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Abstract
The accuracy of the commonly used diffusion approximation as used in
diffuse optical tomography is known to be limited in cases involving strong
absorption and in these situations a higher ordered approximation is necessary.
In this study, a light transport model has been developed based upon the
three-dimensional frequency-domain simplified spherical harmonics (SPN)
approximation for orders up to N = 7. The SPN data are tested against a
semi-infinite multi-layered Monte Carlo model. It has been shown that the SPN

approximation for higher orders (N >1) provides an increase in accuracy over
the diffusion equation specifically near sources and at boundaries of regions
with increased optical absorption. It is demonstrated that the error of fluence
calculated near the sources between the diffusion approximation and the SPN

model (N = 7) can be as large as 60%, therefore limiting the use of the diffusion
approximation for small animal imaging and in situations where optical changes
near sources are critical for tomographic reconstructions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Near-infrared (NIR) optical tomography is a non-invasive imaging modality in which the
optical properties within a volume of interest can be reconstructed using measured transmission
and reflectance NIR data. These calculated optical maps can then be used to derive functional
and structural information about the tissue being imaged (Gibson et al 2005). Due to
the relatively low absorption of haemoglobin, water and lipid at a wavelength range of
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650 nm–1000 nm, NIR light can transmit through several centimetres of tissue with an
adequate signal-to-noise ratio to allow tomographic detection of light transmission. Using the
measured NIR signal, together with the known spectral absorption and scatter coefficients of
tissue, it is possible to extract functional information about the tissue being imaged (Corlu et
al 2005, Srinivasan et al 2005, Dehghani et al 2008).

Several imaging modalities have arisen with specific application for biological tissue,
including breast cancer detection and characterization (Ntziachristos et al 2000, Jiang et al
2001, Dehghani et al 2003b, Choe et al 2005, Enfield et al 2007) and brain functional imaging
(Bluestone et al 2001, Hebden et al 2004, Zeff et al 2007). More recently the use of biological
markers for function specific optical imaging has led to the development of novel imaging
systems and algorithms that aim to recover images of function specific activity within small
animals using, for example fluorescence (Mang et al 1993, Sevick-Muraca et al 1997, Klose
and Hielscher 2003, Ntziachristos 2006) or bioluminescence markers (Contag and Bachmann
2002, Alexandrakis et al 2005, Dehghani et al 2006, Wang et al 2006, Kuo et al 2007, Klose
and Beattie 2008).

Most NIR imaging studies have relied on the use of model-based image reconstruction
algorithms whereby the propagation of the NIR signal within the imaging domain is
approximated to provide a match (through the use of appropriate optimization) with measured
boundary data (Arridge 1999, Hielscher et al 1999). A large number of different models can be
used to predict light propagation within tissue, including stochastic, analytical and numerical.
Stochastic models involve predicting individual photon interactions using either explicit or
implicit methods. Two of the most common methods include the Monte Carlo (MC) methods
(Wang et al 1995) and random walk theory (Gandjbakhche and Weiss 1995). Analytical
models have the advantage of being computationally fast but suffer from the disadvantage
of being limited to simple geometries with nearly homogeneous interior values. Numerical
models have the potential of being able to model complex geometries as well as complex
heterogeneous media, but historically required longer computation times. But perhaps the
most promising reason for adoption of numerical approaches is to facilitate the combination of
NIR tomography with standard clinical imaging systems, using pre-defined tissue geometries
as the input domain. A number of different numerical models have been developed and
used with specific application in diffuse optical tomography (DOT), including finite elements
(Arridge et al 1993, Jiang and Paulsen 1995, Schweiger et al 1995, Gao et al 1998, Jiang 1998,
Dehghani et al 2003a), finite difference (Hielscher et al 1998, Klose and Hielscher 1999),
finite volume (Ren et al 2004) and boundary elements (Zacharopoulos et al 2006, Srinivasan
et al 2007).

It is generally accepted that if the magnitude of the isotropic fluence within tissue is
significantly larger than the directional flux magnitude, the light field is in effect ‘diffuse’,
which occurs when the scattering interactions dominate over absorption and the region of
interest is far from sources and boundaries, provided that the light fluence is not rapidly
changing with time (i.e. such as in the sub-picosecond time frame). This assumption allows a
transition from the radiative transport equation (RTE), which is used to describe an anisotropic
light field to the diffusion approximation, which is used for isotropic fluence fields (Arridge
1999).

