
ABSTRACT

ESTIMATING OPTICAL PROPERTIES OF LIQUID PHANTOMS WITH MULTIPLE
CORRECTION METHODS USING MEASUREMENTS FROM A SINGLE INTEGRATING

SPHERE AND THE INVERSE ADDING-DOUBLE ALGORITHM

by Vinoin Devpaul Vincely

Integrating spheres (IS) are regarded as the gold-standard method to measure total reflectance
and transmittance. These measurements combined with the high-speed solver, the inverse adding-
doubling (IAD) method, provide efficient estimations of optical properties (absorption and reduced
scattering) from thin unknown turbid samples. In this thesis, the performance of a table-top IS/IAD
method to calculate optical properties will be explored using a robust set of optical phantoms whose
properties mimic typical biological tissues. An analysis of the limitations of the system revealed
light losses in IS measurements that translate to errors in inverse calculations. A robust Monte-
Carlo model mimicking light propagation under the experimental configuration, is developed with
simulations indicating relative errors in measurements up to 25%. Two commonly used correction
methodologies, an experimental (substitution) and a theoretical (IAD-MC) correction protocol,
were implemented to improve system performance. The effectiveness of these correction method-
ologies for multiple source configurations over a range of optical properties typical to biological
media, was explored. These studies indicated that the theoretical correction along with a well colli-
mated illumination source provide most accurate estimations of absorption and reduced scattering
values by the IS/IAD method to within 0.05 cm−1 and 0.8 cm−1, respectively.
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Chapter 1

Introduction and Background

The goal of this thesis is to build a truly gold standard method of extracting broadband optical
properties from thin unknown turbid samples. Literature holds the integrating sphere (IS) com-
bined with the inverse adding-doubling (IAD) algorithm to be the most accurate and fast method of
estimating sample optical properties. However, practical implementation of this method revealed
high deviations in the estimations of optical properties from expected values. Two questions rose
in the pursuit of answering these observations - ”Does the IAD predict sample optical properties
accurately?” and ”Are the IS measurements given to the IAD accurate?”. The answers to these
questions depend on various parameters such as sample optical properties, sphere and sample ge-
ometry, source profiles and detector efficiency.

The following chapter begins within an introduction to the typical nomenclature used in the field,
the motivation and summary of the objectives of this thesis. In chapter 2, a detailed description
of the IS/IAD method followed by a discussion of preliminary tests conducted using this method,
is provided. In the pursuit of explaining observations seen in the preliminary analyses, Chapter 3
describes an ”in-house” developed Monte-Carlo method to simulate light propagation under given
experimental conditions. Chapter 4 discusses prevalent issues observed with the IS/IAD method
and ways to eliminate or mediate these effects in estimation of optical properties. Finally, chapter
5 concludes this thesis with a discussion of findings and possible avenues of future investigation.

1.1 Motivation

With advancements in laser technology, optical characterization of materials has become common
place to investigate structure and composition of materials. Light-media interactions are studied
using spectroscopic tools, that help quantify light absorbed, emitted, or fluoresced by any illumi-
nated media. Turbid media, such as biological tissues, are a class of materials that purely absorb
or scatter incident light. Understanding the distribution of light in biological tissues have allowed
for the development of photochemical, thermal, and ablative modes of laser treatment protocols.
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Wavelength-depended optical properties help quantify light distribution in turbid media. The op-
tical properties of a sample govern the likelihood of an incident photon to either be absorbed or
scattered. The optical absorption coefficient is defined as the inverse mean-free path a photon trav-
els before being absorbed by the sample. Conversely, the optical scattering coefficient is defined
as the inverse mean-free path between successive scattering events within a medium [1–3]. The
light distribution through any homogeneous unknown media can be theoretically modeled given
the optical properties of the media are known, hence operating in a forward fashion [1, 4–6]. These
theoretical models are solutions to the equation of radiative transfer for specific sample and system
conditions [4, 7].

Inverse models can estimate optical properties of unknown media, given that their light distribution
can be accurately measured. Popular inverse methods function by iteratively running forward
models to match measured light distributions with theoretical calculation [1, 7–9]. Models such as
the inverse monte-carlo model, though accurate, prove to be computationally intensive for multi-
wavelength analyses and at times inflexible to incorporate mismatched boundary conditions [5].
The inverse adding-doubling algorithm provides a practical method for high-speed estimation of
sample optical properties at multiple wavelengths simultaneously [7, 10]. This combined with
the integrating sphere to measure the total reflected and transmitted fluences provide an efficient
method of estimating sample optical properties at wide wavelength ranges simultaneously [8, 10].

1.2 Nomenclature and Definitions

The fundamental nomenclature used in this thesis are presented here. First, a description of dimen-
sional quantities, such as optical properties and fluence that describe light propagation in turbid
media, are presented. This is followed by a discussion of dimensionless quantities such as albedo,
optical depth, and anisotropy.

1.2.1 Dimensional quantities

We assume tissues to be turbid media that have a random distribution of localized spheres that
either scatter or absorb photons. The advantage to this approach is that for perfect spheres the
phase function is known [11] (see section 1.3.1). By this definition, the volumetric absorption and
scattering coefficients can be defined as the inverse average distance between adjacent absorbing

2



and scattering centers respectively (table 1.1). The propagation of light through a sample modeled
as a slab of finite thickness (d), can be described by the absorption and scattering coefficients and
the phase function. The phase function refers to the fraction of light scattered from an incident
direction (ŝ) to a scattered direction (ŝ′). The phase function is discussed in detail in section 1.3.1.

The net flow of photon energy, for a monochromatic source, is described by the radiance as a
function of position and solid angle (L(~r, ŝ)). By integrating the radiance over all solid angles, the
amount of energy deposited in a unit volume of the tissue can be obtained. This is referred to as
the fluence (φ(~r)). The above mentioned dimensional quantities are summarized in table 1.1.

Quantity Definition Units

µa Inverse of mean distance travelled by photon be-
fore absorption by sample

cm−1

µs Inverse of mean distance travelled by photon be-
tween successive scattering within sample

cm−1

d Thickness of sample cm

L(~r, ŝ) Radiance Wsr−1cm−2

φ(~r) Fluence (total radiance at point~r) Wcm−2

Table 1.1: List of dimensional quantities that describe light propagation in turbid media.

1.2.2 Dimensionless quantities

The dimensionless quantities commonly used in understanding light-media interactions are, the
albedo, the optical depth (also known as optical thickness) and optical anisotropy of the sample.
The albedo is defined as the ratio of scattering to the total attenuation (µa+µs) of the sample while
the optical depth is defined as the product of sample thickness to the total attenuation. Finally, the
optical anisotropy of the sample is the mean cosine of the angle (θ ) of scattering by light from an
incoming direction [10]. These quantities are summarized in table 1.2.

Quantity Name Expression Typical Values

a Albedo a = µs
µa+µs

0−1

b Optical Depth b = d(µa +µs) 0−∞

g Anisotropy g =< cos(θ)> −1−1

Table 1.2: List of dimensionless quantities
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1.3 Equation of Radative Transport

In this section, the transport equation that describes the behavior of light in a turbid slab, is ex-
plored. The following is the fundamental form of the transport equation (1.1).

(ŝ∇)L(~r, ŝ) =−µtL(~r, ŝ)+µs

∫
4π

p(ŝ, ŝ′)L(~r, ŝ)dΩ
′ (1.1)

The above equation models the rate of change of intensity at a point ~r and in a direction ŝ

(L.H.S of equation 1.1). This rate of change is equal to the loss of intensity due to attenuation (in
the form of scattering and absorption by media) plus a gain in intensity due to light scattered in the
direction ŝ from all other directions (last term on the R.H.S of equation 1.1). This indicates that
the distribution of intensity is dependent on the position and direction.

The transport equation operates on key assumptions that are described below. Firstly, the medium
modelled is assumed to be homogeneous, i.e. the length scales of variations in scattering and
absorption of the medium are much smaller than the sample thickness. Secondly, it is assumed that
each scattering particle is sufficiently isolated that the overall scattering pattern is independent of
all other particles. Thirdly, it is assumed that scattering by all particles may be described by a single
function known as a phase function. This leads to the conclusion that there exists an ensemble
average scattering pattern for all the scattering centers in the medium. Finally, an assumption that
there are no light sources within the medium is also made.

1.3.1 Phase functions

The phase function describes the scattering profile of light incident on a particle with a refractive
index different from the media it is enclosed in. The angle of refraction of the light incident on these
particles, will depend on the wavelength of the light, the angle of incidence and the refractive index
of the particle. The phase function (denoted as p(ŝ, ŝ′)) describes the amount of light scattered into
the direction ŝ′ from an incident direction of ŝ. The phase function can be normalized across all
possible angles of scattering,

∫
4π

p(ŝ, ŝ′)dΩ = 1 (1.2)
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where dΩ is a differential solid angle in the ŝ direction. The phase function is a description of
light scattering by the particle and does not permit absorption. For simplicity, the phase function is
constrained as the mean phase function while also assuming the probability of scattering is purely
a function of the angle between incident and scattered directions (i.e. p(ŝ, ŝ′) = p(ŝ.ŝ′) = p(cosθ).

The simplest phase function will be the isotropic phase function, expressed as p(ŝ, ŝ′) = 1
4π

where
the factor, 1/4π is a result of the normalization condition and the fact that there are 4π steradians
in a complete circle. However, for non isotropic phase functions, a parameter called the average
cosine of the phase function is used to describe the degree of anisotropy of the phase function. This
parameter is often denoted by g and is denoted as the integral over all angles of the phase function
multiplied by the cosine of the angle

g =
∫

4π

p(ŝ.ŝ′)(ŝ.ŝ′)dΩ (1.3)

The choice of a single scattering phase function is a balance between realistic modelling and math-
ematical feasibility. The single particle light scattering in human tissues can be accurately modeled
using the modified Henyey-Greenstein function [7, 12] (eq. 1.4).

p(cosθ) =
1

4π

[
β +(1−β )

1−g2

(1+g2−2gcosθ)3/2

]
(1.4)

where β describes the amount of light scattered isotropically and the fractional term is the
Henyey-Greenstein function. The function can be normalized such that the integral over all solid
angles is unity. The phase function reduces to the Henyey-Greenstein phase function when β = 0.
The average cosine of the phase function g is a measure of how much light is scattered in the
forward direction. The anisotropy can be any value between -1 and 1 where a value of g = -
1 corresponds to scattering completely in the backwards direction. A value of g = 1 is when
scattering is purely in the forwards direction and finally a value of g = 0, is isotropic scattering.

1.3.2 Adding-Doubling

A general numerical solution to the equation of radiative transfer is the Adding-Doubling (AD)
method [7, 13]. The AD method is a high speed forward method to calculate light distribution
across a sample with known optical properties. This is achieved by solving the RTE in one-
dimension, while not violating the assumptions mentioned in section 1.3. This simplification of
the RTE results in samples modelled as thin-infinite slab, i.e. a sample extending infinitely in di-
rections normal to photon incidence while maintaining a finite thickness (fig. 1.1) [7, 13].
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Figure 1.1: AD visualization of a homogeneous turbid sample with known optical properties.

The name ”adding-doubling” corresponds to estimation of total reflectance and transmittance for
a slab of desired thickness and known optical properties. By juxtaposing identical slabs and sum-
ming the contributions from each slab the total reflectance and transmittance is found [13, 14]. This
modelled can be adjusted to allow simulations of media with different layers with uniform optical
properties and internal reflections at the boundaries of these layers [13]. A detailed description and
the implementation of the AD method is described in section 3.2.

1.4 Thesis Objectives

The primary goal of this thesis is to estimate the total scattering and absorption of turbid liquid
media, with high accuracy and precision under the most efficient experimental protocols. As men-
tioned in section 1.1, the IS/IAD method proves to be such a method capable of high-speed multi-
wavelength estimation of optical properties. There are two main tasks to this thesis - 1) To test the
IS/IAD method with liquid optical phantoms with wide range of optical properties, most similar to
typical biological tissues. 2) The development of a robust Monte Carlo model for simulating light
propagation through a sample mounted on an integrating sphere.
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Chapter 2

Experimental Requirements

To estimate optical properties of unknown turbid samples, two fundamental measurements are to
be made using the IS system - total reflectance and transmittance. These measurements, once
made, are given as inputs to an appropriate inverse model, along with other sample and sphere
parameters, that can then estimate broadband optical properties of the samples. The following is a
schematic of the overall experimental protocol used in this thesis to estimate optical properties of
turbid samples (fig. 2.1).

Figure 2.1: Typical workflow of the IS/IAD method to extract sample optical properties

The following sections will elaborate components of this workflow in greater detail. We begin with
a detailed description of the integrating sphere and the theory behind light collection of this device.
The chapter is then concluded with a brief introduction to inverse modelling and why it is vital for
the estimation of optical properties.

2.1 Integrating Sphere

Figure 2.2: Illustration of a simple
integrating sphere system.

The integrating sphere (IS) is a well established
technique of measuring the total reflected and trans-
mitted fluence of thin samples [1, 7, 8, 10, 15].
The IS by design is a spherical device with its in-
terior surface coated by a highly reflective material.
Commercial IS devices use barium sulfate (Spec-
traflect) or a polymer of Teflon, polytetrafluoroethy-
lene (PTFE) as its reflective coating. Across the
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spherical body of the device, finite sized ports are positioned so as to allow the mounting of a
sample, a detector or light to illuminate the device (as seen in 2.2).

The total reflected (Rt) and transmitted (Tt) fluence of a thin sample can be measured by uniquely
orienting the sample with respect to the sphere and source. By placing the sample on a port that is
on the farther side of the sphere, all light reflected off the sample can be collected. Conversely, by
placing the sample on a port in between the sphere and the source, all transmitted light is collected.
These orientations are visually described in figure 2.3.

