain diffuse optical spectroscopy.

Figure 1.2: Measurement techniques utilized in this study. Here, �0 is the intensity of the incident light,
and �1 and �2 are the intensity of the diffused light. d is the source-detector separation.

DOS measurement techniques can be categorized into three methods to obtain diffuse reflectance

spectra. They are known as steady-state, time-domain and frequency-domain. In this study,
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steady state and time-domain technique will be explored. In steady state technique, it requires a

monochromatic source emitting light at a constant intensity and a series of detectors (several source-

detector separation) to extract optical properties from the diffuse reflectance spectra. This is also

known as spatially-resolved steady state technique. In steady state technique, the intensity of the

incident light decreases with the source-detector separation, d (figure 1.2a). In the time-domain,

short pulses of light (usually in picosecond order) is used to illuminate the tissue to obtain the

temporal distribution of photons at a certain source-detector separation. The distribution is known

as temporal point spread function (TPSF). TPSF extend over several nanoseconds after propagating

through the biological tissue and TPSF extend with increasing source-detector separation, d (figure

1.2b). The optical properties of the investigated tissue can be inferred from the shape of the TPSF

[7].

1.5 Objectives

The primary goal of this thesis is to determine the extent of error in derived physiological parameters

of layered slab tissue models using semi-infinite diffusion theory. The main tasks of this study can

be summarized as:

1. Generating semi-infinite and layered slab tissue models from several pairs of hemoglobin

concentration (�1)) and oxygen saturation ((C$2) for brain and muscle tissue to obtain

optical coefficients.

2. Developing inverse model using semi-infinite diffusion theory both in steady state and time-

domain to extract optical properties from the MC simulated measurements of diffuse re-

flectance.

3. Analyzing the accuracy of semi-infinite diffusion theory to calculate physiological parameters

using retrieved optical properties from layered slab models.

4. Understanding the impact of the thickness of the superficial layer in derived physiological

parameters from layered slab models.

6



Chapter 2

Theoretical Methods and Preliminary

Analysis

2.1 Radiative Transport Equation

The radiative transport equation is derived from the principle of conservation of energy and it

describes the energy transfer in the form of electromagnetic radiation [10, 11]. The time-resolved

radiative transport equation has the following form:

1
2

m

mC
! (r, ŝ, C) + B̂.∇! (r, ŝ, C) + [`0 (r) + `B (r)]! (r, ŝ, C) = `B (r)

∫
4c
?(s, ŝ′)! (r, ŝ′, C)3Ω′ + ((r, ŝ, C)

(2.1)

Here, c is the velocity of light within the medium, @(r, ŝ, C) is the source term that is the power

emitted at time C per unit volume and unit solid angle along B̂ , and 3Ω is the solid angle in the

direction B̂′. The scattering phase function, ?(s, ŝ′) describes the probability of scattering from

direction B̂′ into direction B̂ and `0 (r) and `B (r) are the absorption and scattering coefficients

respectively. The exact form of phase function, is usually complex, though it is generally taken as

the Henyey-Greenstein phase function. The terms in equation (2.1) can be represented as follows

(table 2.1) considering the volume element 3+ identified by the position vector, r:
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Term Represents
1
2
m
mC
! (r, ŝ, C)3+3Ω3C The total temporal change of energy that is propagating

along B̂ within 3+ , 3Ω and 3C.
B̂.∇� (r, ŝ, C)3+3Ω3C The net flux of energy that is propagating along B̂ through

the volume 3+ , within 3Ω, and 3C.
[`0 (r) + `B (r)] � (r, ŝ, C)3+3Ω3C The fraction of energy that is propagating along B̂ within

3+ , 3Ω, and 3C extracted by scattering and absorption phe-
nomena

`B (r)
∫
4c ?(s, ŝ

′)� (r, ŝ′, C)3Ω′3+3Ω3C The energy coming from any direction B̂′ that, within, 3+ ,
3Ω, and 3C, is scattered in direction B̂.

@(r, ŝ, C)3+3Ω3C The energy generated along B̂ in 3Ω and 3C by sources inside
3+ .

Table 2.1: The representation of each term in radiative transport equation.

2.1.1 Diffusion Theory

Diffusion theory is a widely utilized model to describe photon propagation in biological tissue

which is an approximation of radiative transport equation [10, 11]. The time-resolved diffusion

equation for light transport in homogeneous tissue media can be written as following:

mΦ(r, C)
mC

= 2[�∇2Φ(r, C) − `0Φ(r, C) + ((r, C)] (2.2)

Figure 2.1: The figure shows the geometry for the calculation of diffuse reflectance from a pencil-source
beam incident upon a semi-infinite turbid medium [22].
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Here, � = 1
3(`0+`

′
B)
is known as the diffusion coefficient. The steady-state diffusion equation can

be obtained from equation after setting the time derivative of fluence rate, Φ(r, C) equal to zero.