A major drawback of the use of the RTE is the complex implementation within a numerical
setting and the large number of resulting equations that need to be solved. One specific
challenge is the use of an appropriate method for the incorporation of the angular dependence
of the problem. The discrete-ordinates (SN) method (Chandrasekhar 1950) is widely used
with several different finite difference approximations (Lathrop 1972) such as the diamond
difference scheme, the weighted diamond difference scheme, the centred difference scheme
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(Reed 1971) or the step-difference scheme (Case and Zweifel 1967). However, discrete-
ordinates methods require exactly N(N+2) equations to be solved where N is the number of
direction cosines.

Another common approach is the use of spherical harmonics (PN) expansion, whereby
the angular dependence can be described by a set of spherical harmonics (Case and Zweifel
1967). Advanced modelling and image reconstruction techniques using the PN approximation
have been demonstrated for the orders of N = 1, 3, 5 and 7 (Wright et al 2007). This study
showed through simulated data that the quality of reconstructed images for a small domain
can be improved for higher order N. In 3D problems, however, the PN approximation requires
a set of (N+1)2 coupled equations, where N is the number of Legendre polynomials. More
recently, the simplified spherical harmonics (SPN) method has been applied (Klose and Larsen
2006) which requires just (N+1)/2 equations.

The use of SPN methods has been demonstrated to give accurate solutions for small
geometries and in cases where the source/detector separation is small. Specifically, the
method has been shown to significantly improve the solution in domains with high absorption
and small geometries and is less computationally expensive (Klose and Larsen 2006).

This paper presents the advancement of using simplified spherical harmonics (SPN)
which has been previously reported for continuous-wave (CW) systems (Klose and Larsen
2006). Specifically, we present the development, implementation and validation of a
three-dimensional (3D) frequency-domain (FD) model, based on the SPN equations. It is
demonstrated that although the solution using the SPN method is asymptotic, the use of
higher order approximations provides a much more accurate solution, specifically near source
locations, which may be of importance when dealing with imaging of small volumes and
specifically in situations whereby changes near the sources are required to be determined in,
for example, bioluminescence imaging.

Through direct comparisons with Monte Carlo models, it is demonstrated that in such
cases as discussed above, SPN models where N >1 provide much more accurate results as
compared to the diffusion equation, i.e. N = 1.

2. Theory

2.1. Radiative transport equation

By treating light as photons, and thus ignoring any wave effects, the propagation of light in
tissue can be well described by the radiative transport equation:

ŝ · ∇I (r, ω, ŝ) +

(
μa + μs +

iω

c

)
I (r, ω, ŝ) = μs

∫
4π

f (ŝ · ŝ ′)I (r, ω, ŝ′) d2ŝ′ + q(r, ω, ŝ),

(1)

where I (r, ω, ŝ) is the radiance at point r at modulation frequency ω and in the direction ŝ.
μa and μs are the absorption and scattering coefficients respectively, and c is the speed of light
in the medium. The f (ŝ · ŝ′) term is the scattering phase function, which characterizes the
intensity of a beam which is scattered from the direction ŝ′ into the direction ŝ. The scattering
phase function most typically employed is the commonly used Henyey–Greenstein scattering
function (Welch and Van Gemert 1995, Klose et al 2002, Tarvainen et al 2005):

f (cos θ) = 1

4π

[
1 − g2

(1 + g2 − 2g cos θ)3/2

]
, (2)

where θ is the angle between the two directions ŝ and ŝ′, and g is the anisotropy factor which
is used to characterize the angular distribution of tissue scattering. The fluence at point r,
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modulation frequency ω and in the direction ŝ is defined by

φ(r, ω) =
∫

4π

I (r, ω, ŝ) dŝ. (3)

2.2. Simplified spherical harmonics approximation

The simplified spherical harmonics approximation has the potential to provide an increase in
accuracy over standard diffusion models in cases involving highly absorbing regions, which
was originally applied to nuclear reactor problems (Gelbard 1968). The initial derivation
involved taking the planar version of the spherical harmonics approximation to the RTE and
replacing the 1D derivatives with their 3D counterparts. Due to the weak theory of this
derivation, the SPN approximations were not widely accepted until the 1990s when similar
equations were found using an asymptotic analysis (Larsen et al 1996) and has only recently
been applied to optical imaging problems (Klose and Larsen 2006).

