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Abstract: In diffuse reflectance spectroscopy, the retrieval of the optical properties of a target
requires the inversion of a measured reflectance spectrum. This is typically achieved through the
use of forward models such as diffusion theory or Monte Carlo simulations, which are iteratively
applied to optimize the solution for the optical parameters. In this paper, we propose a novel
neural network-based approach for solving this inverse problem, and validate its performance
using experimentally measured diffuse reflectance data from a previously reported phantom study.
Our inverse model was developed from a neural network forward model that was pre-trained with
data from Monte Carlo simulations. The neural network forward model then creates a lookup
table to invert the diffuse reflectance to the optical coefficients. We describe the construction
of the neural network-based inverse model and test its ability to accurately retrieve optical
properties from experimentally acquired diffuse reflectance data in liquid optical phantoms. Our
results indicate that the developed neural network-based model achieves comparable accuracy
to traditional Monte Carlo-based inverse model while offering improved speed and flexibility,
potentially providing an alternative for developing faster clinical diagnosis tools. This study
highlights the potential of neural networks in solving inverse problems in diffuse reflectance
spectroscopy.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Diffuse reflectance spectroscopy (DRS) is a well-developed and widely-used optical spectroscopic
technique for non-invasive sensing of tissue function and physiology. DRS measures the amount
of light that is diffusely reflected from the tissue surface after travelling within the medium for a
path-length of several mm-cm from the optical source to a detection fiber. When the incident
light is a steady-state, broadband source, DRS captures the spectrally-resolved diffusely reflected
light spectrum measured at a specific source-detector geometry. The measured quantity, diffuse
reflectance, is a function of the absorption coefficient µa(λ), the scattering coefficient µs(λ) and
the anisotropy factor g, in which when far from the light source, µs and g are coupled together as
the reduced scattering coefficient µ′s = µs(1 − g). By measuring the diffuse reflectance spectrum,
we can inversely estimate the absorption, µa(λ), and the scattering coefficient, µ(λ) or the reduced
scattering coefficient µ′s(λ) of the tissue, which in turn can be used to infer the tissue structure and
physiology composition [1]. This process usually requires both a forward model, that provides
an estimation for the measured reflectance given the optical coefficients and source-detector
geometry, and a corresponding inverse model, that can iteratively apply the forward model to
fit the measured reflectance measured by the experimental system [1,2]. Then an optimization
algorithm is usually employed to find the optimal solution of the optical parameters.

In DRS, each measurement (from a channel) provides a diffuse reflectance spectrum, (R(λ)),
which needs to be inverted to extract µa(λ) and µ′s(λ). Traditionally both analytical and numerical
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approaches have been used for inversions [3]. A widely used analytical approach is based on
photon diffusion theory which is an approximation of the more exact radiative transport equation
[3]. Numerical methods include methods such as Finite Element Method (FEM) [4] or Finite
Difference Method (FDM) [5], which discretize the problem domain and solve the resulting
system of equations. However, these methods could suffer ill-posedness, limited accuracy due to
precision of grid and expensive computational cost. On the the other hand, the iterative Monte
Carlo (MC) approach to model diffuse reflectance in turbid media are also commonly used [3,6].
However, since forward calculations based on MC simulations are computationally expensive,
they are typically used to generate suitable lookup tables (LUTs) for practical use as inverse
solvers [7–10]. In the MC-based LUT method (MCLUT), MC simulated diffuse reflectance (at
the source-detector geometry of interest) are cast into a finite grid of absorption and scattering
coefficients. Since most commonly the tissue is modeled as being a semi-infinite, homogeneous
medium and thus the diffuse reflectance is sought as a function of only two parameters: the optical
absorption coefficient and the reduced scattering coefficient, µ′s. Note that diffuse reflectance is
indeed dependent on three of µa, µs, g, for complexity regarding dimensionality and simplicity
of the experimental setups, it is typical to just infer absorption µa and the reduced scattering
coefficient µ′s instead of decoupling µs and g. This is especially of minimal accuracy sacrifice
when source-detector distance is further than mean free path (MFP), according to diffusion
approximation theory [3].

