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Abstract
Near-infrared (NIR) tomography is a technique used to measure light
propagation through tissue and generate images of internal optical property
distributions from boundary measurements. Most popular applications have
concentrated on female breast imaging, neonatal and adult head imaging, as
well as muscle and small animal studies. In most instances a highly scattering
medium with a homogeneous refractive index is assumed throughout the
imaging domain. Using these assumptions, it is possible to simplify the model
to the diffusion approximation. However, biological tissue contains regions of
varying optical absorption and scatter, as well as varying refractive index. In
this work, we introduce an internal boundary constraint in the finite element
method approach to modelling light propagation through tissue that accounts
for regions of different refractive indices. We have compared the results to data
from a Monte Carlo simulation and show that for a simple two-layered slab
model of varying refractive index, the phase of the measured reflectance data
is significantly altered by the variation in internal refractive index, whereas the
amplitude data are affected only slightly.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The use of light in both diagnosis and treatment has grown rapidly over the past few decades.
One example incorporates the use of near-infrared (NIR) light as a physiological probe (NIR
spectroscopy) and imaging tool (NIR tomography) for biological tissue, particularly with
applications for the female breast (Dehghani et al 2003b, Fantini et al 1998, Hebden et al
2001, Chance 2001), neonatal head (Hebden et al 2003), adult head (Bluestone et al 2001),
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human muscle (Hillman et al 2001), and small animal imaging for research of disease (Xu et al
2003). Typically, light is delivered to the tissue using a set of optical fibres, while exiting light,
which has propagated through the tissue, is collected at a number of other locations using
optical fibres or imaging optics. In the case of tomography, a set of measurements is made
at the surface of the tissue for each applied source. These measurements, also known as the
boundary data, are then used to estimate the internal optical properties of tissue, which would
have caused the recorded changes in the remitted light. Once transmission measurements
are acquired, it has been established that quantitatively accurate estimates of the absorption
and reduced scattering coefficients in tissue can be determined through the appropriate
model-based fitting of the data (Fantini et al 1998, Delpy and Cope 1997, McBride et al
1999, Godavarty et al 2002). If NIR measurements are obtained at a sufficient number of
wavelengths, the calculated optical properties can be used to derive physiological properties
of the tissue under investigation, namely, total haemoglobin, oxygen saturation, water and
lipid concentrations (Mcbride et al 2002). This makes NIR tomography a promising imaging
modality, since it can provide functional information about the region under investigation. One
issue that has not received adequate attention in optical tomography is the inclusion of index
of refraction variation as a parameter in accurate numerical modelling which influences image
reconstruction. In this study, the effect of index of refraction changes in tissue simulating
models is evaluated and a theoretical basis for numerical modelling the appropriate response is
established.

In order to determine internal optical properties of tissue, and therefore, accurate functional
information about the region of interest, an accurate model of light propagation is essential. The
most widely used model of light propagation within tissue is the diffusion approximation to the
radiative transport equation (RTE), which under certain conditions is an accurate simplification
(Arridge 1999). In the cases where the diffusion model is expected to fail, for example when
imaging the adult or neonatal head, either the full RTE is preferred (Klose and Hielscher
1999) or some hybrid diffusion/radiosity model has been recommended (Arridge et al 2000).
It is generally agreed that stochastic models such as Monte Carlo methods provide the most
accurate prediction of light transport, but suffer from long computation times and complex
coding challenges when significant heterogeneity exists, making them predominantly useful
for scientific validation studies. Generally, however, while tissue light propagation models
allow inhomogeneity in optical absorption and scattering, the refractive index, n, is assumed
to be constant throughout the domain at a value representative of biological tissue (typically
n = 1.33). Although the actual absolute value of tissue refractive index is debatable (due to
difficulties in obtaining accurate data), it is widely accepted that these values differ between
tissues. In bulk tissues, the index of refraction is intimately tied to the overall reduced scattering
coefficient, as the microscopic fluctuations in the index between membranes and structural
components of tissue cause the scattering that is dominant in the light–tissue interaction.
However, changes in n also exist at macroscopic scales, for example, at interfaces between
larger tissue structures (types), which change the speed of light creating effects that are not
modelled in many cases. Most work reported to date involving incoherent light, has been
confined to computations which consider a single wave speed (constant refractive index).
Although some progress has been described in deriving an approximation to the RTE which
incorporates refractive index inhomogeneity (Khan and Jiang 2003), few results have been
shown to date which identify the effect of internal refractive index variation on boundary
measurements. Some work, however, has been done which looks at various implementations
of internal boundary conditions within a diffusion model that accounts for internal refractive
index variation (Aronson 1995, Faris 2002), as well as analytical solutions which aim to recover
optical properties of a single circular infinite central anomaly (Walker et al 1998). Further work
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Figure 1. A domain � containing regions of different refractive indices, �1 and �2.

has also been performed in incorporating boundary conditions into scattering surface integral
equations for diffuse waves in the case of index mismatch media (Ripoll and Nieto-Vesperinas
1999).