In this work, the SPN approximations have been implemented for 3D frequency-domain
measurements. The extension from the continuous-wave SPN equations (Klose and Larsen
2006) to frequency-domain equations involves the use of the complex-valued absorption
moments as defined in equation (5).

The coupled equations for N = 7 have been found to be

−∇.
1

3μa1
∇ϕ1 + μaϕ1 = Q +

2

3
μaϕ2 − 8

15
μaϕ3 +

16

35
μaϕ4 (4a)

−∇.
1

7μa3
∇ϕ2 +

(
4

9
μa +

5

9
μa2

)
ϕ2 = −2

3
Q +

2

3
μaϕ1 +

(
16

45
μa +

4

9
μa2

)
ϕ3

−
(

32

105
μa +

8

21
μa2

)
ϕ4 (4b)

−∇.
1

11μa5
∇ϕ3 +

(
64

225
μa +

16

45
μa2 +

9

25
μa4

)
ϕ3 = 8

15
Q − 8

15
μaϕ1

+

(
16

45
μa +

4

9
μa2

)
ϕ2 +

(
128

525
μa +

32

105
μa2 +

54

175
μa4

)
ϕ4 (4c)

−∇.
1

15μa7
∇ϕ4 +

(
256

1225
μa +

64

245
μa2 +

324

1225
μa4 +

13

49
μa6

)
ϕ4 = −16

35
Q +

16

35
μaϕ1

−
(

32

105
μa +

8

21
μa2

)
ϕ2 +

(
128

525
μa +

32

105
μa2 +

54

175
μa4

)
ϕ3 (4d)

where Q is the isotropic source term, ϕn is the composite moment of the fluence and μan is the
nth-order complex absorption coefficient given by

μan(x) = μt(x) +
iω

c
− μs(x)gn, (5)

where the total attenuation coefficient μt is given by the sum of the absorption and scattering
coefficients (μa + μs). The complex nature of the attenuation coefficient arises from the fact
that radiance will also vary due to the modulation frequency, with the effect of making the
absorption coefficient complex.

For convenience, the composite moments of the fluence are defined as

ϕ1 = φ0 + 2φ2 (6a)
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ϕ2 = 3φ2 + 4φ4 (6b)

ϕ3 = 5φ4 + 6φ6 (6c)

ϕ4 = 7φ6 (6d)

and the total fluence � is then given by

φ = ϕ1 − 2
3ϕ2 + 8

15ϕ3 − 16
35ϕ4. (7)

The SP1 approximation can then be found by setting φ6 = φ4 = φ2 = 0 and solving
equation (4a). The SP3 approximation can be found by solving equations (4a) and (4b)
with φ6 = φ4 = 0 and the SP5 approximation can be found by setting φ6 = 0 and solving
equations (4a)–(4c). It can therefore be seen that the SP1 case simplifies to the diffusion
equation.

2.3. Boundary conditions

Depending on the angle of incidence, photons attempting to cross the boundary, at r ∈ ∂	

(where 	 is the domain of interest), will either pass through at a refracted angle defined by
Snell’s law or will be reflected back into the domain. The probability of a photon being
reflected is given by

R(cos θ ′) =

⎧⎪⎨
⎪⎩

1

2

(
nm cos θ ′′ − n0 cos θ ′

nm cos θ ′′ + n0 cos θ ′

)2

+
1

2

(
nm cos θ ′ − n0 cos θ ′′

nm cos θ ′ + n0 cos θ ′′

)2

θ ′ < θc

1 θ ′ � θc,

(8)

where θ ′ is the internal angle, θ ′′ is the refracted angle and θ c is the critical angle, nm is the
refractive index within the tissue and n0 is the refractive index of air (n0 = 1). The boundary
conditions are therefore found to be
(