The solution of diffusion equation for a semi-infinite turbid medium can be obtained applying

extrapolated boundary condition. The extrapolated boundary condition implies that the fluence

rate goes to zero some distance beyond the actual surface [17]. The solution of diffusion equation

for the fluence rate, q in time domain can be written as:

Φ(d, I, C) = 24`02C

(4c�2C)3/2
(4−

(I−I0)2+d2
4�2C − 4−

(I+I0+2I1 )2+d2
4�2C ) (2.3)

Here, d is the radial distance from the source, and I is the distance normal to the boundary. The

first term states a point source at I0 = (`0 + `B′)−1, and the second term implies a negative image

source. For the zero-boundary condition, I1 is zero, whereas I1 = 2� 1+'4 5 5
1−'4 5 5 for the extrapolated

boundary condition. Here, '4 5 5 represents the internally diffused reflected fraction of photons at

the boundary. In the steady state, the fluence rate can be expressed as:

Φ(d, I) = 1
4c�

( 4
−`4 5 5 [(I−I0)2+d2]1/2

[(I − I0)2 + d2]1/2
− 4−`4 5 5 [(I+I0+2I1)

2+d2]1/2

[(I + I0 + 2I1)2) + d2]1/2
) (2.4)

Here, `4 5 5 = [3`0 (`0 + `
′
B)]1/2. Now, the diffuse reflectance can be calculated as the current

across the boundary, with

'3 (d, C) = −� 5 q(d, I, C).(−z) |I=0 (2.5)

Inserting equation (2.3) into equation (2.5) yields:

'3 (d, C) =
4−`02C

2(4c�2)3/2C5/2
× [I04−

A1
2

4�2C + (I0 + 2I1)4−
A2

2
4�2C ] (2.6)

In the above expression, A2
1 = I

2
0 + d

2 and A2
2 = (I0 + 2I1)2 + d2. Similarly, by inserting equation

(2.4) into equation (2.5), the steady state diffuse reflectance becomes:
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'B3 (d) =
1

4c
[I0(`4 5 5 +

1
A1
) 4
−`4 5 5 A1

A2
1
+ (I0 + 2I1) (`4 5 5 +

1
A2
) 4
−`4 5 5 A2

A2
2
] (2.7)

The above expressions (equation (2.6) and (2.7)) will be extensively utilized in this study to perform

the analyses.

2.2 Monte Carlo Method

Monte Carlo (MC) method is an extensively utilized computational tool for simulating photon

transport in complex tissue structure and source-detector geometries, and that makes MC useful to

examine multiple experimental designs via model predictions [18]. In addition, MC produces more

accurate solutions than diffusion theory while simulating low scattering medium where diffusion

theory becomes invalid [23]. In general, in the MC simulation a point source of photons enter

the surface of the tissue medium with a defined initial position and direction. The movement of

photons depend on the two major choices: the mean free path for the absorption and scattering

events and the scattering angle. The detail discussion on the rules of the photon propagation in the

MC simulation can be found in the literature [18, 24].

An in-house developed MC model is used to simulate the remitted radially resolved time-domain

diffuse reflectance, '(C, d, _) detected on the surface of tissue models [25]. A predetermined

source-detector geometry and tissue model layout are provided as input to calculate the diffuse

reflectance at each source-detector separation, d. In addition, it is also required to specify the

number of photons to be simulated and the temporal resolution for the simulation. In this study,

30 millions number of photons is simulated and the temporal resolution is 10ps (picosecond) for

each simulation. The refractive indices of the media (assumed to be in contact) directly above and

below the tissue medium (air is considered) is required as well as the the total number of layers of

each tissue model and the thickness of each layer and their refractive index.
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2.3 Comparison of Diffusion Theory with MC: Semi-infinite

Models

The diffusion theory and MC method function as a forward model. It implies that given the

physiological and structural properties of a tissue medium, they can model diffuse reflectance.

However, in experimental perspective, the measurements from the diffuse optical spectroscopy

provides the diffuse reflectance spectra where the optical properties of the medium is unknown. An

inverse model is required to extract optical properties from the measured diffuse reflectance. The

inverse model utilizes a forward model that runs iteratively to match the diffuse reflectance from

the diffuse optical spectroscopy measurements. So, to construct an inverse model, at first forward

model needs to be verified. In the following sections, the diffusion theory is compared with MC

simulated diffuse reflectance (instead of experimental measurements) as a forward model. Then

by developing an inverse model, the extent of error in recovered absorption and reduced scattering

coefficient is shown for four distinct semi-infinite tissue models (table: 2.2).

Tissue Model(`0, `′B) `0 (2<−1) `′B(2<−1)
TM1(low, high) 0.04 15.78
TM2(low, low) 0.07 8.52
TM3(high, low) 0.21 8.52
TM4(high, high) 0.28 15.78

Table 2.2: Absorption and scattering coefficients of four tissue models used for the purpose of preliminary
analysis.

2.3.1 Forward Model

To compare diffusion theory with the MC simulated diffuse reflectance as a forward model, four

semi-infinite tissue models are chosen where absorption and reduced scattering coefficients vary

from high to low (table 2.2). The time-domain diffuse reflectance is computed using eq.2.6 at

source-detector separation, d = 0.35, 0.75, 1.25 and 1.75cm to compare with the MC simulated re-

flectance. From the figure 2.2, it can be concluded that the diffusion theory shows better agreement

with the MC simulated diffuse reflectance at long compared to short source-detector separation.

11



Moreover, tissue models with high scattering coefficient and low absorption (i.e., tissue model 1)

shows better agreement. The tissue model 3 and 4 have high absorption coefficients, though tissue

(a) Tissue model 1. (b) Tissue model 2.

(c) Tissue model 3. (d) Tissue model 4.