In this work, a diffusion equation finite element model is developed where the effects
of piecewise constant internal refractive index variations are treated through incorporation of
appropriate internal boundary conditions which generate a discontinuity in the photon density
field at the interface between step changes in refractive index. The numerical implementation
is described, and comparison with Monte Carlo model predictions is presented. The data
indicate that for frequency-domain measurements, both the amplitude and phase of measured
data are altered by internal variation in refractive index with the phase measurements showing
the largest effect.

2. Theory

2.1. Diffusion approximation

It is generally accepted that if the magnitude of the isotropic fluence within tissue is significantly
larger than the directional flux magnitude, the light field is ‘diffuse’, which occurs when the
scattering interaction dominates over absorption in a region of interest. Mathematically,
this assumption allows a transition from the Boltzmann transport equation, which is used
to describe an anisotropic light field to the diffusion equation approximation. The diffusion
approximation in the frequency domain is given by

−∇ · κ(r)∇�(r, ω) +

(
µa(r) +

iω

cm(r)

)
�(r, ω) = q0(r, ω) (1)

where µa and µ′
s are absorption and reduced scattering respectively, q0(r, ω) is an isotropic

source, �(r, ω) is the photon fluence rate at position r, κ = 1
3(µa + µ′

s)
is the diffusion coefficient

and cm(r) is the speed of light in the medium at any point, defined by c/n(r), where n(r) is the
index of refraction at the same point and c is the speed of light in vacuum.

The best description of the air–tissue boundary, ∂�1 in figure 1, is derived with an index-
mismatched type III condition, in which the fluence at the edge of the tissue exits and does not
return (Schweiger et al 1995). The flux leaving the external boundary is equal to the fluence
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rate at the boundary weighted by a factor that accounts for the internal reflection of light back
into the tissue. This relationship is described in the following equation:

�(ξ, ω) + 2An̂ · κ(ξ)∇�(ξ, ω) = 0 (2)

where ξ is a point on the boundary (∂�1), and A depends upon the relative refractive index
(RI) mismatch between tissue �1 and air. A can be derived from Fresnel’s law:

A = 2/(1 − R0) − 1 + |cos θc|3
1 − |cos θc|2 (3)

where θc = arcsin(nAIR/n1), the angle at which total internal reflection occurs for photons
moving from region �1 with RI n1 to air with RI nAIR, and R0 = (n1/nAIR − 1)2

(n1/nAIR + 1)2 . At the external
boundaries, nAIR = 1, the RI of free space.

At interior nodes, which lie on an interface between two media with different indices of
refraction, ∂�1/�2 in figure 1, we apply the conditions used by Schmitt et al (1990) and
Takatani and Graham (1979) and Faris (2002):

n̂ · D1∇�1(ξ, ω) = n̂ · D2∇�2(ξ, ω) (4)

�1(ξ, ω)

�2(ξ, ω)
=

(
n1

n2

)2

. (5)

These equations enforce continuity in the flux across a step change in n, and establish a
corresponding discontinuity in the fluence based upon the two refractive indices defining the
regions separating the boundary.

2.2. Finite element implementation

When the refractive index is homogeneous, the finite element discretization of � (where
� = �1 ∪ �2) can be obtained by subdividing the domain into D elements joined at V
vertex nodes. In finite element formalism, �(r) is approximated by the piecewise continuous
polynomial function �h(r,w) = ∑V

i �iui(r)�
h, where �h is a finite-dimensional subspace

spanned by basis functions {ui(r); i = 1, . . . , V } chosen to have limited support. The problem
of solving for �h becomes one of sparse matrix inversion: in this work, we use biconjugate
gradients stabilized solver. As developed previously (Paulsen and Jiang 1995, Arridge et al
1993), the diffusion equation in the FEM framework can be expressed as a system of linear
algebraic equations:(

K(κ) + C

(
µa +

iω

cm

)
+

1

2A
F

)
� = q0 (6)

where the matrices K(κ), C
(
µa + iω

cm

)
and F have entries given by

Kij =
∫

�

κ(r)∇ui(r)∇uj (r) dnr (7)

Cij =
∫

�

(
µa(r) +

iω

cm(r)

)
ui(r)uj (r) dnr (8)

Fij =
∮

∂�

ui(r)uj (r) dn−1r (9)

and the source vector q0 has terms

q0i
=

∫
�

ui(r)q0(r) dnr. (10)
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Figure 2. Meshing the interface between two regions of different refractive indices. Note that
the nodes on the boundary δ�1/�2 are duplicated to allow the enforcement of internal boundary
conditions.