Figure 2.3: Integrating sphere orientations for reflectance (left) and transmittance (right)
measurements.

The total reflectance (RT ) and transmittance (TT ) are normalized expressions of intensity signals
measured using a commercial spectrometer mounted onto the sphere (as described in fig. 2.3) (eq.
2.1). For the reflectance measurement, Rdark refers to baseline signal collected by the system when
the sphere is not illuminated, i.e. source is turned off. Rstandard refers to a signal measured when
the a 100 % reflective calibration standard mounted onto the IS sample port, is illuminated by the
source. The Rsample refers to the signal measured when a sample is mounted onto the IS sample
port. Conversely, in the measurements of total transmittance, Tdark refers to a similar baseline sig-
nal collected by the system when the sphere is not illuminated. Tempty corresponds to the signals
measured when sample port is empty in the transmittance configuration and the source allowed to
illuminate the sphere. Finally, Tsample refers to the signal measured when a sample is mounted onto
the IS sample port. This process ensures, that the measured reflectance and transmittance straddles
between 0−100 % for any given sample.
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RT =
Rsample−Rdark

Rstandard−Rdark
TT =

Tsample−Tdark

Tempty−Tdark
(2.1)

For the following studies, a 6-inch diameter IS with an internal coating of Spectraflect is used (Lab-

sphere RT-060-SF). Five 1-inch ports and one 0.5-inch port populate the surface of the device. The
1-inch ports are purposed for either mounting a sample or allowing an illumination beam while the
0.5-inch port is used to mount a detector. Finally, a baffle, a small reflective shield, is positioned
such that light specularly reflecting off the sample is redirected away from the detector.

Depending on the application various combinations of sources and detectors can be coupled with
the IS systems. For the studies conducted in this thesis, two types of illumination sources will
be used - a broadband continuous-wave halogen source (Thorlabs Inc. SLS202L) and a pulsed
supercontinuum source (NKT Photonics SuperK EVO ERL-04). Varying optics populate the path
depending on the type of source used for sample illumination. The halogen source produces a
highly diverging Gaussian beam profile. Due to this divergence, a in-house built collimator (using
a set of converging and diverging lens) is used to ensure beam collimation. The best collimation
ensured is a spot size of 17 mm diameters. The bandwidth of the pulsed supercontinuum source is
controlled using a bandpass filter (NKT Photonics SuperK VARIA). Due to the pulsed characteris-
tic of this source, a well collimated beam (1.5 mm diameters) is guided using a set of mirrors to
illuminate the sample.

With a goal of obtaining optical properties of highly turbid media over visible wavelength ranges, a
UV-VIS spectrometer operating with high signal-to-noise ratios is need. Here, StellarNet SILVER-

Nova, a cooled spectrometer for low light applications is used in conjuncture with both halogen
and superconntiunm sources.

2.1.1 Theory of Integrating Sphere

The total counts measured by a standard detector mounted onto an integrating sphere, is depended
on the total power incident upon the detector and the response to that power. However, interac-
tions between the sample and sphere affects the detected signal in such a way that it is no longer
proportional to the true reflectance or transmittance of a sample [10, 16–18]. To better understand
this, let us consider a sphere with an internal radius of R and other parameters listed in table 2.1. It
is assumed that the reflectivity of the sphere wall (m) is invariant of wavelength.
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Parameter Expression

Total area of sphere wall A = 4πR2

Reflectivity of sphere wall m

Area of detector port δ

Area of sample port s

Total area of other ports h

Relative area of sphere wall α = 1− (δ/A+ s/A+h/A)

Table 2.1: A list of integrating sphere parameters

First, consider a situation where all ports on the sphere, except one, are closed using a similar
material as the interior coating of the sphere. The one port that remain open is used to allow a well
collimated beam (with power P) to illuminate the sphere. The total power collected by the detector
for the first reflection can then be expressed as,

δ

A
mP (2.2)

After the first reflection, a fraction of the power incident on the detector can interact with a mounted
sample, be lost through any open ports (if any) or undergo a second reflection by the sphere walls.
Hence, the total power collected by the detector for a second reflection can be expressed as,

δ

A
mP+mαmP+Rd

s
A

mP = mPF, (2.3)

where.
F =

δ

A
+mα +Rd

s
A

(2.4)

Equation 2.4 represents the fraction of the total incident light that is diffusely reflected by all the
components of the IS. The factor Rd represents the reflection coefficient of the sample illuminated
diffusely, resulting in a loss in power detected. For each subsequent reflection, the power collected
by the detector incurs a loss as a factor of F and hence the total power collected by the detector for
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the nth reflection is given by,

Pd =
δ

A
mP(1+F +F2 + ...+Fn−1) (2.5)

Figure 2.4: Relationship between IS measured
values and true values of various calibration

standards at 500 nm.

This response of the integrating sphere can
be experimentally probed using well-calibrated
reflectance standards. To understand this for
our integrating sphere, a set of four reflectance
standards - 2%,50%,75% & 99% (Labsphere

RSS-04-020), that have flat spectral profiles
across wide wavelength ranges, were used.
Figure 2.4 describes the discrepancies in the
IS measurements against manufacturer calibra-
tion specified values. It can be observed that
the highest deviations in measured total re-
flectance values can be observed for samples
that are 50% reflecting. Hence, typical re-
flectance measurements of biological tissues
can experience relative errors up to 15%.

2.2 Inverse Modelling

Conventional methods of estimating sample optical properties involves the use of solutions to the
equation of radiative transfer (as mentioned in section 1.3), that express optical properties in terms
of measured parameters [7]. However, in practice, the optical properties can only be obtained
by solving the ”inverse problem”. This problem refers to the constrained ability to place optical
properties in a light propagation model and have the corresponding values of total reflectance and
transmittance be computed. Over iterations, these optical properties are adjusted until computed
reflectance and transmittance match measured values within certain tolerances [1, 15, 19].

As mentioned in section 2.1, the integrating sphere can be used to make measurements of total re-
flectance and transmittance on thin turbid tissues. The relationship between measurements and the
optical properties have been explored in two ways - analytical models (such as multiple-flux mod-
els, diffusion theory and adding-doubling method) and Monte-Carlo modelling [1, 15, 19]. While
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Monte-Carlo models provide robustness in modelling specific source-tissue-detector geometries,
they are constrained by long computational times due to their stochastic nature (see chapter 5). On
the other hand, analytic models are more elegant as they provide closed form expressions of Rt and
Tt in terms of the sample optical properties.

The number of measurements made on a given sample is directly proportional to the number of
optical properties a given inverse model can estimate, i.e. if only measurements of Rt and Tt are
made, then it is not possible to estimate all three optical properties (µa, µs & g). However, if it is
assumed that for a slab with optical properties, µa, µs & g 6= 0 have similar Rt and Tt to another slab
with optical properties, µa, µs & g = 0, two independent quantities (µa and µ ′s) can be estimated
(where µ ′s = µs(1−g)). This approximation, known as the ”Similarity Principle” holds true only
for tissue models of finite thickness and breaks down for models with thickness’ comparable to the
effective penetration depth (1/µt).

Due to the closed form expressions of analytical models, solutions can be computed with high
efficiency. However, this efficiency comes at a cost to the overall accuracy of the model in com-
parison to more accurate Monte-Carlo models. Hence, the optimum choice for a model to derive
optical properties from any given measurement involves a trade-off between accuracy, speed and
the ability to fully describe the experimental arrangement. As described in section 1.3.2, the AD
is a high speed solution to the 1D-RTE and can be used to solve the inverse problem efficiently. In
the following chapter, this inverse model, the Inverse Adding-Doubling will be explored in great
detail.
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Chapter 3

Inverse Adding Doubling Method

The inverse adding-doubling (IAD), is an inverse iterative method of translating measured sample
parameter (total reflectance and transmittance) to optical properties. As described in section 2.2,
this model makes uses of the 1-D forward adding doubling algorithm [7, 16, 20–22], which allows
high speed estimation of optical properties compared to more rigorous methods, like the inverse
monte-carlo method [15, 23, 24]. The following aspects comprise the iteration process of the IAD
(fig. 3.1),

• An initial guess of optical properties under given constraints.

• AD estimates total reflectance and transmittance values for guessed optical properties.

• The error between AD estimations and measured values is calculated.

• The process is repeated until error is within a desired tolerance.

Figure 3.1: A schematic describing the basic workflow of the IAD in estimating optical properties
from a set of experimental measurements.
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In the following sections, the various routines of the IAD in estimating optical properties from a
set of integrating sphere measurements, will be explored in greater detail.

3.1 Initialization of Inverse Calculations

The iteration method implicitly assumes that a given set of reflection (Rt), transmission (Tt) and un-
scattered transmission (Tc) measurements can determine a unique combination of sample albedo,
optical depth and anisotropy. However, for thicker samples, an accurate measurements of unscat-
tered transmittance may no be possible. Hence, the IAD is designed under two unique cases - fixed
unscattered transmission and fixed scattering anisotropy. The former is representative of when
three measurements (Rt , Tt , Tc) can be made on a given sample and allowing the estimation of all
three optical properties (µa, µs, g). The latter applies when the unscattered transmission measure-
ment is unavailable for the sample, allowing only two measurements (Rt , Tt) to be made resulting
in the estimation of two optical properties (µa, µ ′s). For the studies in this thesis, only two mea-
surements are made on all samples. In this case, a value for the scattering anisotropy is assumed,
and the albedo and optical thickness are calculated based on this assumed value.

The initial guess of the optical properties affects both the rapidity and accuracy of the convergence.
Poor initial guess leads the minimization algorithm to converge into a local minima than the global
minimum. Generating an appropriate set of initial values of optical properties for a combination of
Rt and Tt is difficult. Using the similarity relations described by van de Hulst, one can facilitate the
initial guessing of optical properties (a, b, g) by relating them to a set of reduced optical properties
(a′, b′, g = 0) [14].

a =
a′

1−g+a′g
b = b′+

a′b′g
1−g

(3.1)

This reduces the iteration process to finding two parameters (a′, b′) from a set of two measurements
(Rt , Tt). A good starting guess of the reduced albedo and reduced optical thickness is based on a
crude fit of the reflection and transmission values,

a′ =


1−
(1−4Rd−Tt

1−Tt

)2
if

Rd

1−Tt
< 0.1

1− 4
9

(1−Rd−Tt

1−Tt

)2
if

Rd

1−Tt
≥ 0.1

(3.2)
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b′ =


− lnTt ln(0.05)

lnRt
if Rd ≤ 0.1

21+5(Rd+Tt) if Rd > 0.1
(3.3)

By using equations 3.1, 3.2 and 3.3, initial values of the albedo and optical thickness can be
generated and proceed with the inverse processes of the IAD.

3.2 Adding-Doubling Method

In this section the adding-doubling (AD) method for solving the equation of radiative transport
method, is described. The key advantages of the AD method are that only integration over angles
are required, physical interpretations of the results can be made an any iteration of the model, both
isotropic and anisotropic scattering can be handled, and results can be obtained for all angles of
incidence used in the integration. The AD method is well suited for iterative problems as it provides
accurate estimates of total reflectance and transmittance with relatively few quadrature points (see
below). The following assumptions are made for all calculations done using this method,

• The distribution of light is invariant of time.

• Light is unporlarized and azimuthally symmetrical.

• The sample is a slab of homogeneous optical properties.

• The sample has a uniform index of refraction.

• At boundaries, the internal reflection is governed by Fresnel’s law.

• The ambient medium is non-absorbing with a different refractive index.

The AD calculates reflection (R(θ ,θ ′)) and transmission (T (θ ,θ ′)) for light incident at angle θ

and exciting at an angle θ ′ through a slab of desired thickness and known optical properties. The
model begins by modelling a sufficiently thin slab, for which reflection and transmission can be
accurately calculated using the single scattering approximations. With knowledge of the transmis-
sion and reflection for this arbitrary slab, the ”doubling” method then determines the reflection
and transmission of a slab twice as thick by juxtaposing two identical slabs and summing the con-
tributions of the individual layers to the overall reflection and transmission of both slabs. The
”adding” method extends the doubling method to slabs with varying optical properties. Thus, by
placing these dissimilar slab adjacent to one another, light propagation through layered media can
be simulated.
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3.2.1 Nomenclature

Due to the azimuthal symmetry of the model, the samples reflection and transmission are tagged
with the angle made with the normal by any entering (v = cos(θ)) or exiting (v′ = cos(θ ′)) radi-
ance. Hence, the incident radiance can be denoted as L+

incident(v), where + indicates the direction
of propagation (+z direction, downwards) (Fig. 3.2). For the modelled tissue, the reflection and
transmission function, R(v′,v) and T (v′,v) respectively, are defined in the propagating direction
v′ from the incident direction v [14]. With these definitions, the total transmitted and reflected
radiance by a modelled sample can be written as,

L+
transmitted(v

′) =
∫ 1

0
L+

incident(v)T (v
′,v)2vdv

L−re f lected(v
′) =

∫ 1

0
L+

incident(v)R(v
′,v)2vdv

(3.4)

Figure 3.2: Schematic representation of the nomenclature used by the AD to estimate reflectance and
transmittance through a sample of known optical properties (Left). Nomenclature for the upward and

downward radiances from each surface of an arbitrarily defined slab (Right).