Figure 2.2: The figure shows the comparison of time-domain diffuse reflectance calculated using diffusion
theory (black lines) with Monte Carlo simulations (colored lines) at d = 0.35, 0.75 1.25 and 1.75 cm for

all the tissue models in the table 2.2.

model 4 shows better agreement as the reduced scattering coefficient is higher. In addition, the

tissue models with the higher absorption coefficient, most of the photons get absorbed within the

tissue media and that is the reason photons are not detected in the detector after 2-3 ns (i.e., tissue

model 3 and 4). The steady state diffuse reflectance for all the tissue models are shown in the figure

2.3. By integrating time-domain diffuse reflectance over all the time range at each source-detector

separation, the steady state diffuse reflectance is computed using the time-domain MC simulated

diffuse reflectance. The steady state diffuse reflectance from the diffusion theory (computed using

eq. 2.5) then compared.
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Figure 2.3: The figure shows the comparison of steady state diffuse reflectance for all the tissue models
(table 2.2) calculated using diffusion theory (black lines) with Monte Carlo simulations (colored lines).

2.3.2 Inverse Model

In the previous section, the comparison between diffusion theory and the MC simulated reflectance

is discussed as a forward model. To extract optical properties from the diffuse reflectance spectra,

an inverse model is developed using the diffusion theory as a forward model. The figure 2.4 shows

the flow chart of the inverse model that is used to fit diffuse reflectance spectra. First, an initial

guess for the optical properties (`0, `′B) is made, and then the forward model (diffusion theory)

is used to generate a spectrum. Next, the sum of squares error between the predicted reflectance

and the measured reflectance is calculated. The free parameters, absorption and reduced scattering

coefficient (`0, `′B), are then iteratively updated until the sum of squares error is minimized. For

the fitting purposes, a nonlinear optimization routine (MATLAB function lsqcurvefit) is utilized to

get the best fit of the theoretical model (diffusion theory) to the MC simulated diffuse reflectance.

The time-domain fitted data along with the MC data is shown in the figure 2.5 for all four tissue

models (table 2.2). The time-domain MC data is fitted individually using eq.(2.6) with two free

parameters `0 and `′B. The temporal range for the fit is from the maximum peak at each source-

detector separation, d for all the tissue models. The start time of the fitting gradually increased
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Figure 2.4: The figure shows the basic workflow of the diffusion theory as an inverse model.

due to the fact that the diffusion theory is least accurate at early times. So, the minimum start time

of the fitting is around 0.1ns. The diffusion theory is valid if the photons experience many scattering

interactions, i.e., `′Bd >> 1. For tissue models 1 and 4, `′Bd varies 5.52 to 27.62 and for tissue

models 2 and 3, it varies from 2.98 to 14.91. For each tissue models in the figure 2.5, it is observed

that the greater the value of `′Bd, the percentage of error in recovered optical coefficient is reduced.

Figure 2.5 also indicates that the error in recovered optical properties exceeds 40% if the `′Bd < 6.5

and it supports the findings of Kienle et al [17]. The average percentage of error of all the tissue

models in table 2.2 are shown in figure 2.6 for source-detector separation, d = 0.35 − 2.452< and

it depicts the fact that the percentage of error is higher for short source-detector separation.
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(a) TM1: `0 = 0.042<−1, `′B = 15.782<−1 (b) TM2: `0 = 0.072<−1, `′B = 8.522<−1

(c) TM3: `0 = 0.212<−1, `′B = 8.522<−1 (d) TM4: `0 = 0.282<−1, `′B = 15.782<−1

Figure 2.5: The figure shows the fitted data from the inverse model using diffusion theory (black lines)
along with the Monte Carlo simulations (colored lines) at d = 0.35, 0.75 1.25 and 1.75 cm for all the

tissue models (table 2.2). In the legend, the bracket indicates the percentage of error in retrieved optical
coefficients.

(a) (b)

Figure 2.6: (a) The figure shows the average percentage error in recovered (a) absorption and (b) reduced
scattering coefficient of all the tissue models in the table 2.2 at source-detector separation ranging from

0.35 to 2.45 cm.

To extract optical coefficients from the steady state spatially resolved diffuse reflectance, at first, it

is analyzed how much impact the range of d has on the recovered optical coefficients. The figure
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(a) (b)

Figure 2.7: (a) The figure shows the average percentage error in recovered absorption and reduced
scattering coefficients from the steady state measurements depending on the range of source-detector

separation considered for the fitting purpose. (b) The figure shows the fitted steady state reflectance data
from the inverse model using diffusion theory (black lines) along with the Monte Carlo simulations

(colored lines).