1

2
+ A1

)
ϕ1 +

(
1 + B1

3μa1

)
n · ϕ1 =

(
1

8
+ C1

)
ϕ2 +

(
D1

μa3

)
n · ϕ2 +

(
− 1

16
+ E1

)
ϕ3

+

(
F1

μa5

)
n · ϕ3 +

(
5

128
+ G1

)
ϕ4 +

(
H1

μa7

)
n · ϕ4 +

∫
	·n<0

S(	)2|	 · n| d	

(9a)
(

7

24
+ A2

)
ϕ2 +

(
1 + B2

7μa3

)
n · ϕ2 =

(
1

8
+ C2

)
ϕ1 +

(
D2

μa1

)
n · ϕ1 +

(
41

384
+ E2

)
ϕ3

+

(
F2

μa5

)
n · ϕ3 +

(
− 1

16
+ G2

)
ϕ4 +

(
H2

μa7

)
n · ϕ4

+
∫

	·n<0
S(	)(5|	 · n|3 − 3|	 · n|) d	 (9b)

(
407

1920
+ A3

)
ϕ3 +

(
1 + B3

11μa4

)
n · ϕ3 =

(
− 1

16
+ C3

)
ϕ1 +

(
D3

μa1

)
n · ϕ1 +

(
41

384
+ E3

)
ϕ2

+

(
F3

μa3

)
n · ϕ2 +

(
233

2560
+ G3

)
ϕ4 +

(
H3

μa7

)
n · ϕ4

+
∫

	·n<0
S(	)

(
63

4
|	 · n|5 − 35

2
|	 · n|3 +

15

4
|	 · n|

)
d	 (9c)
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3023

17 920
+ A4

)
ϕ4 +

(
1 + B4

15μa7

)
n · ϕ4 =

(
5

128
+ C4

)
ϕ1 +

(
D4

μa1

)
n · ϕ1 +

(
− 1

16
+ E4

)
ϕ2

+

(
F4

μa3

)
n · ϕ2 +

(
233

2560
+ G4

)
ϕ3 +

(
H4

μa5

)
n · ϕ3

+
∫

	·n<0
S(	)

(
429

8
|	 · n|7 − 693

8
|	 · n|5 +

315

8
|	 · n|3 − 35

8|	 · n|
)

d	.

(9d)

The coefficients An–Hn used in these equations are related to various orders of reflectivity
and can be calculated for different values of refractive index. Again, the only extension from
continuous-wave to frequency-domain boundary conditions is the use of the complex-valued
absorption moments (Klose and Larsen 2006).

2.4. Finite element implementation

The finite element discretization of a domain 	 can be obtained by subdividing the domain
into D elements joined at V vertex nodes. In finite element formalism, �(r) is approximated
by the piecewise continuous polynomial function �h(r,w) = ∑V

i �iui(r)	
h, where 	h is a

finite-dimensional subspace spanned by basis functions {ui(r); i = 1, . . . , V } chosen to have
limited support. The problem of solving for �h becomes one of sparse matrix inversion: in
this work, we use bi-conjugate gradients stabilized solver. Equations (4a)–(4d) can then be
represented using matrices:

(K1 + C + F1)ϕ1 = Q + (C1 + G1)ϕ2 − (C2 + H1)ϕ3 + (C3 + I1)ϕ4 (10a)

(K3 + C4 + C5 + F2)ϕ2 = − 2
3Q + (C1 + G2)ϕ1 + (C6 + C7 + H2)ϕ3 − (C8 + C9 + I2)ϕ4

(10b)

(K5 + C10 + C11 + C12 + F3)ϕ3 = 8
15Q − (C2 + G3)ϕ1 + (C6 + C7 + H3)ϕ2

+ (C13 + C14 + C15 + I3)ϕ4 (10c)

(K7 + C16 + C17 + C18 + C19 + F4)ϕ4 = − 16
35Q + (C3 + G4)ϕ1 − (C8 + C9 + H4)ϕ2

+ (C13 + C14 + C15 + I4)ϕ3 (10d)

where the C matrices represent the various orders and fractions of μan, the F, G, H and I
matrices represent the boundary terms and the K matrices represent the diffusion terms with
the form 1

αμan
, where α = 3, 7, 11 or 15.

Equations (10a)–(10d) can then be rearranged into a single matrix equation of the form

⎡
⎢⎢⎢⎢⎣

M11 · · · · · · M14

...
. . .

. . .
...

...
. . .

. . .
...