3.2.2 Quadrature Scheme

In order to perform the integrations described in equations 3.4, an appropriate quadrature scheme
will be used to approximate these integrals. As an example, the integration of a function f (x) over
the integral (a,b) with a weighting function g(x) using M points can be approximated as follows,

∫ b

a
f (x)g(x)dx≈

M

∑
i=1

f (xi)wi (3.5)
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here, the integration points xi and weights wi are chosen in such a way that the integration
will integrate a polynomial of degree 2M exactly. The extension to two arbitrary functions can be
expressed as,

∫ 1

0
A(x,x′)B(x,x′)2x′dx≈

M

∑
j=1

Ai j2v jw jBik ≡ A B (3.6)

Equation 3.6 shows explicitly the relationship between integration and matrix multiplication, where
they differ from factor of 2v jw j that must be included. This can be done by introducing a identity
matrix E for matrix multiplication of this type,

Ei j =
1

2viw j
δi j (3.7)

here δi j is the Kronecker delta function. Grant and Hunt have shown that an algebra based on
this implied multiplication is a semigroup, and have proven that all manipulations that follow are
valid [25].

3.2.3 Matrix Relations for Adding Layers

According to Plass et. al., the light incident on side 0 of an arbitrary slab, moving towards side
1 can be represented by a set of operators. These operators are the reflection and transmission
operators represented as R01 = R(v0,v1) and T 01 = T (v0,v1) respectively. For a homogeneous
slab, R01 = R10 and T 01 = T 10 due to symmetry across both directions of propagation. Here, v0

and v1 are chosen corresponding to the quadrature scheme adopted. As described in figure 3.2
(right), the vector L+

0 (v) refers to the radiance incident on side 0 of a arbitrarily thick slab, and
L−1 (v) is the radiance incident on side 1. Similarly, L−0 (v) and L+

1 (v) are defined as the radiance
exiting the slab from sides 0 and 1 respectively. As described in section 3.2, the downward radiance
exiting the slab from side 1 is the sum of the incident radiance transmitted from side 0 and reflected
radiance from side 1,

L+
1 = T 01L+

0 +R10L−1 (3.8)

Similarly, the upward radiance from side 0 is the sum total of the radiance transmitted from side 1
and the reflected radiance from side 0,

L−0 = R01L+
0 +T 10L−1 (3.9)
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Analogous formulas can be used to describe another arbitrary layer with boundaries 1 and 2 as
follows,

L+
2 = T 12L+

1 +R21L−2
L−1 = R12L+

1 +T 21L−2
(3.10)

As mentioned in section 3.2, the two layers 01 and 12 can be juxtaposed to yield a combined layers
02. The equations for the layers with sides 0 and 2 are,

L+
2 = T 02L+

0 +R20L−2
L−0 = R02L+

0 +T 20L−2
(3.11)

Given the reflection and transmission operators for the layers 01 and 12 are known, similar oper-
ators for the layer 02 can be produced in terms of those for the individual layers 01 and 12. By
left-multiplying R12 to the elements of equation 3.8 and adding them to the equation describing
L−1 (eqs. 3.10), allows one to solve for the upward radiance at the interface between two arbitrary
layers, as the terms containing L+

1 eliminate each other resulting in the following expression,

L−1 = (E−R12R10)−1(R12T 01L+
0 +T 21L−2 ) (3.12)

Similarly, an expression for the downward propagating radiance at boundary 1 can be obtained by
left-multiplying R10 to the equation describing L−1 (eqs. 3.10) and adding it to equation 3.8:

L+
1 = (E−R10R12)−1(T 01L+

0 +R10T 21L−2 ) (3.13)

Equation 3.13 can be substituted into the equation describing radiance through the layer with
boundaries 1 and 2 (eq. 3.10) yielding the following expression for L+

2 ,

L+
2 = [T 12(E−R10R12)−1T 01]L+

0 +[T 12(E−R10R12)−1R10T 21 +R21]L−2 (3.14)

The above expression (eq. 3.14) is an analogous expression to the juxtaposed equation for L+
2 (eq.

3.11). By comparing these two equations, expression describing the reflection and transmission
operators for the combined layers can be obtained:

T 02 = T 12(E−R10R12)−1T 01

R20 = T 12(E−R10R12)−1R10T 21 +R21
(3.15)

By applying a similar substitution to equation 3.9 using equation 3.12 and comparing the results
to the juxtaposed equation for L−0 (eq. 3.11), expressions for the operators T 20 and R02 can be
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obtained. These equations can be used repeatedly to find the reflection and transmission of an
arbitrarily layered sample.

3.2.4 Layer Initialization

As described in section 3.2, the reflection and transmission functions of a sufficiently thin slab
can be estimated using the single scattering equations represented by van de Hulst for isotropic
scattering [14]. For azimuthally independent anisotropic scattering the redistribution function must
be included. The following expressions represent the single scattering reflection and transmission
functions for a thin layer,

R(a,b,v,v′) =
aπh(v′− v)

v′+ v

[
1− exp

(
− b

v′
− b

v

)]
T (a,b,v,v′) =

aπh(v′− v)
v− v′

[
exp
(
− b

v

)
− exp

(
− b

v′

)] (3.16)

Here, the single scattering reflection and transmission are functions of sample albedo, optical
thickness and incident and scattered directions of radiance (represented as a, b, v and v′ respec-
tively).

3.2.5 Boundary Conditions and Internal Reflection

At the boundaries of the sample, radiance can either by internally reflected or transmitted across
the boundary, depending on its angle of incidence. This is implemented in the adding-doubling
method by creating a layer which mimics the reflection and transmission at a boundary. The
created layer is added to the modelled sample (slab) to find the reflection and transmission under
boundary conditions. If r(v) is the Fresnel reflection for light incident from a medium with index
of refraction n0 on another medium with index n1, the reflection and transmission matrices can be
written as,

R01(vi,v j) =
r(vi)

2vi
δi j

T 01(vi,v j) =
1− r(vi)

2vi

(n1

n0

)2
δi j

(3.17)

The reflection function r(vi) is the unpolarized Fresnel reflection function. The Kronecker delta
function makes both reflection and transmission matrices diagonal, ensuring that light is specularly
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reflected at angles equal to incident angles. Similarly, the reflection and transmission operators for
randiance moving from medium 1 into medium 0 can be given as,

R10(vi,v j) = R01(v j,vi)

T 10(vi,v j) = T 01(vi,v j)
(n0

n1

)2
δi j

(3.18)

3.2.6 Implementation

The general steps in the implementation of the adding-doubling method for calculating the reflec-
tion and transmission through a turbid slab with the medium having a index of refraction, consists
of the following steps:

• Choosing quadrature scheme.

• Initializing starting layer.

• Generating boundary layers.

• Doubling starting layer until desired thickness is researched.

• Incorporating boundary layers.

• Calculating overall reflection and transmission of the modelled sample.

A user-friendly verison of the adding-doubling algorithm has been developed by Prahl, and has
been used by the inverse adding-doubling algorithm to accomplish inverse calculations of optical
properties from measurements of reflection and transmission from samples [13, 26]. Furthermore,
this program has optimized to run under MATLAB’s environment (see appendix B).

3.3 Error Metric for Inverse Calculations

With the reflection and transmission values calculated by the adding-doubling, a metric to under-
stand how far these values are to experimentally measured values, is required. According to Prahl

et. al, the best metric is a sum of relative errors of both reflectance and transmittance values, as
described below,

M(a,b,g) =
|RAD−RIS|
RIS +10−6 +

|TAD−TIS|
TIS +10−6 (3.19)
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here RIS and TIS are the reflectance and transmittance measured using an integrating sphere,
while RAD and TAD are the AD calculated reflectance and transmittance values, respectively. The
factor of 10−6 is introduced to prevent a division by zero in cases where measured values may be
zero.

3.4 Iteration Mechanism for Inverse Calculations

The iteration mechanism incorporated in the IAD is an N-dimensional minimization algorithm
based on the downhill simplex method proposed by Nelder and Mead [27]. The AMOEBA imple-
mentation of this scheme, varied the parameters from −∞ to ∞. Since the input optical parameters
(a, b, g) all have fixed ranges, the will be transformed into this computation space. For example,
the sample albedo can be transformed as follows,

acomp =
2a−1

a(1−a)
(3.20)

Through this transformation, the acomp varies within the limits of −∞ to ∞. A similar transforma-
tion can be applied to the other two optical parameters as follows.

bcomp = ln(b) gcomp =
g

1+ |g|
(3.21)

These values can be inverted to obtain the real optical parameters easily. These transformations
were only used by the simplex method, for choosing the next iteration point. With these imple-
mentations, the IAD typically takes within 20-30 iterations to converge to a solution, for a set of
Rt and Tt measurments.

3.5 IAD error analysis - Accuracy

Before incorporating the IAD method to estimate optical properties of any unknown media, one
fundamental question must be answered - How precise and accurate is the IAD in the derivation
of optical properties if the total reflectance and transmittance of a sample are exactly known? Due
to the unavailability of analytical expressions that describe light propagation in media with mis-
matched boundaries, the error analyses must be done numerically.
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Figure 3.3: Schematic representation of the protocol for error analysis

The accuracy of the IAD can be probed numerically using a set of arbitrary optical properties that
emulate tissues (0.1cm−1 < µa < 4cm−1 and 1cm−1 < µ ′s < 45cm−1). The total reflectance and
transmittance for these optical properties can be estimated using the AD (forward model). These
estimated values can then be given to the IAD (inverse model) as inputs to retrieve the original
optical properties, allowing one to quantify the performance of the inverse model. Figure 3.3 is a
schematic describing this process.

Figure 3.4: Validation of the IAD method in estimation of optical properties for a set of arbitrary
optical properties. The mean relative errors in estimated absorption (left) and scattering (right) are

within 0.05%.

For the range of optical properties used in these simulations (i.e. ranges analogous to tissue optical
properties specified above), it can be observed that the retrieved absorption and scattering values
have a maximum relative errors of up to 0.175% and 0.036%, respectively. It must be noted that
absorption values are slightly more that the scattering estimates.
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Figure 3.5: Relative errors in IAD estimated optical properties from true optical properties.
Describes the ranges of optical properties where the IAD fails to predicted the true optical

properties. On the left figure, the black and red dots represent two levels of scattering for all
absorption data points. On the right figure, the black and red dots represent two levels of absorption
for all scattering data points (This labelling scheme is followed for following plots in this chapter).

Figures 3.5 are plots of relative errors of IAD retrieved optical properties compared to the ”true”
optical properties used as inputs to the analysis protocol described in figure 3.3. It can be observed
that the errors in the IAD estimated scattering remain negligible though absorption levels for these
data points have changed. On the other hand, the IAD estimated absorption breaks down for
absorption values below 0.02 cm−1, with relative errors up to 8 %. Hence, one must ensure that
absorption coefficients of the samples measured using the IS/IAD technique have absorption values
over this threshold.

3.6 IAD error analysis - Sensitivity

To run an inverse calculation using the IAD, some important sample and system parameters are re-
quired (see appendix A.1). By perturbing these parameters, their effects on the inverse calculations
can be quantified. In the following sections, the sensitivity of the IAD to perturbing parameters
such as, the total reflectance and transmittance, anisotropy, sample index, sphere wall reflectivity,
and glass index, and their effects on the inverse calculated optical properties are presented.

3.6.1 Total Reflectance and Transmittance

The total reflectance and transmittance are the two fundamental measurements made on any sample
(as mentioned in section 2.1). However, perturbations to these values can occur due to detector
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capabilities or fluctuations in the source. This can be modelled by perturbing the values to total
reflectance and transmittance given to the IAD in the workflow described in figure 3.3, allowing
one to quantify the errors in the inverse calculations. For the detector used for measuring phantoms
in this thesis (see chapter 2 and 4), the variance in measurements are within or below the third
decimal place (±0.001). Hence, by perturbing the input reflectance and transmittance by +0.001,
the sensitivity of the IAD to these inputs will be explored.

Figure 3.6: The effects of perturbing the input reflectance and transmittance by +0.001, on
estimated optical properties. The solid spheres and hollow squares represent perturbations to input

reflectance and transmittance, respectively.

Figure 3.6-left describes the relative errors in IAD estimated absorption coefficients and it can
be observed, the perturbation to the measurements (reflectance or transmittance) significantly af-
fects the estimation of lower absorption coefficient (≈< 0.5 cm−1) irrespective of the scattering
of the sample. For a highly scattering sample, the perturbations to the total transmission seems
to have a significant affect to the overall estimation of absorption values as well. Figure 3.6-right
describes the relative errors in IAD estimated reduced scattering coefficients. In contrast to the
observations of the absorption errors for perturbed transmission values, the overall estimation of
scattering is affected for a sample with high absorption. These observations can be a result a 0.001
perturbation being a significant percent of the measured transmittance at the higher absorption and
scattering limit. Furthermore, we observe the highest relative errors for lower scattering samples
(< 0.5 cm−1).
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3.6.2 Anisotropy

The inverse calculations assumes, implicitly, that a unique combination of absorption, scattering
and anisotropy determine any given reflectance and transmittance measurements. As described in
section 3, the IAD requires an initial guess of optical properties of the sample to run further inverse
iterations. If an accurate unscattered transmittance measurement can be made, the anisotropy can
be estimated using the Henyey-Greenstein function (section 1.3.1). Alternatively, an initial guess
of the sample anisotropy can be provided to initiate inverse calculations by the model. By slightly
perturbing the initial guess of g, its significance in the inverse calculations can be quantified.

Figure 3.7: The effects of perturbing the initial guessed anisotropy by 0.1% (hollow squares) and 1%
(solid spheres) on estimated optical properties.