2.7a shows the average percentage of error for several range of source-detector separation. The

error in recovered reduced scattering is quite low compared to the error in recovered absorption

coefficient if all the d are considered while fitting. However, if we exclude the data for short

source-detector separation, d = 0.05 cm, it is quite fascinating to observe that the percentage

of error in recovered `′B becomes higher while the percentage of error in recovered `0 becomes

lower. Nonetheless, the observation from the time-domain analyses strengthen the fact that the

diffusion theory is least accurate at short source-detector separation. For this reason, the steady

state reflectance is fitted using weights calculated from 1/'3 while fitting to put more importance

on the long source-detector separation steady state data. Moreover, the range of source-detector is

chosen from d = 0.15−2.45 cm to fit steady state MC data as the percentage of error is comparable

when d = 0.05 cm is excluded and when d = 0.05, 0.152< cm are excluded. The figure 2.7b shows

the fitted data with MC simulated steady state diffuse reflectance.
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Chapter 3

Tissue Models

In diffuse optical spectroscopy experiments with real tissue, the optical coefficients are extracted

from the measurement of diffuse reflectance. Then using these optical coefficients physiological

parameters, such as, �1) and (C$2, can be derived. In practice, this is the general procedure

when diffusion theory is applied to obtain optical coefficients in order to compute physiological

parameters of an unknown tissue model. In this thesis, to depict realistic tissue models, the derived

physiological parameters will be used as inputs in simulation to generate the tissue models that

are actually outputs from the experimental measurements of diffuse optical spectroscopy. In the

following sections, the steps needed to generate semi-infinite and layered slab tissue models for

brain and muscle from the physiological parameters are described. The tissue models will then be

utilized to obtain MC simulated diffuse reflectance spectra.

3.1 Calculating Optical Coefficients

The absorption, `0 and reduced scattering coefficient, `′B can be presented as a function of wave-

length, _. Though the equations are not exhaustive, they are sufficient to characterize the behavior

of tissues like brain, muscle. skin etc [26]. The absorption coefficient, `0 of a tissue can be

expressed as the sum of contributions from all absorbing chromophores within the tissue:
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`0 (_) = ;=(10)O8 (�1))8Y8 (_) (3.1)

Here, Y(_) is molar extinction coefficient of a chromophore and it measures how strongly a

chromophore within the tissue medium attenuates light at a given wavelength. Any number of

chromophores can be used to calculate `0 (_). In this study, hemoglobin is considered as the only

source of chromophores (absorber). The values of molar extinction coefficient for hemoglobin at

differentwavelengths are tabulated by Prahl [27]. So, the eq.(3.1) can be rewritten in terms of oxygen

saturation, (C$2 and the extinction coefficients for oxyhemoglobin, �1$2 and deoxyhemoglobin,

�1 at a wavelength, _ as:

`0 (_) = ;=(10) [(�1)).(C$2.Y�1$2 (_) + (�1)).(1 − (C$2).Y�1 (_)] (3.2)

The total hemoglobin concentration, �1) and oxygen saturation, (C$2 varies depending on the

tissue types and the values of �1) and (C$2 for different tissue types, such as brain, muscle and

skin, are tabulated in the article by Jacques [26]. The figure (3.1a) shows the steps needed in order

to compute absorption coefficient, `0 at a certain wavelength, _.

(a) (b)

Figure 3.1: The figure shows how to calculate absorption and reduced scattering coefficient using relevant
quantities.
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The reduced scattering coefficient, `′B at wavelength, _(=<) can be represented as:

`′B (_) = 0(
_

500(=<) )
−1 (3.3)

Here, in equation 3.3, the wavelength is normalized by a reference wavelength (500 nm) and

this dimensionless quantity is raised to scattering power, b. This fractional term characterizes

the wavelength dependence of reduced scattering coefficient, `′B and the factor “a(2<−1)”scales

the fractional wavelength-dependent term The parameters “a, b ”change depending on the tissue

type. For example, skin and other fibrous tissue have higher values of “a”than other tissue types.

The equation 3.3 is good for predicting tissue scattering within the wavelength range of 400-1300

nm. However, the equation diverge outside this wavelength range [26]. So, by specifying tissue

parameters in equations 3.2 and 3.3, the optical properties of a generic tissue can be mimicked.

3.2 Semi-infinite Models

To construct semi-infinite tissue models (figure: ??) for brain and muscle, four derived parameters

(a, b, �1) , (C$2) are required. Then using equations 3.2 and 3.3, `0 and `′B is calculated. The

table 3.1 shows the values of derived parameters (a, b) considered for calculating reduced scattering

coefficient, `′B. To compute absorption coefficient, `0, at first a base value of �1) and (C$2 are

taken for brain and muscle. As the goal of this study is to determine the accuracy of semi-infinite

diffusion theory to determine total hemoglobin concentration, �1) and oxygen saturation, (C$2,

the base value of �1) and (C$2 of each tissue type is perturbed in order to get a range of absorption

coefficient.

Tissue Type a (2<−1) b Wavelength, _ (nm) Reduced scattering coefficient, `′B (2<−1)
Brain 40.8 3.089 680, 750, 830 15.78, 11.66, 8.52
Muscle 13 0.926 680, 750, 830 9.77, 8.93, 8.13

Table 3.1: Derived parameters “a and b ”for brain and muscle tissue and the absorption coefficients for
three wavelengths.

The base value of �1) is 65`" and 27`" for brain and muscle respectively [26]. The value
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of �1) for each tissue type is then perturbed by 50% to get three different values of �1) (table

3.2). In addition, the base value for (C$2 is 0.7 for both brain and muscle tissue [26]. Then

(C$2 is perturbed by 25% to get three unique values. The wavelengths chosen for calculating the

optical coefficients are 680, 750 and 830 nm as they are standard wavelengths for diffuse optical

spectroscopy measurements. So, for three unique values of �1) , (C$2 and _, the total number of

tissue models is 27 for each tissue type. In summary, the range of absorption coefficient, `0 for

brain ranges from 0.04 to 0.28 2<−1 and for muscle it ranges from 0.01 to 0.12 2<−1.