M41 · · · · · · M44

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

ϕ1

ϕ2

ϕ3

ϕ4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

Q1

− 2
3Q2

8
15Q3

− 16
35Q4

⎤
⎥⎥⎥⎥⎦ (11)

where the Mij terms are as defined in the appendix, and represent combinations of system
matrices in equations (10a)–(10d). This allows the solution for ϕ1, ϕ2, ϕ3 and ϕ4 to be found
simultaneously using just one matrix inversion.
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(a) (b)

Figure 1. Pattern of non-zeros in the MASS matrix equation (13) (a) before and (b) after reordering.
The x- and y-axes correspond to the length of the square matrix in equation 11, which is 169 544
(total number of nodes in mesh × 4).

2.5. Optimization through matrix reordering

The cost associated with solving sparse matrix problems depends not only on their sparsity
but also on the distribution of the non-zero elements within that matrix. To minimize the
fill-in phenomenon due to the decomposition of the Mass matrix into equation (11) (left-hand
side), the matrix is reordered (optimized) using symmetric approximate minimum degree
permutation (AMD) that produces a matrix with a sparser Cholesky factor as compared to
the original matrix. Typical distributions of the non-zero elements in the Mass matrix before
and after reordering are shown in figure 1, using MATLAB’s implementation of functions for
sparse matrix operations (symamd) (Amestoy et al 2004).

2.6. Monte Carlo modelling

A Monte Carlo model to simulate propagation of light in a semi-infinite turbid medium was
extended to photon propagation in a stratified medium as described previously (Wang et al
1995, Vishwanath et al 2002). Briefly, the turbid medium was modelled as having layers of
finite thickness (along the z-axis) with specified transport coefficients and refractive indices
in each layer. Photons were incident normally at the top face of the turbid medium. For
every scattering event where the calculated step size (along a particular direction) caused a
photon to cross a boundary, the photon was first propagated to the point where its trajectory
intersected the boundary via a shortened step-size. The angle of incidence with respect to the
±z-axis (depending on the direction of photon travel) was computed and used to determine if
the photon suffered total internal reflection (from Snell’s law). If the photon was internally
reflected, then the z-component of the photon’s travel direction was reversed and the photon
completed the remainder of the step in the same layer, otherwise the reflection coefficient
from Fresnel’s equations was computed and compared against a uniformly generated random
number. For every sampling of the random number that was less than the reflection coefficient,
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Table 1. The computation times of the SPN models using an FEM mesh consisting of 42 386 nodes
forming 235 869 tetrahedral elements. The models were run on a 3.0 GHz, 64 bit Linux system
with 8 GB of physical memory using Matlab R2007b. The SP5 and SP7 models required the use
of swap space and as such the computation time was considerably slower than expected.

Computation
time (min)

SP1 4.2
SP3 12.6
SP5 31.7
SP7 69.7
Monte Carlo 28

the photon underwent total internal reflection; otherwise it was transmitted to the next layer
(or escaped from the domain). On transmission into a different layer the final spatial location
of the photon was calculated by propagating the photon by a distance that was adjusted in
length (to account for the difference in transport coefficients between the two layers) and
its direction corrected to consider refraction. All photons emanating from the top layer of
the turbid medium were spatially and temporally binned to calculate the reflectance from a
turbid medium. Photons were collected at set radial distances from the source, assuming a
numerical aperture of 1, and were then normalized with respect to the collecting area to give
a point-like measurement. The temporal data were recorded at a resolution of 10 ns. The
resulting temporal data were then Fourier transformed to give frequency-domain estimates of
the amplitude and phase shift as a function of distance, in order to match the type of data used
in our work.

3. Methods and results

In the following sections, we compare results from the developed SPN model (N = 1, 3, 5
and 7) and the MC model for a simple 3D slab of either homogenous or layered optical
properties. For the MC results, the number of simulated photons was 1 × 106, with a total
execution time of approximately 20–40 min (table 1). All calculations were performed on a
dual core 3.0 GHz, 64 bit Linux system with 8 GB physical memory.

The validity of the diffusion approximation, and hence the SP1 model in large medium
problems and in cases where scattering dominates absorption, has been previously shown
demonstrating its validity by use of phantom data (Dehghani et al 2003a) as well as Monte
Carlo data (Dehghani et al 2003a). The work presented here, therefore, concentrated on small
volume domains and in cases of strong absorption, whereby the diffusion approximation is
less valid.