Perturbation of the initial guess of anisotropy seems to have little to negligible effect on the inverse
calculated absorption values, with maximum relative errors limited to 1 % (Fig. 3.7-left). On the
other hand, the effect on calculated reduced scattering values are more significant with errors up
to 10 % when initial guess for anisotropy is perturbed by 1 % (Fig. 3.7-right). Hence, one must
ensure that the initial guess for absorption values are accurate to within 1 %.

3.6.3 Sample Index

The next important parameter required by the IAD, is the optical refractive index of the sample.
The refractive index is a wavelength depending parameter that is generally averaged to a single
value. This is due to the wavelength dependent variations typically being limited to the third
decimal place. However, for the purposes of the IAD calculations, the sample index is still treated
as a single value. Here, by perturbing the sample index in the third decimal place (±0.001), the

25



sensitivity of the IAD to the sample index and the need the need to vary the index as a function of
wavelength can be determined.

Figure 3.8: The effects of varying input sample index by 0.1 %, on estimated optical properties. The
highest mean relative errors in estimated absorption (left) and reduced scattering (right) across the

range of simulated optical properties are limited to within 1%.

As observed in figure 3.8, the maximum relative errors on the inverse calculated optical properties
are limited to within 1 % for both absorption and reduced scattering for the range of optical prop-
erties simulated here. From these observations, it can be concluded that using an average value of
the wavelength depended sample index is appropriate as the IAD is agnostic to variations in the
third decimal of the sample refractive index.

3.6.4 Sample thickness

Accurate measurements of the sample thickness is vital to estimating optical properties. In applica-
tions of Beer-Lambert’s law, the intensity of a sample falls exponentially with the sample thickness.
A crude 1 % perturbation of the sample thickness to Beer-Lambert’s law (eq. 4.1), results in a 1 %
relative error overall. In this subsection, the sensitivity of the IAD to the input sample thickness
will be explored by performing a similar perturbing to the input sample thickness (by 1 %). The
IAD estimated optical properties will then be compared to true values.
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Figure 3.9: The effects of varying input sample thickness by 1 %, on estimated optical properties.
This perturbation corresponds to a change of 0.001 cm to the sample thickness. A uniform relative

error of 1 % can be observed over all calculated optical properties.

Figure 3.9 describes the relative errors in the IAD calculated optical properties compared to the
true optical properties provided as inputs to the error analysis (described in fig. 3.3). As observed,
irrespective of the optical properties used for these error analyses, there remains an overall 1 %
error in the calculated optical properties. Hence, if an accuracy, within this threshold is desired, an
accurate measurement of the sample thickness must be provided to the IAD.

3.6.5 Index of Ambient Medium

The final parameter required by the IAD to run inverse calculations is the refractive index of the
ambient medium surround the modelled tissue. Similar to the investigations on the sample refrac-
tive index, the index of the ambient medium will also be perturbed in the third decimal place and
the calculated optical properties will be compared to the true optical properties.

As observed in figure 3.8, the maximum relative errors on the inverse calculated optical properties
are limited to within 1 % for both absorption and reduced scattering for the range of optical prop-
erties simulated here. From these observations, it can be concluded that using an average value
of the ambient refractive index is also appropriate as the IAD is agnostic to variations in the third
decimal of the ambient index.
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Figure 3.10: The effects of varying the index of refraction of the ambient medium by 0.1 %, on
estimated optical properties. The highest mean relative errors in estimated absorption (left) and

reduced scattering (right) across the range of simulated optical properties are limited to within 1%.

3.7 Summary

In this subsection, I have summarized all the results of the accuracy and sensitivity analyses per-
formed in this chapter. Table 3.1, lists the maximum relative errors of the IAD estimated optical
properties and the range of input optical properties (µa,µ

′
s) where they are observed, for the tests

conducted in this chapter.

Error (µa) Error (µ ′p)
Rt Tt g nsample d(cm−1) nglass % µa,µ

′
s % µa,µ

′
s

Rad Tad 0.900 1.330 0.200 1.550 0.042 - 0.011 -
Rad +10−3 Tad 0.900 1.330 0.200 1.550 5.900 0.04, 1 8.400 4, 1

Rad Tad +10−3 0.900 1.330 0.200 1.550 5.550 0.04, 1 2.910 4, 45
Rad Tad 0.899 1.330 0.200 1.550 0.042 - 0.011 -
Rad Tad 0.891 1.330 0.200 1.550 0.042 - 8.600 4, 1
Rad Tad 0.900 1.331 0.200 1.550 0.042 - 0.011 -
Rad Tad 0.900 1.330 0.202 1.550 1.260 - 1.025 -
Rad Tad 0.900 1.330 0.200 1.552 0.042 - 0.011 -

Table 3.1: Table summarizing the results of the IAD Error anslyses performed in sections 3.5 and
3.6.
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Chapter 4

Sample Measurements using IS/IAD

Before implementing the IS/IAD method to estimate optical properties of unknown media, the
accuracy of the method must be understood. This can be done using samples whose optical prop-
erties can be controlled, precisely and accurately. Optical phantoms are such samples, comprising
of known concentrations of absorbers and scatterers. By varying the concentrations of absorbers
and scatterers in the sample, the bulk optical properties of the sample can be precisely controlled.
Validation studies on various spectroscopic methods have been conducted using optical phantoms
that are both solid and liquid in nature [1, 2, 15, 28]. This is possible due the ability to theoretically
evaluate the true optical properties.

Ideally, the theoretically absorption spectra can be derived from the Beer-Lambert law by making
an accurate measurement of the unscattered transmittance through a non-scattering solution of
absorbers. Equation 4.1, describes Beer’s law in its functional form.

I
I0

= e−µt l =⇒ µa =−
1
l

ln
( I

I0

)
(4.1)

where, µt = µa for a purely absorbing solution of path length l with I
I0

being the fraction of
unscattered light transmitted through the sample (total unscattered transmission). Accurate mea-
surements of unscattered transmission can be made using a UV-VIS spectrophotometer [1, 8, 15].

The scattering and anisotropy coefficients of optical phantoms can be theoretically evaluated using
Mie theory. Mie theory solutions to the Maxwell’s equations describes scattering of a monochro-
matic electromagnetic wave by a suspension of homogeneous spheres of a finite radius [11]. With
knowledge of certain parameters (such as concentration and distribution of sphere) of the scattering
solution, the scattering and anisotropy coefficients can be analytically computed [29].
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4.1 Liquid phantoms

For the purposes of this thesis, the validation of the IS/IAD method’s ability to estimate optical
properties will be quantified using a robust set of liquid phantoms. The properties of these phan-
toms will span absorption, scattering and anisotropy coefficients typical to common biological
tissues in the VIS spectral range [1]. These phantoms were prepared and measured on the same
day, to ensure the integrity of the samples did not change. Furthermore, the homogeneity of the
sample was reinforced by firmly mixing the solutions prior to measurements.

Figure 4.1: 3x3 set of phantoms used for preliminary analyses. Moving from top to bottom, the
scattering of the sample is increased by 10% increments, while absorption increases moving left to

right is doubled by a factor of 2.

The first set (referred as Dataset I) of liquid phantoms used in these studies comprise of three
levels of concentrations (1mg/ml, 2mg/ml and 4mg/ml) of Bovine hemoglobin (Sigma-Aldrich

H3760) as aborbers. As scatterers of these phantoms, three concentrations levels (10%, 20% and
30%) of 1µm-polystyrene sphere suspension in solution is used (Polysciences Polybead® 07310).
As seen in figure 4.1, a set of 9 liquid phantoms with these three levels of absorption and scattering
is developed. The ”true” optical properties of these samples are calculated using the methodologies
described in chapter 4.
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Figure 4.2: Plots of true absorption coefficient (left) and scattering coefficient (right) spectra for the
9 phantoms (described in fig. 4.1), calculated using Beer-Lambert law and Mie theory, respectively.

Figures 4.2, describes the ”true” optical properties of the samples described in figure 4.1. The char-
acteristic spectral pattern observed in the absorption spectra (fig. 4.2-left) is typical for hemoglobin
and can be observed in common biological tissues. It must be noted that the lowest absorption val-
ues in this dataset are well beyond the thresholds of the IAD to estimate properties accurately
(> 0.1 cm−1). The second set (referred as Dataset II) of phantoms comprise of varied concentra-
tions of 1µm polystyrene spheres in water. The concentrations of these phantoms is described in
table 4.1,

Sample 1 2 3 4 5 6 7 8 9 10

PS 30% 24% 19.2% 15.4% 12.3% 9.8% 7.9% 6.3% 5.0% 4.0%

Table 4.1: Second dataset of multiple concentrations polystyrene sphere solutions.

The true optical properties of these phantoms are plotted in figure 4.3. Corresponding to the volume
percent of polystyrene in solution for each individual sample, the reduced scattering spectra can
be described using Mie theory. However, the total absorption coefficient of these samples will be
that of water as there is no other absorbers in solution. Various studies have been conducted to
characterize absorption of water over the VIS spectral region and an aggregate of these values are
used [30]. Since the true absorption values of water falls below the thresholds of the IAD (fig. 3.5),
we will only look at IAD estimated values above 730.
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Figure 4.3: Water and PS phantoms (Dataset II) with concentrations corresponding to those
represented in table 4.1.

4.2 Analysis of sample measurements

Figure 4.4: A ratio of IS measured intensity spectra
with the source turned off and the intensities

reflected off a reflectance standard.

As described in chapter 2, a simple sin-
gle IS setup can be built by coupling a de-
tector to measure reflectance and transmit-
tance intensity spectra for a given sample il-
luminated by a given source. This source
can either be monochromatic or a broad-
band source. For our preliminary investi-
gations, a broadband continuous-wave halo-
gen source coupled with the IS will be used
to make sample measurements. As de-
scribed in equations 2.1, a dark and stan-
dard measurement is made with five repeti-
tions.

Figure 4.4 is a plot of standard intensity spectra
divided by the dark intensity spectra. From these plots, the sensitivity of the used spectrometer is
observed within 0.001 values of IS measurements. Through the sensitivity analysis of the IAD
to various inputs, we concluded that the algorithm is most sensitive to the input measurements of
total reflectance and transmittance (Table 3.1). Hence, one must ensure that all IS measurements
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are accurate to within 0.001 of the expected measurements. This can be done by providing the true
sample optical properties to the forward adding-doubling algorithm and calculate the expected
total reflectance and transmittance of all the samples analyzed. The calculated values can then be
compared to the IS measurements.

4.2.1 Analysis of dataset I

Figure 4.5: Comparison of the AD predicted total reflectance (left) and transmittance (right) with IS
measured values of sample 1 - Dataset 1 (10% PS and 1mg/ml Hb solution).

Figure 4.5 are plots of IS measurements against values estimated using the forward model (AD). A
preliminary observation indicates that the total reflectance measurements experience a significant
loss compared to the AD estimated values. Conversely, at certain wavelengths, the total transmit-
tance values are higher than the AD simulated values, with overall differences significantly lower
that those experienced by reflectance measurements. The data visualization scheme applied in the
previous section, can be incorporated here to understand the performance of the IS measurements.
By sampling the AD calculated measurements at every 2 nm intervals, a distribution of varying
reflectance and transmittance can be obtained. Figure 4.6 describes the distribution of these data
points across the corresponding AD calculated values and are grouped across each 0.5 intervals.
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Figure 4.6: The number of data points sampled between each 0.05 reflectance (left) and and
transmittance (right) ranges of all phantoms in dataset I.

Figure 4.7 describes the relative errors between IS measurements against AD predicted measure-
ments. The highest relative errors (22%) in the IS measured reflectance values can be seen at
the lower reflectance measurements (≈ 0.2) (Fig. 4.7-left). These reflectance values typically
correspond to samples with low reduced scattering and high absorbing coefficients.

Figure 4.7: Relative errors between IS measured reflectance (left) and transmittance (right) of
samples in dataset I against AD calculated values grouped in each 0.05 measurement intervals.

The highest relative errors (≈ 20%) in the IS measured transmittance values can be seen at re-
flectance measurements within the ranges of 0.15−0.25 (Fig. 4.7-right). It must be noted that the
these ranges are similar to that of highest errors in reflectance measurements.
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Figure 4.8: Difference between IS measured reflectance (left) and transmittance (right) of samples in
dataset I against AD calculated values grouped in each 0.05 measurement intervals.

The differences the IS measurements against AD calculations are plotted in figure 4.11. As more
light is collected by the sphere for reflectance measurements, a greater magnitude of light is lost
in these measurements (Fig. 4.11-left). Conversely, the greatest light losses are observed for
measurements within intervals 0.2− 0.3 total transmittance. It must be noted that light losses in
total reflectance measurements are≈ 10× that of losses observed in total transmittance values. The
resolution of the IS to make measurements of total reflectance and transmittance can be estimated
by averaging the differences described above. Here, the resolution of the IS to make measurements
of total reflectance and transmittance for dataset I are 0.078 and 0.018, respectively.

4.2.2 Analysis of dataset II

Dataset II covers a wider range of absolute values of reflectance and transmittance measurements.
Hence, this data will be grouped into each 0.1 intervals of measurements and the trends across
these ranges will be observed. Figure 4.9 plots the distribution of these sampled data points across
all measurements made on samples in dataset II. It must be noted that this distribution spans the
lower refleactance (0−0.1) and higher transmission (0.9−1) values.
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Figure 4.9: The number of data points sampled between each 0.1 reflectance (left) and and
transmittance (right) ranges of all phantoms in dataset II.

Figure 4.10 describes the relative errors in IS measurements against AD calculated values. As ob-
served, the highest errors in reflectance measurements can be observed in the ranges of 0.2−0.3,
similar to the observations in dataset I (Fig. 4.10-left). On the other hand, the highest relative
errors for transmittance measurements can be observed for the ranges 0.6−0.7, which is different
from the observations seen above. It must be noted that at higher transmission values (0.8− 1)
positive relative errors can be observed.