Tissue type HbT (`") (C$2 Wavelengths, _ (nm) Number of models
Brain 32.5, 65, 97.5 0.53, 0.7, 0.88 680, 750, 830 27
Muscle 13.5, 27, 40.5 0.53, 0.7, 0.88 680, 750, 830 27

Table 3.2: Calculation of the number of semi-infinite tissue models used for this study.

3.3 Layered Slab Models

Figure 3.2: Schematic diagram of layered slab tissue model for brain and muscle.

The semi-infinite tissuemodels have homogeneous optical properties within the tissuemedia. How-

ever, in real tissue, the optical properties are heterogeneous. Moreover, real tissues have layered

structure. For example, the brain has layers of scalp and skull. So, to mimic real tissue, the layered

slab models can be utilized instead of semi-infinite tissue models. In this study, two-layered slab

models are used where the brain and muscle tissue is accompanied by a superficial layer (figure
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3.2). The superficial layer for brain consists of scalp and skull and for muscle it consists of subcuta-

neous fat and skin. In addition, the bottom layer (brain or muscle) is kept just like the semi-infinite

tissuemodels and the thickness of the superficial layer will be varied to generate layered slabmodels.

To construct the bottom layer of layered slab models, the base value of derived parameters ( �1) ,

(C$2, 0 and 1 ) are kept the same as semi-infinite model’s base value for brain and muscle as

mentioned in the figure 3.2. So, for three different wavelengths (680, 750, 830 nm), three sets

of optical coefficients (three unique bottom layer) can be computed for each tissue type. So, the

reduced scattering coefficient, `′B for the bottom layer will be the same as mentioned in the table

3.2 for each tissue type. The absorption coefficient, `0 for the brain ranges within 0.11 - 0.13 2<−1

and for the muscle it ranges within 0.04- 0.05 2<−1 for the mentioned three wavelengths.

For the superficial layer, the average base value of tissue components (i.e., scalp and skull for

brain tissue) are considered. The table 3.3 shows the average derived parameters 00E6 and 10E6

considered for brain and muscle and the corresponding reduced scattering coefficient, `′B at three

wavelengths. The base value of 0 and 1 of the components of superficial layer components can be

found in these literatures [26, 28]. To compute the `0 for the superficial layer of brain, the average

of the derived parameters, �1) and (C$2 of scalp and skull, is computed. Then by perturbing the

values by 25%, two sets of �1) and (C$2 are chosen for the superficial layer of brain. Similarly,

for muscle the average is taken for subcutaneous fat and skin.

Superficial layer 00E6 (2<−1) 10E6 Wavelength, _ (nm) `′B (2<−1)
Scalp and skull(Brain) 15.20 0.339 680, 750, 830 13.69,

13.24,
12.80

Subcutaneous fat and skin (Muscle) 32.45 0.846 680, 750, 830 25.01,
23.02,
21.12

Table 3.3: The derived parameters 0 and 1 used for the superficial layer of brain and muscle tissue and the
values of `′B at mentioned wavelengths.
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The (table 3.4) shows the �1) and (C$2 values considered to construct the layered slab models for

each tissue type. In addition, in layered slab models, three thicknesses, 3 for the superficial layer

are chosen to understand the impact of thickness in derived physiological parameters. So, for two

sets of �1) and (C$2 of superficial layer and three sets of wavelength, _ and thickness, 3, the total

number of layered tissue models generated is 36 for each tissue type as the derived parameters of

the bottom layer are not perturbed.

Tissue
type

HbT(`") (C$2 Wavelengths, _ (nm) Thickness,d(cm) Number
of
models

Brain S: 32.25, 53.75
B: 65

S: 0.58, 0.96
B: 0.70

680, 750, 830 S: 0.8, 1.0, 1.2
B: Semi-infinte

36

Muscle S: 27.75, 46.25
B: 27

S: 0.53, 0.88
B: 0.70

680, 750, 830 S: 0.3, 0.6, 0.9
B: Semi-infinte

36

Table 3.4: Calculation of the number of layered slab tissue models used for this study.[B stands for bottom
and S stands for superficial layer.]

The other parameters needed to generate the tissue models are anisotropy factor, 6 and the refractive

index, = of the tissue media. The value of anisotropy factor is chosen 0.9 for all the tissue models

(semi-infinite and layered slab) as biological tissues scatter light strongly in the forward direction

[29, 30]. The refractive index of brain and muscle are 1.4 and 1.38 respectively and the refractive

index of superficial layers of brain and muscle are 1.4 and 1.42 [31–33]. These tissue models will

then be utilized to extract optical coefficients and derive physiological parameters from the MC

simulated diffuse reflectance.
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Chapter 4

Analysis and Results

Diffuse optical spectroscopy (DOS) is considered a valuable tool to facilitate noninvasive mea-

surement of tissue oxygenation in a variety of tissues including brain and muscle. DOS technique

can be used to determine relative hemodynamic changes as well as the absolute measurement of

hemoglobin concentration. The relative measurements are used for functional studies to detect

hemodynamic and metabolic responses to brain activation [34]. Hemoglobin concentration is an

important physiological parameter as it serves is used for anemia diagnosis cancer radiotherapy and

monitoring neonatal brain health [1, 2]. So, precise estimation of physiological parameters is cru-

cial in many diagnostic and therapeutic applications. In this chapter, the physiological parameters

(�1) , ()$2 ) will be derived from the recovered optical coefficients obtained from semi-infinite

and two-layered tissue models. Then the recovered physiological parameters will be compared with

the physiological parameters used in generating tissue models in chapter 3.