The model domain used was a 3D slab of width and length of 40 mm (x-coordinates) with
a thickness of 20 mm (y-coordinates) and a depth of 30 mm (z-coordinates) (figure 2). The
source was placed at the centre of the top most surface boundary and boundary reflectance
measurements were made at 1 mm distances from 3 to 10 mm away from the source. The source
was modelled as a point source on the surface of the external boundary to most appropriately
match the MC model, which used a collimated source located on the surface. The FEM
mesh used in this study contained 42 386 nodes corresponding to 235 869 linear tetrahedral
elements. The resolution of the mesh was increased in the areas surrounding the source in
order to increase the numerical accuracy of the solution whilst minimizing the computational
resources required. Table 1 shows the computational time and memory requirements to solve
the various SPN models as well as the MC.
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(a)

(b)

Figure 2. 3D mesh used for the calculation of data using the SPN models: (a) 3D view of the
surface nodes and (b) 2D representation of the top surface. The circle represents the location of
the source and the cross represents the location of the detectors.

Three individual cases were considered using both MC and SPN models. In the first case,
a homogenous medium with optical properties of μa = 0.001 mm−1, μs = 2.0 mm−1, g = 0.5
and nm = 1.37 and the solutions to SP1, SP3, SP5 and SP7 were calculated using the methods
outlined in section 2, with the computation times as shown in table 1. The calculated amplitude
and phase of the reflectance boundary data, from the 3D model (figure 2) and the semi-infinite
MC model, are shown in figure 3. It can be seen that for both the amplitude and phase of the
boundary data, the SP7 approximation provides the closest match with the MC data, whereas
the SP1 approximation (the diffusion approximation) provides the worst match. The error
between the SPN method and MC data is also seen to reduce, specifically for the phase, at
measurement points furthest away from the source as the number of spherical moments is
increased. The calculated amplitude data for SP1 near the source appear to underestimate the
solution as compared to the MC, whereas the higher approximations have overestimated
the amplitude. The calculated 3D fluence from SP7 and SP1 was also used to calculate
the percentage error map (error = 100 × (�SP1−�SP7)/�SP7), with the 2D cross-section at
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(a) (b)

(c)

Figure 3. The calculated boundary data (a) log amplitude and (b) phase for SPN and Monte Carlo
model for uniform optical properties of μa = 0.001 mm−1, μs = 2.0 mm−1, g = 0.5 and nm =
1.37; (c) is the cross-sectional percentage error between SP7 and SP1 for the calculated fluence at
y = 0 mm corresponding to the plane at which the source is placed.

y = 0 mm shown in figure 3(c). As shown, the largest errors are seen near the source and
detectors with errors as high as 60%.

Using a second homogenous model with optical properties of μa = 0.01 mm−1, μs =
2.0 mm−1, g = 0.5 and nm = 1.37 the boundary measurements and internal fluence were also
calculated and compared (figure 4). As in the previous case, SP7 provides the best match for
both amplitude and phase data, as compared to MC; however, the magnitude of the difference
appears much greater due to the increased absorption. As shown in figure 4(c), errors of up to
60% are again seen between SP1 and SP7, specifically near the source.

In order to investigate the effects of a layered heterogeneous model of varied optical
properties, the same 3D geometry as in previous cases was used, but containing three layers,
as shown in figure 5. In this case, the model represents a three-layered case, whereby each
layer has a thickness of 10 mm with the middle layer having a much stronger absorption
(contrast of 200 in absorption) and scatter (contrast of 2 in scatter and increased anisotropic
factor, g) as compared to the top and bottom layers. The results from both the SPN and MC
solution are shown in figure 6. The SP5 and SP7 models provide the best match with MC
for both the amplitude and phase. The cross-section of the percentage error between SP1 and
SP7, figure 6(c), again shows the largest error near the sources as well as the regions with
and beyond the strong absorbing layer (layer 2). In this case, errors of up to 85% are seen
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(a) (b)

(c)

Figure 4. Same as figure 3, but for uniform optical properties of μa = 0.01 mm−1, μs = 2.0 mm−1,
g = 0.5 and nm = 1.37.

Figure 5. Schematic of the 3D layered model. Layers 1 and 3 have optical properties of μa =
0.001 mm−1, μs = 1.0 mm−1, g = 0 and nm = 1.37 and layer 2 has optical properties of μa =
0.2 mm−1, μs = 2.0 mm−1, g = 0.5 and nm = 1.37. The arrow indicates the location of the point
source on the boundary.
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(a) (b)

(c)

Figure 6. Same as figure 3, but for the layered model as shown in figure 5.

with layer 2, indicating that the solution of SP1 to be dramatically different to that of SP5

and SP7.