When observing the differences between IS measurements against AD calculations, it can be ob-
served that, consistent with the observations for dataset I, the IS measured reflectance values ex-
periences losses throughout all measured values. However, the difference remains to be significant
in the 0.5− 0.7 region. Conversely, the magnitude of the transmittance measurements is lower
overall with the highest difference of ≈ 0.08 within the 0.7− 0.8 interval. However, within the
intervals of 0.9−1, the IS measured transmittance values are greater than those calculated through
the AD. Here, the resolution of the IS to make measurements of total reflectance and transmittance
for dataset II are 0.139 and 0.044, respectively.
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Figure 4.10: Relative errors between IS measured reflectance (left) and transmittance (right) of
samples in dataset II against AD calculated values grouped in each 0.1 measurement intervals.

Figure 4.11: Difference between IS measured reflectance (left) and transmittance (right) of samples
in dataset II against AD calculated values grouped in each 0.1 measurement intervals.

4.3 Calculation of optical properties

The IS measurements obtained above can be used to inverse calculate optical properties. Here,
all other inputs to the IAD are accurate within the sensitivity thresholds listed in chapter 3. This
ensures that all errors observed in inverse calculations are attributed to the IS measurements.
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4.3.1 Analysis of dataset I

Figure 4.12: IAD estimated absorption (left) and scattering (right) coefficients of sample 1 - Dataset
I (10% PS and 1mg/ml Hb solution) from measurements made using an IS illuminated with a

Halogen source.

Following the protocol mentioned in chapter 2, the total absorption and scattering can be cal-
culated from IS measurement made on our optical phantoms. Figure 4.12 compares the inverse
estimated absorption and scattering of sample 1 (from dataset 1) with its true optical properties.
As observed, the inverse model estimates higher absorption and lower scattering values. From the
conclusions summarized in table 3.1, accurate inverse estimations of optical properties is highly
dependent on the ability of the IS to precisely measure the total reflectance and transmittance of
any given sample. From the observations in figure 4.12, one can conclude that there is a mismatch
of IS measurements with expected measurements, i.e. the true reflectance and transmittance of the
sample.

Figure 4.13: The number of data points sampled between each 0.5 cm−1 absorption (left) and each
4 cm−1 reduced scattering (right) ranges of all phantoms in dataset I, for error calculations.
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To better visualized the performance of the IS/IAD system to estimate optical properties from
phantoms illuminated by a Halogen source, all samples from the sample set are sampled at wave-
length intervals of 2 nm. This provides a distribution of data points across intervals of absorption
and scattering coefficient values. Figure 4.13, describes this distribution of all sampled data points
across each 0.5 cm−1 absorption and each 4 cm−1 reduced scattering intervals. As observed 4.13
- left, due to the spectra features of hemoglobin over the wavelength ranges of 500 nm - 800 nm

(Fig. 4.2-left), we observe most of the sampled absorption data points to be within the ranges of
0−1cm−1. Similar distributions in the sampled reduced scattering data points can also be observed
(4.13-right).

Figure 4.14: The relative errors in the IAD calculated absorption and scattering coefficients for each
0.5 cm−1 absorption (left) and each 4 cm−1 reduced scattering (right) ranges.

The relative errors (calculated as Erelative =
µa(IAD)−µa(True)

µa(True) ∗100) in IAD calculated absorption and
reduced scattering coefficients against true values are described in figure 4.14. As observed, over
the range of optical properties measured, an overall overestimation in the absorption coefficient
and underestimation in the reduced scattering coefficient can be observed. Though, an average
of 25 % relative errors is observed over all ranges of reduced scattering values, there are higher
variance in errors at lower values of absorption coefficients. Relative errors up to 70 % can be
observed for absorption coefficient values within the range of 0−0.5 cm−1.
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Figure 4.15: The difference between IAD calculated absorption and scattering coefficients with that
of true coefficients for each 0.5 cm−1 absorption (left) and each 4 cm−1 reduced scattering (right)

ranges.

Figure 4.15, describes the difference between IAD estimated optical properties with the ”true” opti-
cal properties of the phantoms in dataset 1 (absolute errors calculated as Edi f f = µa(IAD)−µa(True)).
It is interesting to note that these differences increases with increasing absorption coefficients. A
similar trend can be seen across difference in reduced scattering estimates. We can observe this
minimum difference in absorption estimates to be ≈ 0.2 cm−1, for optical properties lower than
1 cm−1. These differences can be described as the mean resolution that the system performance
over the measured range of optical properties. Here, the mean resolution of current IS/IAD con-
figuration to estimate absorption and reduced scattering values are 0.416 cm−1 and 7.57 cm−1,
respectively.

4.3.2 Analysis of dataset II

A similar analysis protocol will be applied to the second dataset (Dataset II). It must be noted
that the true absorption and scattering values extend to lower than those explored in dataset I and
has mentioned above, only values above IAD’s threshold to estimate absorption values will be
analyzed.
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Figure 4.16: The number of data points sampled between each 0.001 cm−1 absorption (left) and each
3 cm−1 reduced scattering (right) ranges of all phantoms in dataset II, for error calculations.

Figure 4.16 plots the distribution of data points sampled across the absorption and reduced scat-
tering values of the phantoms comprising dataset II. As observed, the absorption values observed
will be for values greater than 0.02 cm−1. It must be noted that the highest distribution of sampled
points for absorption values are within the interval 0.026− 0.027 cm−1. Conversely, the lowest
scattering values in this data set is 1 cm−1. The highest distribution is observed, within the range
3−6 cm−1.

Figure 4.17: The relative errors in the IAD calculated absorption and scattering coefficients of
dataset II for each 0.001 cm−1 absorption (left) and each 3 cm−1 reduced scattering (right) ranges.
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The relative errors in the IAD estimated absorption and reduced scattering are describes in figure
4.17. As observed, the IAD estimated absorption values are meaningless as the relative errors are
greater 104 %. The errors in the calculated reduced scattering values are similar to dataset I with
an average relative errors of up to ≈ 35 %.

Figure 4.18: The difference between IAD calculated absorption and scattering coefficients with that
of true coefficients for each 0.001 cm−1 absorption (left) and each 3 cm−1 reduced scattering (right)

ranges.

Figure 4.15 describes the difference between IAD estimated optical properties against the ”true”
optical properties of the sample. As observed in 4.15-left, the average difference in IAD estimated
absorption is ≈ 0.45 cm−1 throughout all absorption values. These errors are greater than that
observed in dataset I. On the other hand, with increasing ”true” scattering values of the sample the
difference in calculated scattering is increased. Here, the mean resolution of the IS/IAD to estimate
absorption and reduced scattering values in dataset II, are 0.444 cm−1 and 3.09 cm−1, respectively.
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4.4 Discussion of observations

Figure 4.19: Light losses observed in IS
measurements accounted as absorption by the AD

method due to its thin-infinite sample model.

From the preliminary experimental tests con-
ducted on the IS/IAD technique, light losses in
IS measurements of total reflectance and trans-
mittance were observed. Here, we propose two
sources of light losses to IS measurements -
Lateral and hemispherical losses. As described
in chapter 3, the IAD using the forward AD it-
eratively, to determine the optical properties of
samples from IS measurements. The AD mod-
els samples to be thin infinite slabs, i.e. sam-
ples having a finite thickness across one dimen-
sion (z-direction), while extending infinitely
across the other two (x & y-direction). The in-
finitely extending directions are those normal
to the direction of photon incidence (as described in figure 4.19). However, physical tissue are not
so and have finite lengths across the x&y directions. Hence, a photon incident on the surface of the
sample has the probability of escaping the sample through these lateral surfaces. The AD, accounts
this exiting light as absorption by the sample leading to the overestimation in optical properties by
the IAD (as seen in figures 4.14 and 4.17). We name these losses as ”lateral losses” and will be
referred to as so for the remainder of this thesis.

Figure 4.20: Light losses observed in IS
measurements due to the finitness of IS ports

Integrating spheres have finite sized ports
mounted through its surface. Care must be
taken to ensure that the samples cover the en-
tire surface of the sample such that all the light
remitted from the sample is measured by the
system. However, if the incident photon en-
ters the sample at a position closer to the edges
of the sphere port, there is a probability that
the photon remitted out of the sample will not
be collected within the ports of the IS (as de-
scribed in figure 4.20). Theoretically, this will
affect all IS measurements if the samples are il-

43



luminated by beams comparable to the size of the IS sample ports. These losses are referred to as
”Hemispherical losses”.

Integrating sphere are known to have losses in the total power collected (as described in 2.4), that
arises due to the interaction between sample and sphere making the detected signal deviate from
the true reflectance or transmittance of the sample. Various studies have been done to characterize
the total power collected by IS with varying system configurations [10, 16, 18]. Prahl et. al.

implemented these correction in the newest version of the IAD to improve the accuracy of all
inverse calculations. Furthermore, experimental calculations to overcome these losses have also
been proposed [17, 31–34]. In the next chapter, the effects light losses on varying beam, IS port
and sample configurations will be explored using a robust Monte-Carlo model. This work will
be concluded with exploring the performance of the theoretical and experimental corrections to
realize a ”gold-standard” method of estimating optical properties.
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Chapter 5

Monte-Carlo Modelling

Monte-Carlo models are stochastic methods of simulating light transport in turbid media. These
turbid media are treated as substances that either absorb or scatter photons by the model [35]. The
stochastic nature of the model arises by simulating photon propagation in these turbid media as
a ”random-walk”. Monte-Carlo simulations have been used in various problems with laser-tissue
interactions [1, 15, 36]. As a photon approaches the boundary of a modelled sample, it can be
reflected or moves across the boundary. The steps between successive photon-tissue interaction
sites, the deflection angles in photon trajectories (due to scattering) and the probability of trans-
mittance or reflectance of photons at boundaries, are governed by photon propagation rules that
are expressed as probability distributions. Typical photon paths observed in turbid media such as
tissues are shown in figure 5.2.

Figure 5.1: A schematic illustration of typical photon trajectories simulated by the MC model. The
coordinate system displayed is typical for Monte-Carlo models, with photons launched at z = 0,

propagating in the +z direction.

The accuracy and precision to describe the desired spatial and temporal resolution is contingent
on the total number of photons simulated and the specifics of the problem being addressed. For
example, an accurate simulation of total reflectance for specific optical properties, would require
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simulations of 3000 photons. To simulate the spatial distribution of photons in radially symmet-
rical problems, at least 10,000 photons need to be simulated. Mapping photon propagation in
complex three-dimensional geometries with finite beam illuminations, an average of 100,000 pho-
tons are required. Hence, as the problems being modelled become more complex, more number
of photons are required to map accurate photon propagation which significantly increases the total
computational time.

5.1 General Methods

For the purposes of this thesis, the types of Monte-Carlo problems of interest are infinitely ex-
tending homogeneous tissue structures with finite thickness that are perpendicularly illuminated
by a narrow column of photons (simulating a well collimated beam). The stochastic nature of the
model relies on random sampling of variables from probability distributions. The modern sampling
algorithms of modern commercial computers prove capable of generating uniformly distributing
random variables, which are employed here.

Figure 5.2: A A flow diagram explaining the key aspects of a Monte-Carlo simulation of photon
propagation in turbid media.
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5.1.1 Photon Launch

All launched photon are initially assigned a weight of unity (W = 1). If a mismatch in boundaries
at the surface of the tissue exists, specular reflectance (Rsp) will occur. This can be expressed
functionally as,

Rsp =
(ni−nt)

2

(ni +nt)2 (5.1)

where nt and ni are the ambient and sample refractive indices, respectively. In the model, the
affects of specular reflection to a propagating photon is reflected as decrement to the overall photon
weight (W = 1−Rsp).

5.1.2 Photon Stepsize

The stepsize of the propagating photon (s) can be calculated based on a random sampling of the
probability density for s. By randomly generating a variable ζ between the intervals (0,1], the
stepsize can be fictionalized as (eq. 5.2),

s =
− lnζ

µt
(5.2)

where µt = µs + µa with units of cm−1. As described in section 1.2, the inverse of the to-
tal attenuation (µt) describes the mean free path between photon-tissue interactions. For typical
biological tissues, the total scattering values can be two orders of magnitude greater than the ab-
sorption values [1, 15].

5.1.3 Photon Movement

By registering a photon’s initial position (~s0 = (x,y,z)) and with the stepsize (s) estimated, a photon
can be moved within the tissue. The trajectory of this photon is specified by a unit vector (~s), which
is characterized by directional cosines (µx,µy,µz). Incorporating these trajectories, the position of
the photon can be updated as follows,

~s′ = ~s0 +~s s (5.3)

x′ = x+µxs y′ = y+µys z′ = z+µzs (5.4)
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5.1.4 Photon-Tissue Interaction: Absorption

As the photon propagates in the tissue, some attenuation of the photon occurs as absorption by the
tissue. This is reflected in the weight as a change to the overall weight of the photon (W ),

W ′ =W −
(

µa

µt

)
W (5.5)

This photon, with its new weight can now undergo scattering by the tissue.