4.1 Derived Physiological Parameters

To derive physiological parameters, the optical coefficients are recovered for three wavelengths

(680, 750 and 830nm) for each tissue models (a unique �1) and (C$2 pair). By using equation

3.1, the following linear system can be constructed (equation(4.1)). Then the solution of this linear

system provides the concentration of oxyhemoglobin, ��1$2 and deoxyhemoglobin, ��1. Using
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the values of ��1$2 and ��1, the total hemoglobin concentration, �1) and oxygen saturation,

(C$2 are determined using equations 4.2 and 4.3.


`0 (_1)

`0 (_2)

`0 (_3)


=


Y�1$2 (_1) Y�1 (_1)

Y�1$2 (_2) Y�1 (_2)

Y�1$2 (_3) Y�1 (_3)



��1$2

��1

 (4.1)

�1) = ��1$2 + ��1 (4.2)

(C$2 =
��1$2

��1$2 + ��1
=
��1$2

�1)
(4.3)

4.2 Analysis: Semi-infinite Tissue Models

To determine the optical coefficients from the MC simulated diffuse reflectance spectra, the in-

verse model using semi-infinite diffusion theory is used that is described in chapter 2. Then the

recovered optical coefficients are compared with the input optical coefficients to determine the

extent of error in recovered optical coefficients. The figure 4.1 shows the average percentage of

error at each source-detector separation in time domain for all the 27 models of brain and muscle.

The percentage of errors in recovered optical coefficients at each source-detector separation for

all the 27 semi-infinite tissue models are averaged for each tissue type. The standard deviation

of percentage of errors at each source-detector separation are shown at the top of each bars. It is

evident from the figure that the average percentage of errors in `′B decrease at long source-detector

separation. The average percentage of errors in `0 are within 1.5% considering all tissue types.

Moreover, in the time domain, the percentage of error is much higher in recovered reduced scat-

tering coefficient and that is the reason the bars for the recovered reduced scattering coefficients

are scaled down by a factor 15 (figure 4.1 ) but the error bars are kept as its original computed values.

24



(a) Time domain : Brain (b) Time domain : Muscle

Figure 4.1: The figure shows the average percentage of error of the recovered absorption, `0 and reduced
scattering coefficient, `′B in time domain at source-detector separation from 0.75-1.75 cm. The recovered
reduced scattering coefficients bars are scaled down by a factor 15 for the plotting purposes (the error

bars are not scaled).

(a) Steady state : Brain (b) Steady state : Muscle

Figure 4.2: The figure shows percentage of error of the recovered absorption, `0 and reduced scattering
coefficient, `′B in steady state for all the 27 tissue models of brain and muscle.

For the steady state measurement technique, the percentage of errors are shown in the figure 4.2 for

27 semi-infinite tissue models for brain and muscle. In the figure 4.2, each triplet represents one

tissue model (unique �1) and (C$2 pair) for three different wavelengths. It is evident from the

figure that the percentage of error in recovered optical coefficients is much higher for the steady state

than in the time domain. It is observed that at longer wavelengths, the semi-infinite tissue models

for brain shows less percentage of error in recovered optical coefficients than shorter wavelengths.

In addition, For the semi-infinite models of muscle, the inverse model can estimate `0 better at

shorter wavelengths compared to longer ones. However, the inverse model can estimate `′B better at
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longer wavelength for muscle tissue models. The probable reason behind the observation is that the

muscle tissue models have lower `′B compared to brain tissue models, though further investigations

are needed for a better understanding.

Figure 4.3: The figure shows the recovered �1) and (C$2 in steady state. The blue points represents
muscle tissue and the black points for brain tissue. The circle, cross and square points represent three
different (C$2 that are considered(irrespective of color). The points are scattered into three groups as

three �1) are considered for each tissue type. The red line is the fitted line and the slope of the fitted lines
are mentioned in the bracket of the legend. The black line represents the exact line where true values are
equal to the retrieved values from the inverse model (or, y = x ; slope = 1). In the legend, the slope of fitted

line is shown inside the bracket.

The figure 4.3 shows the recovered hemoglobin concentration and oxygen saturation for steady

state measurement and the figure 4.4 are for the time domain measurement. For the time domain

analysis, three source-detector separations ( 0.75, 1.25 and 1.75 cm) have been used. The figure

4.3 depicts in time domain, the inverse model using diffusion theory can predict �1) and (C$2

pretty accurately for the semi-infinite tissue models as the slope of fitted line and exact line are

close. However, for the steady state measurements, there is a deviation from the exact line (figure

4.3) which signifies that the time-domain measurement can estimate �1) and (C$2 better.
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(a)

(b)

(c)

Figure 4.4: The figure shows the recovered �1) and (C$2 in time domain. The points and lines properties
are kept the same as in the figure 4.3. Each row represents the data at each source-detector separation (d

= 0.75, 1.25 and 1.75 cm). The first column of figures are for recovered �1) and second column of
figures are for recovered (C$2.
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4.3 Analysis: Layered Slab Tissue Models

For the two-layered slab models, the goal is to recover the optical coefficients of the bottom layer

(brain and muscle) to derive the physiological parameters. So, the inverse model based on semi-

infinite diffusion theory is used to extract optical coefficients from the MC simulated reflectance

of two layered slab models. However, to check the goodness of the fit of the diffuse reflectance

spectra from the layered slab models, the residuals are calculated to show how they vary with time.