4. Discussion

The calculated boundary data using MC and developed 3D frequency-domain modified
simplified spherical harmonics expansion for three cases have been compared. In all the
results presented, the data have not been scaled, nor any offset added, therefore providing the
best means of comparison between different models and methods. In the first case, whereby
the scattering properties were much higher than absorption (μa = 0.001 mm−1, μs = 2.0 mm−1,
g = 0.5 and nm = 1.37), figure 3, it is seen that the higher order SPN models (N >1) provide a
much more accurate solution as compared with MC. Specifically, in the calculated amplitude
data, it is seen that the solution using the SPN models for N = 3, 5 and 7 provides the
same degree of accuracy, whereas the diffusion approximation (N = 1) underestimates the
magnitude of the calculated data. The errors seen in the phase, figure 3(b), are much greater
with N = 7 providing the closest match as compared with MC. The magnitude of error seen
with the calculated phase data reduces for measurements taken further away from the source,
indicating that as the fluence becomes diffuse, the solutions converge, as expected in the
diffusion approximation. In order to obtain a more quantitative analysis of the degree of error
between N = 1 and N = 7, the percentage error between the total fluence calculated is shown
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for a cross-section of the 3D model at y = 0 mm (directly under the source) (figure 3(c)).
It is seen that the largest error (as large as 60%) is seen near the source, indicating that the
suitability of the SPN method lies within regions of close proximity to the source.

In the second case, whereby the absorbing properties were increased (μa = 0.01 mm−1,
μs = 2.0 mm−1, g = 0.5 and nm = 1.37), figure 4, the same trend of errors is seen as presented
in the first case. However, the magnitude of differences between the phase data calculated
using SPN and MC is much higher, indicating the suitability of the SPN method in higher
absorption mediums. In this case again, the solution using N = 1 provides the least accurate
solution as compared to MC. It was noticed that the phase data in figure 4 seemed to be poorer
at greater distances from the source. This is most likely due to errors in the Monte Carlo
model due to insufficient photons arriving at these detectors.

In order to evaluate the effect of layered models with much higher absorption, data using
a layered MC and SPN model are shown in figure 6. As with the previous cases, the calculated
data using N = 1 provide the least accurate solution as compared to MC. Figure 6(c) shows the
calculated error between the total fluence as obtained using N = 1 and N = 7. It is seen that the
magnitude of error is largest not only near the source but also at the interface of two boundaries
whereby the absorption coefficient increases. This is of importance given that some biological
tissues, such as the liver which has a much higher blood content, will have a much greater
absorption and appropriate modelling of such a situation is of paramount importance in small
animal imaging. Similar results showing the effect of increased absorption within a medium
have been shown in 2D (Klose and Larsen 2006).

It is interesting, and important to point out, that due to the asymptotic nature of the problem,
no single order (N) will provide the most accurate solution. However, it is demonstrated here
that the use of higher order approximations (N >1) provides a much more accurate solution,
specifically near source locations, which may be of importance when dealing with imaging of
small volumes. Whilst it was seen that the SPN data matched the MC data more closely than
the diffusion data, they did not match perfectly. In order to make a like for like comparison,
the data in all three cases have been shown without scaling or offsetting and as such, small
differences between the two independent methods are unsurprising.

The amplitude and phase data in all three cases were studied only for the first 10 mm away
from the source only. This has led to errors between the SPN>1 and SP1 data in cases even when
scattering dominates over absorption since the light distribution is still forwardly biased near
the source. As stated earlier, the validity of the diffusion approximation has been previously
demonstrated for larger source/detector separation using both phantom data (Dehghani
et al 2003a) and Monte Carlo data (Dehghani et al 2003a), and this work has concentrated in
situation where the diffusion approximation is known to be inaccurate.