5.1.5 Photon-Tissue Interaction: Scattering

To simulate the scattering of a photon by the tissue, a deflection angle (0≤ θ < π) and azimuthal
angle (0 < ψ < 2π) are statistically sampled. A described in section 1.3.1, the probability distri-
bution for the cosine of the deflection angle can be described by the Henyey-Greenstein function.
Random values for cosθ can be generated, and hence equation 1.4 can be written as,

cosθ =
1

2g

{
1+g2

[
1−g2

1−g+2gζ

]2}
if g 6= 0

= 2ζ −1 if g = 0

(5.6)

Similarly, the azimuthal angle can be expressed as a random number distributed over the ranges of
0 to 2π as ψ = 2πζ . With the deflection and azimuthal angles defined, the new directional cosines
of the simulated photon can now be calculated as,

µ
′
x =

sinθ√
1−µ2

z
(µxµz cosψ−µy sinψ)+µx cosθ

µ
′
y =

sinθ√
1−µ2

z
(µyµz cosψ−µx sinψ)+µy cosθ

µ
′
z =−sinθ cosψ

√
1−µ2

z +µz cosθ

(5.7)

If the photon’s direction of propagation is substantially close to the z axis (quantified as |µz| >
0.99999), equations 5.7 can be transformed as follows so as to avoid divisions by a small number,

µ
′
x = sinθ cosψ µ

′
y = sinθ sinψ µ

′
z = SIGN(µz)cosθ (5.8)

where SIGN(µz) return 1 when µz is positive and returns −1 when µz is negative.
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5.1.6 Photon-Tissue Interaction: Boundaries

As the photon propagates within the tissue, it may hit the boundary between the tissue and the
ambient medium. Due to the infinitely thin geometry of the modelled sample, the tissue boundaries
exist across the z axis - at z = 0 and z = τ , where τ is the sample thickness. By monitoring the
photon’s new position across the z axis (i.e. z′ ≤ 0 and z′ ≥ τ), one can conclude if the photon
has hit the boundaries of the tissue. One of two things can happen to the photon at this interface
- either it is internally reflected or transmitted across the boundary. Photon propagation continues
if it is internally reflected back into the tissue, but ceases simulations if the photon crosses the
boundary into the ambient medium. Depending on which direction the photon escapes the tissue,
it is accounted as reflectance or transmittance. The following steps will be employed to accurately
simulate these photon-boundary interactions,

• Step 1: To determine if the photon will escape the tissue-ambient medium boundary or if it
will be internally reflected.

If the photon is incident on either boundary of the sample, the probability of the photon to be
internally reflected is dependent on the angle of incidence (θi = cos−1(|µz|)). Corresponding to the
boundary in the direction of propagation of the simulated photon, the value of θi can be calculated
as follows,

θi = cos−1(µz) if µz ≥ 0

= π− cos−1(µz) if µz < 0
(5.9)

Snell’s law provides a relationship between the angle of incidence and angle of transmittance at an
interface of two media of different refractive indices (ni sinθi = nt sinθt). The internal reflectance
(R(θi)) is set to 1, if θi is larger than the critical angle. In all other cases, R(θi) can be calculated
using Fresnel’s formulas,

R(θi) =
1
2

[
sin2(θi−θt)

sin2(θi +θt)
+

tan2(θi−θt)

tan2(θi +θt)

]
(5.10)

which is an average of the reflectances for the both polarizations as the simulated photons are
independent of either orthogonal polarization of incident light.

• Step 2: Photon moved to the incident boundary.

As mentioned above, the photon has now crossed one of the two boundaries of the tissue (i.e. z′≤ 0
and z′ ≥ τ). To move the photon to the boundary of the tissue, a fraction of the stepsize is taken by
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the photon. Based on this foreshortened stepsize (s′) the position of escape of the photon (x′,y′) is
calculated by substituting s′ as s in equations 5.4.

s′ =
−z
µz

if µz ≤ 0

=
τ− z

µz
if µz ≥ τ

(5.11)

• Step 3: Depending on photon reflection or transmission at the boundary, the photon trajec-
tories or the reflectance and transmittance arrays are updated respectively.

If the photon successfully propagates over the boundary between the tissue and the ambient medium,
the photon contributes to reemittance. Depending on which surface the photon exits the tissue, the
weights are recorded into a reflectance or transmittance array.

Rd(x′,y′) = Rd(x′,y′)+W

Tt(x′,y′) = Tt(x′,y′)+W
(5.12)

If the photon is reflected back into the tissue, a fraction of the photon weight escapes the media as
observable energy distribution and is stored in the generated reflectance array (eq. 5.13). This is
followed by a new weight calculated for the photon (W ← R(θi)W ).

Rd(x′,y′) = Rd(x′,y′)+(1−R(θi))W

Tt(x′,y′) = Tt(x′,y′)+(1−R(θi))W
(5.13)

Due to the internal reflection of the photon, its trajectory and position inside the tissue is updated.
The x and y coordinates of the photon can be computed using the full length of s while the the
z coordinate can be changed as described using equations 5.14. Correspondingly, the directional
cosine in the z coordinate is updated as well (µz←−µz).

z←−z if z≤ 0

z← 2τ− z if z≥ τ
(5.14)

5.1.7 Photon Termination

If the photon has remitted from the modelled medium, it is automatically terminated. Alternatively,
if the photon has undergone multiple interactions with the tissue, the weight of the photon will
be sufficiently decreased and the photon itself will yield little useful information. Hence, photons
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must be properly terminated so as to ensure conservation of energy. This is achieved by a technique
called Russian roulette, that terminates a photon when the weight falls below a threshold (Wth <

0.0001). The method gives the photon one in m chances of surviving with a weight of mW . This
is mathematically summarized below (eq. 5.15),

W ← mW if ξ ≤ 1
m

0 if ξ >
1
m

(5.15)

where ξ is a uniformly distributed pseudorandom number such that 0 ≤ ξ ≤ 1. Hence, this
method terminates photons in an unbiased manner while the total energy is conserved.

5.1.8 Photon Distribution at Launch

For the purposes of the simulation, we assume our modelled samples to be illuminated by a flat-
beam of radius w. We set the energy of this beam to be of arbitrary units (1 unit ≈ 1 J). Due to the
steady-state nature of the Monte-Carlo simulations, the energy and power can be easily converted.
The radiant exposure of the source can be functionally represented using equation 5.16,

S(r) =
1

πw2 if r ≤ w

= 0 if r > w
(5.16)

However, the probability density function (p(r)) must be normalizable for a radial distribution
(
∫ w

0 p(r)dr =
∫ w

0 S(r)2πrdr = 1). Through the normalization process, an expression for the proba-
bility density function can be obtained (p(r) = 2r/w2). To randomly choose an appropriate posi-
tion to launch a photon within the radius of the modelled beam, a random number (ζ ) within the
interval [0, 1] is applied.

ζ =
∫ r

0
p(r)dr =

∫ r

0

2r
w2 dr =

r2

w2 ⇒ r = w
√

ζ (5.17)

Due to the cylindrical symmetry of the problem around the z axis, the photon deposition can be
stored in a simple 2-D array and photon launch may simply occur at x = w

√
ζ and y = 0 with a

trajectory normal to the surface of the tissue (µx = 0,µy = 0,µy = 1) (eq. 5.17).

5.2 Finite Volume Modelling
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Figure 5.3: A geometry of a sample modelled by the
Finite Monte-Carlo model. The four boundaries of
the sample are described by the parameters, xright ,

xle f t , y f ront and yback

Since the goal of this thesis is to model the
light losses observed in the IS measurements
of turbid samples (summarized in chapter 4),
the Monte-Carlo model described above can
be implemented to model the light propagation
through a sample with finite dimensions. This
developed MC model of finite samples will be
referred as ”finite-MC” for the remainder of
this thesis. The sample is visualized as a finite
slab with a defined thickness (τ) described with
boundaries, z = 0 and z = τ . The lateral dimen-
sions (across the x and y axes) of the slab are described with boundaries, xright , xle f t , y f ront and yback

(as described in figure 5.3). The steps described in section 5.1.6 can be updated to incorporate the
four other possible boundaries of exit.

• Updated step 1: Determining if the photon will escape or be internally reflected.

Due to the presence of four other boundaries, the angle of incidence can be determined using the
two other directional cosines as follows,

θi =



cos−1(µz) if µz ≥ 0

π− cos−1(µz) if µz < 0

cos−1(µy) if µy ≥ 0

π− cos−1(µy) if µy < 0

cos−1(µx) if µx ≥ 0

π− cos−1(µx) if µx < 0

(5.18)

using the new computed angle of incidence from equations 5.18, a decision on whether the
photon is internally reflected or crosses the boundary can be made as described in section 5.1.6.

• Updated step 2: Photon moved to the nearest incident boundary.

In contrast to the two boundary model, the fraction of the stepsize taken by the photon depending
on which one of the four surfaces it exits is described as follows,
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s′ =



=
−z
µz

if µz ≤ 0

=
τ− z

µz
if µz ≥ τ

=
−xle f t− x

µx
if µx ≤−xle f t

=
xright− x

µx
if µx ≥ xright

=
−yback− y

µy
if µy ≤−yback

=
y f ront− y

µy
if µy ≥ y f ront

(5.19)

where τ is the thickness of the sample and xright , xle f t , y f ront and yback are the positions of the
lateral boundaries of the modelled sample (as described in fig. 5.3). This shortened stepsize will
be moved to the boundary and its positions updated correspondingly.

• Updated step 3: Photon updated as light escaped as fluence from respective surface.

Similar to step 3 in section 5.1.6, four other arrays corresponding to the lateral surface of exit to
record the weights of the exiting photon will be created. Internal reflection changes the coordi-
nates of the photon depending on corresponding surface of incidence. For example, similar to the
boundaries along the z-axis, if the photon is incident on either boundary across the x axis, the z

and y coordinates of the photon can be computed using the full length of the step (s) while the x

position can be updated as described,

x′←

{
= xright−µx(s− s′) if µx ≥ xright

=−xle f t−µx(s− s′) if µx ≤ xle f t
(5.20)

5.3 Simulation Results

The traditional MC code is written in the language C and is optimized to simulated photon prop-
agation for one set of optical properties. Appendix A.2 describes the structure of the input file
required by the finite-MC algorithm. The code has been implemented under MATLAB’s environ-
ment to streamline simulations of multiple data points (Appendix A.2).

Integrating sphere measurements of total reflectance and transmittance are uniquely depending
on a combination of the sample’s absorption and scattering. This results in light losses being
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uniquely dependent of the sample’s optical properties. Hence to analyze the errors across varying
combinations of absorption and reduced sacttering values, a 2× 2 permutation of two levels of
absorption and scattering values. These sets are described in table ,

Sample LL LH HL HH

µa [cm−1] 0.04 0.04 4 4

µ ′s [cm−1] 3 36 3 36

Table 5.1: Combination of absorption and reduced scattering values used for simulation of light losses in
the following sections.

5.3.1 Model Validation

To validate the performance of the developed finite-MC model, its outputs will be compared against
the forward adding-doubling (AD) model. Since the AD models samples to be thin infinite slabs, a
similar sample geometry can be used to simulate photon propagation using the finite-MC. Hence,
for a set of optical properties, the model can be validated. As mentioned in section 5.2, the finite-
MC model can run MC simulations for a model with finite geometries. The boundaries of the
modelled sample can be defined by providing the appropriate coordinates (i.e. xle f t , xright , y f ront ,
yback). To simulate a thin infinite sample, these parameters can be set to be much greater than the
thickness of the sample.

Figure 5.4: Plots compares the total reflectance and transmittance for a set of optical properties of a
semi-infinite sample model, simulated using the finite-MC model against the forward AD model.

A semi infinite slab with dimensions 100× 100× 0.2 will be simulated to validate the model
against the AD model. As described in figure 5.4, the finite-MC predictions of total reflectance and
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transmittance match that of the AD calculated values (within relative errors of 0.5%). The provides
confidence in the overall performance of the finite-MC simulations for all sample geometries.

5.3.2 Analysis of Lateral Losses

Lateral light losses refers to photons escaping a sample due to the finite lateral boundaries (de-
scribed in section 4.19). Theoretically, photons incident closer to the boundaries of the tissue,
have a higher probability of escaping out the lateral sides of the modelled sample. To test this
in simulation, the light lost through the lateral sides (Lsample = xright − xle f t) can be simulated as
the diameter of the beam (Dbeam) used to illuminate the sample, becomes comparable to the side
length of the tissue.

Figure 5.5: Lateral light losses in finite-MC simulated reflectance (left) and transmittance (right) as a
function of the ratio between beam diameter (Dbeam) and sample light (Lsample) for the four sets of optical

properties. The losses are described in relative errors between finite-MC simulated against AD
calculations.

For the four sets of optical properties described in table 5.1, the effects of lateral losses in IS mea-
surements are simulated and described in figure 5.5. As observed, the highest losses (up to 2 %)
are seen for most optical property sets when the beam diameter becomes significantly comparable
to the size of the port (i.e., > 80 %). The most significant losses are observed for the combination
of low absorption and scattering samples (up to 5 %). The losses for this range of optical prop-
erties can be observed for beam diameters greater than 50 % the sample length. The simulated
photon energy distribution out of the finite-MC model can be translated into optical properties and
compared to those mentioned in the table 5.1.
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Figure 5.6: Effects of lateral light losses in IAD estimated absorption (left) and reduced scattering (right)
values as a function of the ratio between beam diameter (Dbeam) and sample light (Lsample) for the four
sets of optical properties. The losses are described in relative errors between IAD calculated against

”true” optical properties.

Figures 5.6 describe the relative errors in IAD calculated optical properties from outputs obtained
from finite-MC simulations. The lateral losses in IS measurements have little to no effect on IAD
estimated scattering values. However, significant errors in IAD estimated absorption values arise
due to these losses for the lower absorption values (up to a 100 %). Due to the observations seen
in figures 5.5, the high errors in absorption can be attributed to the significant deviation of the
simulated reflectance due to these lateral losses.