The residual is defined as the difference between theMCsimulated reflectance and the estimated data

Figure 4.5: In the figure, the first column is for layered slab model and the second column for the
semi-infinite model. The first row shows the fitted data with the MC simulated diffuse reflectance in time
domain from a layered slab and a semi-infinite model. The optical coefficients for the layered slab model
are: (: `0 = 0.08 2<−1, `′B = 13.69 2<−1; �: `0 = 0.13 2<−1, `′B = 15.78 2<−1. [S - superficial layer, B
- bottom layer.] The semi-infinite model has the same optical properties as the bottom layer of the layered
slab model. In the legend of the first row, the squared norm of the residuals are mentioned. The second

row shows the change of the residuals with time.

from the inverse model. In the figure 4.5, a layered slab model is compared with a semi-infinite

model that has the same optical properties as the bottom layer of the layered slab model. It is
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observed that the "resnorm", that is the squared norm of the residuals tend to decrease as the

source-detector separation increases for both layered and semi-infinite tissue model. However,

the residuals for the layered slab model increase sharply upto a maximum value and then start to

decrease whereas the semi-infinite models fluctuate more rapidly at early time. This points out that

the superficial layer has an observable impact on the diffuse reflectance spectra.

Figure 4.6: The average percentage of error of recovered optical coefficients with respect to the thickness
of the superficial layer at d = 0.75, 1.25 and 1.75 cm in time domain.

The optical coefficients extracted from the steady state measurements for the semi-infinite models

have a relatively high percentage of error than the time domain measurements. So, for the layered

slab models, the analysis is based solely on the time domain measurements. So, the inverse model

using semi-infinite diffusion theory is utilized to estimate the optical coefficients of the bottom

layer (brain or muscle). The figure 4.6 shows the average percentage of error in recovered optical

coefficients from the layered slab models at source-detector separation, d = 0.75, 1.25 and 1.75

cm for each thicknesses of the superficial layer of brain and muscle. For layered slab models,

12 models are generated for a specific thickness. The average error is calculated by taking the
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percentage of error in recovered optical coefficients from time domain measurements for 12 tissue

models at each thicknesses. It is evident from the figure that the average percentage of error

increases with the thickness of the superficial layer. In addition, the inverse model produces high

percentage of errors in estimating reduced scattering coefficients, `′B than absorption coefficients,

`0. Considering all the thicknesses and source-detector separations, the average percentage of error

of `0 varies within 5.18 to 18.64% whereas `′B varies within 1.9 to 93.1% for layered slab brain

tissue models. However, for muscle tissue models the average percentage of error of `0 varies

within 2.06 to 21.59% whereas the `′B varies within 45.93 to 127.7%. The difference of `′B between

the superficial and bottom layer is much higher for muscle tissues than brain tissues while sim-

ulating diffuse reflectance and that could the reason for the huge percentage of error in recovered `′B.

From the total 36 layered slab tissue models of each tissue type(brain and muscle), 12 unique tissue

models are generated at each thickness (table 3.4). In other words, 12 sets of optical coefficients

are recovered for 3 different wavelengths at a certain thickness. Then by taking the percentage

of error of all 4 sets, the average error is determined. The error bars are calculated using the the

standard deviation of percentage of errors of each individual models. The figure 4.7 shows how

the average percentage of error in recovered physiological parameters change with the thickness of

the superficial layer for brain and muscle tissue models individually. However, at source-detector

separation, d = 0.75 and 1.25cm, the average error of the retrieved hemoglobin concentration is

higher for muscle tissue with the thickness of 0.9 cm compared to the retrieved values from brain

layered slab models at 1.2 cm. This signifies the fact that the thickness of the superficial layer is not

the only factor that contributes to the error. The relative difference of optical coefficients between

the layers may have an impact in recovering physiological parameters. Moreover, the inverse model

using semi-infinite diffusion theory can estimate the absorption coefficients much better than the

reduced scattering coefficients of the bottom layer of the layered slab models (figure 4.6). So, the

percentage of error in recovered total hemoglobin concentration and oxygen saturation varies within

1.6 to 19.6% and the 0.29 to 11.9% considering all the thicknesses and source-detector separations.
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(a)

(b)

(c)

Figure 4.7: The average percentage of error in recovered �1) and (C$2 for different thicknesses of the
superficial layer at d = 0.75 (row 1), 1.25 (row 2) and 1.75cm (row 3). The first column are for �1) and

the second column is for (C$2. The factors shown in the legend are used to make the bar visible.
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Chapter 5

Conclusion

In this study, the aim was to assess the accuracy of semi-infinite diffusion theory in measuring

optical coefficients and physiological parameters for layered slab models of brain and muscle.