The timings for the SPN and Monte Carlo models are displayed in table 1. It can be seen
that the run-time of the Monte Carlo model was just seven times that of the SP1 model and was
in fact quicker than that of the SP5 and SP7 models which was unexpected. Due to the very
large number of nodes in the FEM mesh, however, the Mass matrices were correspondingly
large and their inversions required large amounts of memory. In the SP5 and SP7 cases,
the memory requirements exceeded the physical memory available and therefore had to use
‘swap space’ which drastically increased the computation times. Also, the Monte Carlo data
were obtained based on the paths of just 106 photons, a relatively small number of photons
for Monte Carlo studies. A more quantitative study may use over ten times this number of
photons leading to significantly longer computation times. In studies using meshes of lower
resolutions where the use of swap space was not required, it was found that the SP5 and SP7

models took approximately 5td and 8td respectively where td is the computation time of the
SP1 model.
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5. Conclusions

It is well known that the accuracy of the diffusion approximation is limited in regions of
strong absorption and within regions before the NIR light becomes diffuse (i.e. near source
locations). In such cases higher ordered approximations, such as the PN and SN methods, are
required and whilst these methods have already been applied to tissue optics with promising
results (Boas et al 1995, Aydin et al 2002), they both introduce a prohibitively large number
of unknowns making them computationally expensive to solve. The SPN approximation has
the advantage of providing an increase in accuracy over the diffusion approximation whilst
requiring fewer unknowns.

In this study, a three-dimensional frequency-domain light transport model based on the
simplified spherical harmonics approximation has been developed. The model was used to
calculate data for three individual cases with the results being compared to data obtained using
a Monte Carlo model. In each of the three cases presented, the SPN approximations with
N >1 were shown to provide an increase in accuracy over the SP1 approximation in both the
phase and amplitude of the boundary data. Comparisons of the fluence data from the SP1 and
SP7 models showed that there is a significant difference in the regions surrounding the source
where the light distribution is forwardly biased. The final case highlighted the limitations of
the diffusion approximation in handling regions of strong absorption. Whilst the fluence data
showed good agreement in the initial diffuse region, major differences of up to 85% were
evident when the absorption was increased.

It was observed that the most accurate solution to a given problem was not necessarily
provided by the highest ordered approximation, which has also been noted in previous studies
into SPN methods (Klose and Larsen 2006). This is due to the fact that unlike other methods
which converge on the RTE solution as N → ∞, the SPN approximation only asymptotically
approaches the RTE solution as N increases.

The effect of anisotropy has been previously demonstrated to be significant in highly
absorbing media and must be modelled accurately using techniques presented here (Klose and
Larsen 2006). The impact of modelling anisotropic scattering on image reconstruction is a
subject of ongoing studies.

The SPN methods would be of particular importance in imaging systems that utilize
wavelengths approaching the visible region where absorption due to both oxygenized and
deoxygenized haemoglobin is strong. As the SPN methods require fewer equations, they are a
more favourable forward model for image reconstruction.

The Monte Carlo model used in this study only calculated intensity data at a series
of detectors located on the surface meaning that comparisons of internal fluence were not
possible. Modifications to the Monte Carlo model to include the recording of internal fluence
data are left for future work.
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Appendix

The individual system matrices of the FEM model, as represented by equations 10(a)–(d) can
be represented by
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K1ij
=

∫
	

1

3μa1
(r)∇ui(r).∇uj (r) dnr, (A.1)

C
ij

=
∫

	

(
μa(r) +

iω

c(r)

)
ui(r)uj (r) dnr, (A.2)

C2ij
=

∫
	

(
2

3
μa(r) +

iω

c(r)

)
ui(r)uj (r) dnr, (A.3)

F1ij
=

∮
∂	

ui(r)uj (r) dn−1r, (A.4)

and so on.
These system matrices can then be re-arranged for each composite moments of the fluence

such that

M11 = K1 + C + F1, (A.5)

M12 = −(C1 + G1), (A.6)

M13 = C2 + H1, (A.7)

M14 = −(C3 + I1), (A.8)

M21 = K3 + C4 + C5 + F2, (A.9)

M22 = −(C1 + G2), (A.10)

M23 = −(C6 + C7 + H2), (A.11)

M24 = C8 + C9 + I2, (A.12)

M31 = K5 + C10 + C11 + C12 + F3, (A.13)

M32 = C2 + G3, (A.14)

M33 = −(C6 + C7 + H3), (A.15)

M34 = −(C13 + C14 + C15 + I3), (A.16)

M41 = K7 + C16 + C17 + C18 + C19 + F4, (A.17)

M42 = −(C3 + G4), (A.18)

M43 = C8 + C9 + H4, (A.19)

M44 = −(C13 + C14 + C15 + I4). (A.20)
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