5.3.3 Analysis of hemispherical losses

Hemispherical light losses refer to photons escaping the collection area of the IS sample port as it
re-emerges out a illuminated sample. Similar to lateral losses, we theorize hemispherical losses to
be significant as the illumination beam diameter becomes significant to the diameter of the IS sam-
ple port. This can be tested in simulation, by varying the beam diameter (Dbeam) with respect to IS
sample port (Dsample), the losses in the hemispherical light losses experienced by IS measurements
can be quantified.

Figure 4.20, describes the effects of hemispherical losses in IS measurements through finite-MC
simulations. As observed, the highest losses in both reflectance and transmittance measurements
correspond to the low absorbing and low scattering set at all beam to port diameter ratios (up to
25%). For the other sets of optical properties, maximum errors of up to 5% are observed when the
illumination beam diameter is significantly comparable to the port diameter (> 80 %). It must be
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noted that the effects of the hemispherical losses are more significant to reflectance measurements
than transmittance values.

Figure 5.7: Hemispherical light losses in finite-MC simulated reflectance (left) and transmittance (right)
as a function of the ratio between beam diameter (Dbeam) and IS sample port diameter (Dport) for the four
sets of optical properties. The losses are described in relative errors between finite-MC simulated against

AD calculations.

By calculating the optical properties using the IAD from the set of reflectance and transmittance
values simulated by the finite-MC model, the effects of hemispherical losses on these estimations
can be quantifies. As observed in figure 5.8-left, hemispherical losses significantly affect the es-
timations of low absorption coefficients. It must be noted for samples with low absorption and
scattering values, the effects of hemispherical losses will be present at all beam and port configu-
rations. The low absorption values are commensurate to those water, and hence these ranges will
be avoided in future analyses. A beam diameter much smaller than 40% the size of the sphere port
must be ensured when measuring low absorption and high scattering samples. When observing
scattering estimations, it must be noted that the maximum errors faced are only up to 5 %. Gener-
ally, the scattering measurements can be made accurate with a beam diameter less than 80 %.
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Figure 5.8: Effects of hemispherical light losses in IAD estimated absorption (left) and reduced scattering
(right) values as a function of the ratio between beam diameter (Dbeam) and the diameter of the IS sample
port (Dport) for the four sets of optical properties. The losses are described in relative errors between IAD

calculated against ”true” optical properties.
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Chapter 6

Integrating Sphere Corrections

Integrating sphere measurements made on samples illuminated by a beam whose diameter is either
comparable to the sample dimensions or the sample port of the IS, light losses in the form of hemi-
spherical and later losses (as described in chapter 4). In chapter 5, we explored these losses using
the finite-MC model and observed that hemispherical losses affect IS measurements greater than
lateral losses, with up to 25 % relative errors in measurements. These high errors were observed
for lower absorption and scattering samples (≈ 0.04 cm−1 and 3 cm−1). Hence, for the dataset II
described in chapter 4, inverse calculations of absorption coefficients will be omitted due the true
values falling below these thresholds. Through the results of the simulations, it was observed that
the light losses were predominant for samples illuminated by beam diameters greater than 80% the
side length of the sample or the IS port diameter. The halogen source used to illuminate the sam-
ples in the preliminary tests, has a wide beam diameter of 20mm which when compared with the IS
port and sample sizes have ratios of up to 80 % and 40 %, respectively. In simulation, we observed
that if the beam used to illuminate the sample is less than 50 % the sample side length and the IS
port radius, the losses described in chapter 4. In practice, this can be implemented experimentally
by using a highly contained and well collimated broadband laser. such as a supercontinuum source
whose beam diameter is 1.5 mm will be used. This beam diameter is 3 % and 6 % of the sample
side and port diameter, respectively.

The preliminary datasets I & II described in chapter 4, can be measured using an integrating sphere
with the supercontinuum laser as the source of illumination. The measured quantities can be given
to the IAD to estimate optical properties and compared with the analyses done in chapter 4.
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Figure 6.1: Comparison of relative errors in IAD estimated absorption (left) and scattering (right) between
IS measurements made using Fianium (blue bars) and Halogen (orange bars) sources of Dataset I.

Figure 6.2: Comparison of relative errors in IAD
estimated scattering (right) between IS

measurements made using Fianium (blue bars) and
Halogen (orange bars) sources of Dataset II.

Figure 6.1 describes the relative errors in the
IAD estimated optical properties of the sam-
ples illuminated by the fianium and halogen
sources. It must be noted that, though incorpo-
rating the supercontinuum source reduces the
relative errors in the inverse calculations, pre-
dominant errors still persist in both calculated
optical properties. The greatest reduction in
error due to the incorporation of the Fianium
source is observed in the calculations of scatter-
ing over absorption. When observing the per-
formance of the two sources at lower scattering
values (by extending to dataset II), we observe
that these errors slightly increase with the high-
est errors (≈ 40%) at reduced scattering values
in the range of 0−3 cm−1 (Fig. 6.2).
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Figure 6.3: Comparison of difference in IAD estimated absorption (left) and scattering (right) between IS
measurements and true values, made using Fianium (blue bars) and Halogen (orange bars) sources.

Figure 6.4: Comparison of difference in IAD
estimated scattering (right) between IS

measurements made using Fianium (blue bars) and
Halogen (orange bars) sources of Dataset II.

When observing the differences between the
absorption and scattering values against true
optical properties, it can be observed that es-
timates from fianium measurements perform
better (similar to above). Incorporation of the
more finely collimated source improved the
resolution of the system, though slightly, in the
estimation of optical properties, with the great-
est improvement (of ≈ 1.5 cm−1) to the scat-
tering estimates. Similarly, the average reso-
lution in absorption estimations have also im-
proved by ≈ 0.015 cm−1. It must be noted
that these differences increase with the optical
properties of the sample, with the lowest differ-
ences being 0.14 cm−1 in calculated absorption
and 1.4 cm−1 in reduced scattering values.
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Figure 6.5: Comparison of differences in IS measured reflectance (left) and transmittance (right) against
AD predicted values of samples illuminated using Fianium (blue bars) and Halogen (orange bars) sources,

for dataset I.

When observing the raw measurements of reflectance and transmittance made using the IS and the
two sources, halogen and fianium, we observe fianium measurements to be closer to the expected
measurements derived from AD calculations, overall (Fig. 6.5). In reflectance measurements, the
lowest resolution of the IS is≈ 0.05 which correspond to the lower reflectance values. Conversely,
for higher reflectance values, the resolution increases up to 0.12. The average resolution for these
ranges for the halogen and fianium sources are 0.08 and 0.09, respectively. On the other hand, the
IS measurements of transmittance have more contained resolutions with the lowest being 0.001
and highest being 0.05. The resolution for transmittance measurements average to 0.02 and 0.03
for the fianium and halogen soruces, respectively.

Figure 6.6: Comparison of differences in IS measured reflectance (left) and transmittance (right) against
AD predicted values of samples illuminated using Fianium (blue bars) and Halogen (orange bars) sources,

for dataset II.

Due to the varies range of optical properties of dataset II, lower and higher ranges of reflectance

62



and transmittance values, respectively, are measurement with the IS (Fig. 6.6). Consistent with
the observations for dataset I, the differences in measurements are lower for transmittance than
reflectance measurements. Overall, the fianium measurements are better than those made with the
halogen source. However, this behavior deviates at the extremes of these measurement ranges.

To summarize the observations described above, incorporation of a supercontinnum source, a
highly collimated broadband laser, has not eliminated the errors in IS measurements, that were
observed in measurements made using a halogen source (chapter 4). However, the fianium source
was able to reduce the resolution of the IS measurements than the halogen source, with the greatest
improvements being for measurments within the ranges of 0.5− 0.7. We can conclude that the
errors in IS measurements are greater than the influences of lateral and hemispherical light losses.

The errors that persist in these IS measurements can be attributed to the response of the IS to
the presence of the sample mounted onto the IS port. As described in chapter 2, the IS is an
optical resonator where a given measurement is a result of the multiple internal reflections of light
collected by the device. However, when the standard is substituted with the sample, the total power
collected by the device drops considerably. This loss in total power collected is often described as
the substitution error [33, 34, 37]. In this chapter, we will explore the various correction schemes
commonly used to eliminate the losses in IS measurements due to the substitution error.

6.1 Experimental correction

Figure 6.7: A schematic describing the
top-to-bottom view of the IS configuration for

making measurements of Rdi f f for a given sample.

Characterization of the effects of the substi-
tution error on IS measurements can be per-
formed experimentally, by ensuring that the to-
tal fluence collected by the system is devoid
of losses once the sample is mounted onto the
sphere. Two common methods to ensure this
has been described - incorporation a double
beam configuration or an addition measure-
ment through diffuse illumination of the sam-
ple. The former has multiple disadvantages,
from a much more complex setup and inflex-
ibility to rotate the sphere due to complications
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in geometry [17, 31]. The later provides flexibility to adjust the experimental configuration, but
increases the total time to complete all measurements for a given sample. Here, the incorporation
of the diffuse illumination of the sample will be explored as an experimental collection for the
substitution error.

From the results summarized in chapter 4, the substitution error affects measurements of total re-
flectance more significantly than total transmittance. Hence, for the following correction scheme
will only be implemented for measurements of total reflectance. As mentioned in chapter 2, equa-
tions 2.1 are used to calculate the total reflectance and transmittance for a sample. An addition
measurement of the sample with a diffuse illumination will be taken. The diffuse illumination can
be achieved by focusing the illumination beam to be incident on the sphere wall over the sample
as typically done (described in figure 6.7). The signals measured this way, will be referred to as
Rdi f f . Now the measurements of total reflectance measurement can be corrected (RC

T ) by updating
equation 2.1, using the Rdi f f measurement as,

RC
T =

Rsample−Rdark

Rdi f f −Rdark
(6.1)

For the dataset I described in this thesis, a corrected reflectance value using equation 6.1, will be
employed. The effects of this correction on the raw reflectance values and the inverse calculations
of optical properties, will be explored in the following sections.

6.1.1 Analysis of measurements

The effect of the experimental correction scheme of total reflectance measurements can be quan-
tified through comparisons from calculations using the forward model (AD) (similar to above).
Here, the effects of the correction for both sources - fianium and halogen for samples in dataset I
will be contrasted.
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Figure 6.8: Differences of total reflectance values against AD calculations for experimental correction
(blue bars) and raw IS measurements with no corrections (orange bar) for dataset I samples illuminated

using fianium (right) and halogen (left) source.

Figure 6.8, compares differences between corrected reflectance values and forward AD calcula-
tions against those differences with no correction employed to the reflectance measurements, for
measurements taken with the halogen and fianium sources. As observed, implementation of the
experimental correction significantly improves overall reflectance values of all samples, regardless
of source. With implementation of this correction method, the overall resolution of reflectance
measurements have decreased to 0.017 for both sources.

6.1.2 Analysis of inverse calculations

Optical properties for the set of corrected reflectance values can be calculated using the IAD. The
effects of incorporating this correction scheme to the inverse calculations of optical properties can
be quantified by comparing with true optical properties of samples.
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Figure 6.9: comparison of relative errors in IAD estimated absorption (left) and reduced
scattering (right) values for experimental correction versus no correction, for measurements taken

with Fianium (below) and Halogen (above) sources.

When observing the relative errors in the estimations of optical properties with incorporation of
the experimental correction, an overall improvement can be observed (Fig. 6.9). Relative errors in
inverse estimations of absorption coefficients have decreased for the halogen (mean errors 11 %)
greater than that with the fianium (mean errors 14 %) source with incorporation of the experimen-
tal correction. On the other hand, inverse estimations of scattering have improved for the fianium
(mean errors 3 %) source over the halogen (mean errors 8 %) source with the addition of experi-
mental corrections to reflectance measurements.
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Figure 6.10: comparison of differences in IAD estimated absorption (left) and reduced scattering (right)
values against true properties for measurements taken with experimental correction and no correction.

The effects on these differences for both sources - Fianium (below) and Halogen (above) are described.

Incorporation of the experimental correction has improved the overall resolution of the IS/IAD
method to estimate optical properties (Fig. 6.10). For the halogen source, the mean resolution
of inverse calculated absorption and reduced scattering have decreased to 0.17 cm−1 and 2 cm−1,
respectively. Conversely, for the measurements taken with the fianium source, the resolutions of
the system for inverse calculated absorption and reduced scattering have decreased to 0.185 cm−1

and 0.8 cm−1, respectively. As described above, the incorporation of the experimental correction
improves overall resolution of the IS/IAD method to retrieve optical properties with significant
improvement of the inverse calculation of reduced scattering values from fianium measurements.

6.2 Theoretical correction

The integrating sphere is an optical resonator, were measured values are dependent on the multiple
reflection within the internal surface of the IS. Multiple reflections falling on non-white areas in
the sphere (e.g. sample, detector, and entrance), will decrease the total power collected by the sys-
tem. In the previous section, this loss in power was corrected using an additional measurement to
increase the total power collected by the system. However, the total power collected by the IS can
be described as a function of the geometric and reflection parameters of the sphere (as described in
section 2.1.1). If these sphere parameters are known, the loss of power in the IS measurements can
be accounted. The IAD provides such an option such that the inverse calculations of optical prop-
erties can be improved by theoretically correcting the input IS measurements [32]. Furthermore,
Prahl et. al. has incorporated a hybrid IAD-MC approach to correct for light losses observed due
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to the finiteness of the sample and IS port with respect to beam diameter (as described in chapter
4). Here, the MC program is used to estimate the amount of light lost for a given set of optical
properties. The lost light is then incorporated back into the next iteration of the IAD to estimate
optical properties.

6.2.1 Analysis of inverse calculations

As described above, the IAD can be set to estimate optical properties while incorporating the
theoretical correction to the input IS measurements. Here, the effects of including this correction
to inverse estimations of optical properties will be analyzed.