Layer based MC model was used to simulate photon propagation inside a two-layered slab tissue

models. Simulations results were then analyzed using semi-infinite homogeneous model, which

is one of the most widespread analytical model to analyze diffuse reflectance spectra because of

its low level of complexity. The recovered reduced scattering coefficient extracted by semi-infinite

diffusion theory showed more percentage of error than the retrieved absorption coefficient. The

retrieved optical coefficients were affected by the presence of superficial layers and the thickness

of the superficial layer. The variations of absorption coefficients due to the superficial layer were

reflected in retrieved hemodynamic parameters.The presented results highlight the need for more

complex methods of analysis which may allow to reduce the influence of superficial layers in

retrieved physiological parameters, for example, in future the diffusion equation for the layered slab

models can be utilized [35, 36].

5.1 Summary of the Findings

The findings of this study can be summarized as below:

1. The analysis of semi-infinite tissue models using semi-infinite diffusion theory shows less
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margin of error compared to the steady state measurements.

2. From the analysis of two-layered slab models, it is observed that the percentage of error

increases with the thickness of the superficial layer.

3. However, it is also observed that the thickness of the superficial layer is not the only factor

that contributes to the error. The relative difference of optical coefficients between the layers

may have an impact in recovering physiological parameters.

5.2 Future Directions

In this study, derived parameters using the retrieved absorption coefficients are studied. How-

ever, there are other two parameters “a”and “b”that can be computed from the recovered reduced

scattering coefficients. So, the equation 3.3 can be rewritten as follows:

log(`′B (_)) = log(0) − 1 log( _

500(=<) ) (5.1)

The reduced scattering coefficient is recovered from three different wavelengths. Therefore, the

following linear system can be constructed using the retrieved reduced scattering coefficients:


1 − log( _1

500 )

1 − log( _2
500 )

1 − log( _3
500 )




log(0) log(0) log(0)

1 1 1

 =

log[`′B (_1)]

log[`′B (_2)]

log[`′B (_3)]


(5.2)

By solving the equation 5.2, the derived parameters “a”and “b”can be recovered. As derived param-

eters “a”and “b”can give us information about the structure of the biological tissue, the comparison

between the input and retrieved derived parameters from the reduced scattering coefficient may help

to understand the structural differences between the input and recovered tissue model. In addition,
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the anisotropy factor, 6 can be calculated from the recovered “a”and “b”at each wavelength using

the following equation:

log(`′B (_)) = 1 − 0

`B
.( _

500
)−1 (5.3)

The anisotropy factor was chosen 0.9 as the biological tissues are highly forward scattering [29, 30].

In the literature, it is reported that the anisotropy factor, 6 depends on the wavelength and absorption

[37–41]. Therefore, it would be an interesting avenue to explore how anisotropy factor changes

with wavelength and hemoglobin concentration.

To extract optical coefficients from the time domain measurements, the diffuse reflectance spectra

were fitted from the time of maximum reflectance to the time of minimum reflectance measured.

However, for reflectance typemeasurements, early photons travel a short distancewithin themedium

and thus, these photons probe mostly the superficial layer of a tissue. The late photons probe into

the deeper layer of tissue. So, different time intervals of the diffuse reflectance spectra can give

information about the optical properties at different thicknesses within the tissue medium. In fu-

ture, the diffuse reflectance spectra can be analyzed by dividing the diffuse reflectance spectra into

several time intervals starting from the time of maximum reflectance. Utilizing the semi-infinite

theory based inverse model, the optical coefficients from each interval can be recovered. Then the

correlation among the retrieved parameters from each time intervals can be studied to understand

the tissue hemodynamics at different depths of the tissue medium. This time-gated approach is

developed and studied for various applications in biomedical optics, such as, blood oxygenation in

the arm during a motor activity [42], cerebral hemodynamics during brain activation [43], neonatal

and adult brain imaging [44–46]. So, it would be worth exploring to study the depth sensitivity of

time domain diffuse reflectance measurements.

In this study, the layered slab models are analyzed by perturbing the hemoglobin concentration,

�1) and oxygen saturation, (C$2 of the superficial layer. Then using the inverse model, the optical
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coefficients of the bottom layer, that are brain and muscle, are recovered. Then from the recovered

optical coefficients, the physiological parameters are derived. So, this study aids to understand how

the hemodynamic changes in the superficial layer may have an impact on the recovered parameters

of brain and muscle. By analyzing the two-layered slab models, it is observed that the relative

differences of the optical coefficients between the superficial and bottom layer have an impact

on estimating the physiological parameters. To understand how the relative differences in optical

coefficients have an impact, a two-layered slab models can be constructed where the bottom layer

and the superficial layer have the same physiological parameters (same as semi-infinite model as

the layers have the same optical properties). The physiological parameters of the superficial layer

then can be perturbed by 10− 15% on both side of this base value ( that is same as the bottom layer

at first) for the superficial layer. In this method, it can be observed that how the relative differences

of the optical coefficients are making an impact on the recovered physiological parameters. It

is straightforward to understand that the error percentage of the physiological parameters will be

minimum as the relative difference of the optical coefficients is zero and semi-infinite diffusion

theory is used for the analysis. However, it can be observed how the percentage of error in recovered

physiological parameters vary with the relative differences, for example, in absorption coefficients.

In addition, Amendola et. al studied the recovered physiological parameters in three hemodynamic

scenarios (ischemia, hyperoxygenation and hypoventilation) [47]. Therefore, it would be quite

fascinating to study the hemodynamic parameters in terms of the relative differences in optical

coefficients between the tissue layers.
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