2.3. Diffusing medium with internal refractive index boundary

In the presence of piecewise linear change in internal refractive index, the continuity of �

throughout the computational domain implied in equation (6) must be modified to allow two
values to coexist at nodes in the mesh resident at a refractive index interface. This can be
achieved conceptually (and practically) by generating coincident but duplicate nodes at the
discretized points forming the boundary between two regions of distinct refractive index which
represent the two degrees of freedom contained in the solution space defined by equations (4)
and (5). Here, the duplicate nodes on the internal boundary are assigned to the elements
that belong to either domain �1 or �2 which have the corresponding RI value associated
with that region, figure 2. This allows two values of � to simultaneously coexist in the list
of unknowns at the index-mismatched interface. On matrix assembly, coupling across the
interface is accomplished through the use of a continuous weighting function pre-selected
to correspond to one of the node numbers associated with the duplicate pair creating a row
location in the discretized version of equation (6) on the interface. The row number associated
with the partnered node is initially empty. Therefore, to complete the algebraic system, the
explicit enforcement of equation (5) can be rewritten as

�1 −
(

n1

n2

)2

�2 = 0 (11)

and enforces the required discontinuity in �.
Alternatively, the extra degree of freedom associated with the interface discontinuity in �

can be eliminated during element-by-element assembly of Cij in equation (8) through indirect
enforcement of equation (11) based on logical decision making. For example, assume that the
�-value of the higher region number in figure 2 is retained during matrix assembly, then if
neither i or j in equation (8) is on the interface or i is on the interface but j is in the pre-selected
(higher numbered) region (region 2 in figure 2), equation (8) applies. However, if i is on the
interface but j is in the lower numbered region (region 1) then equation (8) becomes

Cij =
∫

�1

(
µa(r) +

iω

cm(r)

)
ui(r)

(
n1

n2

)2

uj (r) dnr (12)

where �1 implies integration over the region 1 elements containing node j. If both i and j
reside on the interface then equation (8) is assembled as

Cij =
∫

�1

(
µa(r) +

iω

cm(r)

)
ui(r)

(
n1

n2

)2

uj (r) dnr +
∫

�2

(
µa(r) +

iω

cm(r)

)
ui(r)uj (r) dnr.

(13)
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Figure 3. Geometry of the model used both for FEM and Monte Carlo simulations. The two-
layered slab has a width and length of 80 mm and a thickness of 50 mm. The top layer has a
thickness of 5 mm, with each layer having the same optical absorption and scatter, but allowed
different refractive indices. The source is placed at the centre of the topmost face, and reflectance
measurements are calculated at 1 mm intervals, spanning distances of 10–29 mm away from the
source. The dashed line represents the slice at which the internal field distributions are shown in
figures 6 and 7.

The solution that results produces interface values of � associated with the higher
numbered region and the corresponding values for the partnered side can be retrieved from
equation (11) once �2 is known.

2.4. Monte Carlo modelling

A Monte Carlo model to simulate propagation of light in a semi-infinite turbid medium was
extended to photon propagation in a stratified medium as described previously (Wang et al
1995, Vishwanath et al 2002). Briefly, the turbid medium was modelled as having layers of
finite thickness (along the z-axis) with specified transport coefficients and refractive indices
in each layer. Photons were incident normally at the top face of the turbid medium. For every
scattering event where the calculated step size (s) (along a particular direction) caused a photon
to cross an index-mismatched boundary, the photon was first propagated to the point where
its trajectory intersected the boundary via a shortened step size (s1). The angle of incidence
with respect to ±z-axis (depending on the direction of photon travel) was computed and used
to determine if the photon suffered total internal reflection (from Snell’s law). If the photon
was internally reflected, then the z-component of the photon’s travel direction was reversed
and the photon completed the remainder of the step (s – s1) in the same layer, otherwise
the reflection coefficient from Fresnel’s equations was computed and compared against a
uniformly generated random number. For every sampling of the random number that was
less than the reflection coefficient, the photon underwent total internal reflection, otherwise
it was transmitted to the next layer (or escaped from the domain). On transmission into a
different layer the final spatial location of the photon was calculated by propagating the photon
by a distance of s – s1 that was adjusted in length (to account for the difference in transport
coefficients between the two layers) and its direction corrected to consider refraction. All
photons emanating from the top layer of the turbid medium were spatially and temporally
binned to calculate the reflectance from a turbid medium. The resulting temporal data
were Fourier transformed to give frequency-domain estimates of the amplitude and phase
shift as a function of distance, in order to match the type of data used in our tomography
system.
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Figure 4. (a) Amplitude and (b) phase of the measured signal at detector positions for both the
FEM and Monte Carlo models where n1 = n2 = 1.33, and n1 = 1.33 and n2 = 1.58. Calculated
data from the FEM model, with no internal boundary conditions are also shown.