Figure 6.11: comparison of relative errors in IAD estimated absorption (left) and reduced scattering
(right) values for theoretical correction versus no correction, for measurements taken with Fianium

(below) and Halogen (above) sources.

Trends in relative errors in the estimation of optical properties with incorporation of the theoretical
correction evidently describes significant improvements to the accuracy of the inverse calculations
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(Fig. 6.11). Relative errors in inverse calculations of absorption have decreased to 9.6 % and
6.4 % for the halogen and fianium sources, respectively. Similarly, inverse calculations of scatter-
ing has improved to relative errors within 3.5 % and 2.7 % for the halogen and fianium sources,
respectively. While the theoretical corrections, improve both sources, measurements made with
the fianium source produces slightly accurate inverse calculations over the halogen measurements.

Figure 6.12: comparison of differences in IAD estimated absorption (left) and reduced scattering (right)
values against true properties for measurements taken with theoretical correction and no correction. The

effects on these differences for both sources - Fianium (below) and Halogen (above) are described.

Incorporation of the theoretical correction has significantly improved the overall resolution of the
IS/IAD method to estimate optical properties (Fig. 6.12). For the halogen source, the mean res-
olution of inverse calculated absorption and reduced scattering have decreased to 0.065 cm−1 and
0.74 cm−1, respectively. Conversely, for the measurements taken with the fianium source, the res-
olutions of the system for inverse calculated absorption and reduced scattering have decreased
to 0.054 cm−1 and 0.81 cm−1, respectively. As described above, the incorporation of the experi-
mental correction improves overall resolution of the IS/IAD method to retrieve optical properties
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with significant improvement to the inverse calculation over the experimental correction described
above.

6.3 Summary of results

I have summarized the performance of the IS/IAD with under varying illumination conditions
and correction schemes, as averaged relative errors and resolutions of the system. Here, table
6.1 and 6.2 describes the performance of the system to estimate absorption and reduced scattering.
respectively. As observed, for the range of optical properties commensurate with biological tissues,
the theoretical correction by the IAD proves to be the best method of estimating optical properties
from IS measurements.

Absorption
Coefficient (µa)

Fianium Halogen
Mean Relative

Error (%)
Resolution

(cm−1)

Mean Relative
Error (%)

Resolution
(cm−1)

No correction 28.02 0.4043 29.37 0.4159
Experimental correction 14.23 0.1849 11.13 0.1722
Theoretical correction 6.42 0.0537 9.65 0.0648

Table 6.1: Table summarizing the results of correction schemes on the ability of the IS/IAD method to
estimate absorption coefficients.

Reduced Scattering
Coefficient (µ ′s)

Fianium Halogen
Mean Relative

Error (%)
Resolution

(cm−1)

Mean Relative
Error (%)

Resolution
(cm−1)

No correction 25.27 6.378 29.89 7.571
Experimental correction 3.26 0.822 8.02 2.012
Theoretical correction 2.7 0.808 3.46 0.739

Table 6.2: Table summarizing the results of correction schemes on the ability of the IS/IAD method to
estimate reduced scattering coefficients.
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Chapter 7

Conclusions

In this thesis, we have explored the performance of the integrating sphere (IS) and the inverse
adding-doubling (IAD) to estimate optical properties of unknown turbid media. Though the IS/IAD
method has often been cited as a ”gold-standard” method of estimating optical properties, our
studies have showed that the IS is prone to inaccurate measurements due to light losses. These
inaccuracies commonly lead to errors in IAD calculations. These light losses typically arise due
to the geometry of the IS, the source and sample and the losses in power due to the substitution of
a sample with a standard. In this thesis, these losses were characterized using a robust stochastic
model over a wide range of optical properties. Finally, the two commonly used correction proto-
cols to mediate these losses were investigated providing appropriate guidance to estimate optical
with minimal errors.

7.1 Thesis Summary

This section provides a robust summary of this thesis. Chapter 1 introduces the field of tissue optics
and the motivation behind optical characterization of turbid media. This optical characterization
was done through estimations of quantitative parameters known as optical properties. Finally, this
chapter introduces commonly used theoretical models that describe light distribution and propa-
gation across turbid media. Chapter 2, described a method of estimating optical properties using
measurements made using an integrating sphere and an appropriate inverse model. Chapter 3
describes the inverse adding-doubling algorithm, that translates IS measurements to optical prop-
erties. Here, a detailed account on the benefits of using the IAD over other inverse algorithms is
provided. Tests on the accuracy of the model and its sensitivity of various inputs are tested.

The IS/IAD method is then tested using a robust set of optical phantoms that mimic light propa-
gation in tissue-like turbid media. Analysis of these preliminary tests of the system is described in
chapter 4. This chapter concludes with a discussion of the possible sources of errors (light losses
in IS measurements). Chapter 5 describes a stochastic method of simulating these light losses in
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IS measurements for a range of optical properties. These simulations emulate the experimental
conditions of a finite sample illuminated by a finite beam, mounted onto an IS port. The results
of these simulations indicated that light losses in IS measurement, most significantly affect in-
verse calculations of low absorption (< 0.04 cm−1) and scattering (< 3 cm−1) samples. Chapter 6
provides a comprehensive analysis of the performance of the IS/IAD method to estimate optical
properties under multiple illumination configurations and correction schemes. From our analy-
sis, we observed that measurements made using the Fianium coupled with theoretical correction
protocol results in best estimates of absorption and reduced scattering values within resolution of
0.05 cm−1 and 0.8 cm−1, respectively.

7.2 Future Work

Over the years, various studies to quantify light losses in integrating sphere measurements have
been made. As described in this thesis, the performance of the IS/IAD method is highly sensitive
to the IS measurements. It must be noted that for the studies conducted here, liquid phantoms are
used. Liquid phantoms require the use of glass cuvettes to mount the sample onto the IS port. This
leads to mismatches in the boundaries and can lead to inaccuracies in IS measurements. The effect
of thick glass cuvettes on IS measurements must be experimentally or theoretically explored.
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Appendix A

Input Data files

For the various programs used in this thesis, the optical parameters required by the model for
simulations are given in the form of data files. Each data file, corresponding to the algorithm used
has a unique structure to its input data files. Here, the structures of these files will be described
with examples,

A.1 IAD input file

The basic structure of the input file given to the IAD for inverse calculations, is described be-
low. Important parameters of the sample and sphere along with the inputs of total reflectance and
transmittance are required.

IAD1 # Must be first four characters

1.33 # Index of sample

1.55 # Index of top and bottom

2.00 # Sample thickness [mm]

2.00 # Thickness of slides [mm]

1.50 # Beam diameter at entrance[mm]

0.99 # Reflectance of calibration standard

1 # Number of spheres used

# Properties of sphere 1

152.4 # [mm] Diameter of sphere (6 in * 25.4 mm/in)

25.4 # [mm] Sample Port Diameter

25.4 # [mm] Entrance Port Diameter

12.7 # [mm] Detector Port Diameter
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0.99 # Reflectivity of the sphere wall

2 #number of measurements, M_R, M_T

#wavelength M_R M_T

500.00 0.095540 0.478146

...

A.2 Finite Monte Carlo - Input File

The basic structure of the file describing the tissue structure (”temp.tissue”) that is later pro-
cessed by the Finite Monte-Carlo model, is described below. A few of the vital parameters pro-
vided in this file are the number of photons simulated, the optical parameters of the sample and the
ambient medium. The xy dimensions of the sample are specified in the ”mc_globals.h” file.

5000000.00 #number of photons

1 #number of tissues

##start Tissue 1

1.00 #ref.index top

1.00 #ref.index bottom

1 # #of layers

#layer 1

0.4839 #mua_x

311.6981 #mus_x

0.0 #mua_m

0.0 #mus_m

0.0 #muaf_x

0.0 #flqy

0.9012 #g_x

0.0 #g_m

0.20 #thickness

1.33 #ref. index

0.0 #TAU
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Appendix B

MATLAB Code

All the programs described in this thesis, were created in other languages (such as C). For stream-
line the process of simulation and analysis, these programs were run under MATLAB’s environ-
ment and stored into simple and easily accessible variables. Here, the MATLAB functions imple-
menting the various programs used in this thesis, are described here,

B.1 Adding-Doubling

The MATLAB’s invocation of the adding-doubling algorithm to estimate total reflectance and
transmittance for a given set of optical parameters pertaining to a sample modelled as a semi-
infinite slab, is given here.

1 function [Rt, Tt] = AD single io(mua, mus, g, sample t, n sample, n slide)

2 % The objective of this function is to run the AD for a set of optical

3 % properties and other sample parameters, under MATLAB's environment.

4 % Author: Vinoin Devpaul Vincely (created: 2018/06/28)

5 %

6 % INPUTS:

7 % mua − absorption coefficient

8 % mus − scattering coefficient

9 % g − anisotropy coefficient

10 % sample t − thickness of sample (in cm)

11 % n sample − refractive index of sample

12 % n index − refractive index of ambient medium

13 %

14 % OUTPUTS:

15 % Rt − Total reflection of sample

16 % Tt − Total transmission of sample

17

18 mut = mua + mus;
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19 a = mus/mut; % Albedo

20 b = sample t*mut; % Optical thickness

21

22 call = sprintf('ad.exe −m −a %0.8f −b %0.8f −g %0.3f −n %0.3f −s %0.3f ...

−q 8', a, b, g, n sample, n slide);

23 [¬, term out] = system(call);

24

25 vals = strsplit(term out, ' ');

26 Rt = str2double(vals{2}); Tt = str2double(vals{4});

B.2 Finite Monte Carlo

The implementation of the Finite Monte-Carlo algorithm to operate under MATLAB’s environ-
ment is described here. Due to the complexity of the process, I have categorized all the relevant
sample information into MATLAB ”structs”. These structures can be obtained by calling the fol-
lowing code (”vox_MC_inputStrs.m”),

1 function [sP, gP] = vox MC inpStrs(mua, mus, g, nsample, ...

sample thickness, xy dimen, g mua, g mus, g g, nglass, glass thickness)

2 % The objective of this function is to creating the input structures ...

for voc MC.m (created by: Vinoin Vincely)

3 %

4 % INPUTS:

5 % mua − sample absorption coefficient

6 % mus − sample scattering coefficient

7 % g − sample anisotropy

8 % nsample − refractive index of sample

9 % sample thickness − thickness of sample (in cm)

10 % xy dimen − sample xy dimensions

11 % (xy dimen = [xleft xright yback yfront])

12 % nglass − refractive index of the ambient medium

13 %

14 % OUTPUTS:

15 % sP − structure with optical parameters of sample

16 % gP − structure with optical parameters of ambient medium

17

18 sP.mua = mua; sP.mus = mus; sP.g = g;

19 sP.n = nsample; sP.d = sample thickness;
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20

21 gP.xleft = xy dimen(1); gP.xright = xy dimen(2);

22 gP.yback = xy dimen(3); gP.yfront = xy dimen(4);

23 gP.n = nglass;

With the structures containing the optical parameters describing the to-be modelled tissue, it can
be given to the function ”vox_MC.m”. This function writes the new input file (temp.tissue) and
runs the finite MC program and parses the results out of the generated output file.

1 function [params] = vox MC(sampleProps, glassProps, num photons, ...

beam radius, port radius)

2 % This function runs the finite MC algorithm under MATLAB's environment.

3 % Run "vox MC inpStr" to get input structures.

4 %

5 % INPUTS:

6 % sampleProps − a structure of sample properties

7 % glassProps − a structure of glass properties

8 % num photons − number of photons for the simulation

9 % beam radius − radius of illumination beam (in cm)

10 % port radius − radius of collection port (in cm)

11 %

12 % OUTPUT:

13 % param − structure with the following fields

14 % Rt, Tt, Rt xleft, Rt xright, Rt yfront, Rt yback

15

16 % ========== Check if vox−MC dump folder exisits ======

17 if ¬exist('voxmc dump', 'dir')

18 fprintf('Making vox−MC dump folder!\n');
19 mkdir('voxmc dump')

20 end

21

22 cd('voxmc dump');

23 % ====================================================

24

25 % Current directory

26 my folder = pwd;

27

28 % Writes the global file

29 cd('¬/Documents/LAB/Vox MC/');

30 vox MC global(glassProps.xleft, glassProps.xright, glassProps.yfront, ...
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glassProps.yback, glassProps.n, glassProps.n, glassProps.n, ...

glassProps.n, beam radius, port radius);

31

32 % Run "make" file to get executable

33 [¬,¬] = system('make clean'); [¬,¬] = system('make time');

34 copyfile('vox mc', my folder, 'f');

35 cd(my folder);

36

37 % Write the tissue file

38 vox MC tissue(sampleProps.mua, sampleProps.mus, sampleProps.g, ...

sampleProps.n, sampleProps.d, glassProps.n, num photons);

39

40 % Lets run VOXEL−MC
41 system('./vox mc temp.tissue');

42

43 % To parse out MC dumps

44 dumps = vox MC logTR parser('TR dump.log');

45 params.dump = dumps(end);

46 [params.Rtcol, params.Ttcol] = ...

vox MC RTrho parser(char(strcat('RTrho ', params.dump)), num photons);

47 [params.Rt, params.Tt, params.Rt xleft, params.Rt xright, ...

params.Rt yfront, params.Rt yback] = ...

vox MC dump parser(char(params.dump), num photons);

48 params.Rsp = ((glassProps.n−sampleProps.n)/(glassProps.n+sampleProps.n))ˆ2;
49

50 cd ..;

The output of this function is a structure (”params”) containing the fluences corresponding to
the surface of exit of the modelled tissue.
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