3. Results

In the following sections, we compare the results from the modified diffusion model, standard
diffusion model and Monte Carlo model for a simple two-layered slab of either homogeneous
or inhomogeneous internal RI values. All calculations were performed on a 1.7 GHz Xenon
PC running Linux with 2 Gbytes of RAM.

The FEM simulations were completed with NIRFAST (Near InfraRed Frequency-domain
Absorption and Scatter Tomography), which is a frequency-domain FEM code that can also
be used for inverse problems in NIR optical tomography (Dehghani et al 2003b, 2003a). The
code has been modified to incorporate internal boundaries and therefore duplicate nodes at an
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Figure 5. (a) Amplitude and (b) phase of the measured signal at detector positions for both the
FEM and Monte Carlo models where n1 = n2 = 1.58, and n1 = 1.58 and n2 = 1.33.

internal interface representing an RI change. Three-dimensional meshes were created using
NETGEN (Schoberl).

For the Monte Carlo results, the number of simulated photons was 50 × 106. The total
execution time was about two days, and the results produced time-resolved data at detector
positions.

The model domain was a slab with a width and length of 80 mm and a thickness of 50 mm,
figure 3. The source was placed at the centre of the topmost boundary and measurements
were made at 1 mm distances from 10 to 29 mm away from the source. The model consisted
of two layers, the top layer having a thickness of 5 mm, and the bottom layer a thickness of
45 mm. The optical properties were homogeneous, with µa = 0.01 mm−1 and µ′

s = 1 mm−1.
The refractive index of each layer was varied to create matched or mismatched phantoms.
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Figure 6. The internal fluence amplitude and phase distribution when (a) n1 = n2 = 1.33, and
(b) n1 = 1.33 and n2 = 1.58. The plot represents the distribution in the cross-section shown by
the dashed lines in figure 3. Also shown in (c) is the result from the FEM model with no internal
boundary conditions.

In the first dataset, results were calculated for n1 = n2 = 1.33, as well as when n1 = 1.33
and n2 = 1.58. The FEM mesh used in the calculations which assumed no internal boundaries,
i.e. no duplicate nodes, consisted of 16 848 nodes corresponding to 73 308 linear tetrahedral
elements, while for the case where internal boundaries were modelled, the mesh consisted of
21 024 nodes corresponding to 73 308 linear tetrahedral elements. Data were calculated for a
single source, as shown in figure 3, and reflectance measurements were obtained at discrete
points on the same surface, 10 to 29 mm away from the source. The results are shown in
figures 4(a) and (b) for amplitude and phase, respectively.

Results were also calculated when n1 = n2 = 1.58, as well as when n1 = 1.58 and n2 =
1.33. The FEM mesh used for these calculations was exactly the same as that noted above.
The results are shown in figures 5(a) and (b) for amplitude and phase, respectively.

Figures 6 and 7 show the cross-section of internal intensity and phase plots directly under
the source at y = 0 mm (shown as dashed lines in figure 3). In figure 6(a), the cross-section
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Figure 6. (Continued.)

of the fluence field and phase are shown when n1 = n2 = 1.33, where the magnitude is colour
coded. In figure 6(b), the optical fluence and phase plot for n1 = 1.33 and n2 = 1.58 is
presented. In figure 6(c), the corresponding optical fluence and phase plot for n1 = 1.33 and
n2 = 1.58 is shown, but in this case, no internal boundary (NIB) conditions were applied
and only the nodal values of RI were allowed to vary. Similarly, figures 7(a) and (b) show
the internal fluence fields and phase plots, when n1 = n2 = 1.58, and n1 = 1.58, n2 = 1.33,
respectively.

4. Discussion

In this work, we have presented a method for modelling internal refractive index mismatch
for NIR tomography. This approach relies on the application of additional internal boundary
conditions within the model to account for the inhomogeneous nature of RI within the region.
These additional boundary conditions explicitly imply that the flux across these boundaries is
continuous while the fluence rate allows a change due to reflection at the boundary.
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Figure 6. (Continued.)

The method is implemented into a FEM framework and numerical simulations have been
performed and compared with Monte Carlo calculations to examine their validity. The model
constructed for cross-comparison was a layered slab of homogeneous optical absorption and
scattering, but with varying RI in each layer. The RI for each layer was chosen to simulate
cases of matched and mismatched media (either 1.33 or 1.56).

In the first case both layers initially had an RI of 1.33 and then the lower layer RI was
increased to 1.58. It is important to note the good agreement between the Monte Carlo and
FEM data. It can also be seen from the amplitude response that there is little change due
an internal RI mismatch, that is to say the intensity of the measured reflectance photons is
almost independent of changes in RI. However, looking at the phase, it is evident that there
exists a substantial change due to RI variation. As the RI for the bottom layer (n2) is increased
from 1.33 to 1.58 the phase of the measured response is also increased. It is interesting
that no change in phase is detected 10 mm away from the source. Furthermore it is evident
that assuming just a change in the speed of light in tissue does not predict the measured
data accurately. The internal field and phase plots, figures 6(a) and (b), indicate that this
change yielded reflections at the lower face of the internal boundary. This caused the light
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Figure 7. The internal fluence amplitude and phase distribution when (a) n1 = n2 = 1.58, and
(b) n1 = 1.58 and n2 = 1.33. The plot represents the distribution in the cross-section shown by
the dashed lines in figure 3.

to take longer to exit at the detector positions (causing an increase in phase compared to the
homogeneous case), figure 4(b). However, the total amount of light measured at the detectors
was hardly affected by the change in RI, figure 4(a). When the internal boundary conditions
were ignored, and only the speed of light was varied, both the internal field and phase plots,
figure 6(c), as well as the measured phase data, figure 4(b), at the detector positions were not
correct.

From the graphs in figures 6(a) and (b) it is evident that the effect of internal RI mismatch
causes the light to be trapped within the bottom layer, due to surface reflection at the internal
boundary (represented by the dashed line). This reflection at the bottom face of the boundary
forces the light to take longer to exit and emerge at the detector points and therefore resulting in
a larger phase change. For comparison purposes, the internal field distribution is also plotted,
figure 6(c), where RI is varied for the model, but the internal boundary mismatch is ignored (as
shown in the boundary data in figure 4). Here, we can see that although the speed of light at
different points may be modelled, the reflection at internal boundaries is completely ignored.
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Figure 7. (Continued.)

In the second example where the model represented an RI of 1.58 in the top layer, while the
lower layer RI was decreased to 1.33, the light takes less time to exit at the detector positions
(causing a decrease in phase compared to the homogeneous case), figure 5(b). However, the
total amount of light measured at the detectors is again hardly affected by the change in RI,
figure 5(a). From the graphs in figures 7(a) and (b) it is evident that the internal boundary
reflection at the top face of layer 2 results in more light being reflected back than is normally
expected, causing light trapping in layer 1. This allows light to exit at a faster rate than in a
homogeneous case, resulting in the decrease in measured phase as shown in figure 5.

The small change in measured intensity data for the slab model is interesting. The results
suggest that the total intensity of light measured is not affected by a change in internal RI.
However, as the phase data suggest the time taken for light to travel is significantly altered.

5. Conclusions

A method of implementing internal RI variation within a FEM formulation of the diffusion
approximation has been developed. The results for a simple two-layer slab model have been
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compared with Monte Carlo calculations. The striking agreement between the data measured
with both models suggests that the modified FEM diffusion model is an adequate scheme for
describing light propagation within the tissue of varying refractive index. One drawback of
this approach is that regions of varying RI need to be known a priori. However, the main goal
of this paper is to present a method for accurate modelling of this variation, and to provide a
tool for numerical analysis of the effect of RI variation.

The results presented here indicate that for a two-layered model, there exists a change
in measured phase, but little change in amplitude data. These results may not be completely
general, as the model used in this study consisted of a thin layer of 5 mm with a second layer
of 45 mm. Also, the RI numbers used were 1.33 and 1.58 and although no absolute values of
the RI for biological tissue exist, it may be that tissue RI does not vary significantly within
the region of interest (e.g. the female breast). It may be that in a clinical setting, the range of
refractive index within the tissue under examination may not be that large; however, further
work is needed. Further work is necessary and anticipated to investigate this effect especially
in terms of image reconstruction.
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