With the advent of machine learning (ML), studies have been carried out to solve problems in
biophotonics with ML models. These techniques leverage the inherent capacity of ML models
to learn complex patterns and relationships from large datasets, enabling accurate predictions
and analysis of optical properties. In the aspect of measuring technique, compared to ours, the
existing ML-based models deal with different DRS techniques, such as frequency domain DRS
(FD-DRS) that estimates optical properties from measuring amplitude and phase shift of the
diffusely reflected light [11–14], or spatially resolved DRS [15–17], or subdiffusive reflectance in
which measurements are made closer than MFP and therefore more optical properties are involved
(first similarity parameter γ) [17,18]. The generic DRS, which is the technique we work with,
compared to FD-DRS, requires less expensive devices, less complicated experimental setups,
and the data interpretation is a lot easier due to the simpler mechanism. There are also some
ML-based inverse models that also deal with the generic DRS. However, many of them directly
estimate physiological parameters from measured diffuse reflectance [19–21]. Some others lack
validation on experimental DRS data or real-world data [16,22]. For practical applications,
validation on lab-measured data and real-world data is necessary.

Our study firstly explores the utilization of neural networks to develop faster surrogate forward
models for generic DRS. Further, we propose to replace the MC simulations in the traditional
MCLUT method with the trained surrogate forward model, to construct a neural network-based
inverse model that extracts optical parameters (µa, µ′s) from DRS spectra. We intend to develop
an ML-based inverse model that’s able to estimate optical properties from diffuse reflectance for
broader applications. By only inferring optical properties, the solution can be incorporated with
property profile of any tissue of interest to further estimate physiology properties. Additionally,
this NN-based model allows exploration to separate µ′s into µs and g, especially near the light
source, which is the topic of our ongoing research.

To build the inverse model, we first train a neural network forward model (NNFM) using
diffuse reflectance data obtained from MC simulations conducted in a semi-infinite homogeneous
geometry. The NNFM learns the mapping between input optical properties and corresponding
diffuse reflectance values for different source-detector separations. Subsequently, the trained
NNFM is employed to generate a lookup table of diffuse reflectance, as a comparison to traditional
MC lookup tables. The inverse model is validated on two experimental phantom datasets and
compared with the traditional MCLUT method.Our results demonstrate that the NN-based inverse



Research Article Vol. 14, No. 9 / 1 Sep 2023 / Biomedical Optics Express 4727

model achieves comparable accuracy to the gold-standard MCLUT method while being faster
and more versatile.

In this paper, we first provide comprehensive details on the development and training of the
NNFM model, evaluate its performance within and beyond the training data range and varying
sizes of training data. Then we integrate the NNFM with the LUT approach, positioning it as the
forward model. The accuracy of this NN-based inverse model is compared with the conventional
MCLUT in extracting wavelength-dependent optical properties from experimentally measured
DRS data. Furthermore, we discuss the errors associated with the NN-based inverse model and
highlight its flexibility in handling different scenarios.

2. Methods

2.1. Forward model

2.1.1. Monte Carlo data

Monte Carlo (MC) has been the standard forward method in diffuse reflectance spectroscopy
because of its accuracy and versatility. The MC model simulates the stochastic propagation of
photons in a medium, initially proposed and described in [6]. The program we have worked
with is a steady-state MC program for multi-layered tissues (MCML) initially developed by
Lihong Wang and Steven Jacques [23]. This program offers flexibility and ease of use, allowing
users to specify various parameters such as photon energy (wavelength), optical properties of
the medium including absorption coefficient (µa), scattering coefficient (µs), and anisotropy
factor (g), which are related to the probability of photon getting absorbed, scattered and the
direction after scattering. Additionally, the refractive indices (n) of the fiber, target medium, and
underlying medium can be specified. The program also incorporates geometrical information,
including source-detector distances (SDDs), medium thickness, and grid structure.

5000 MC simulations were run to obtain the data for training the neural network. The optical
parameters µa, µs, g were randomly sampled using Latin hyper-cube method [24] to better fill the
sampling space. The ranges of the sampling space of the optical parameters were chosen based
on typical phantom data: µa was sampled within (0, 10) cm−1, µs in (100, 350) cm−1 and g in
(0.8, 1.0) which resulted in µ′s ranging between 20-350 cm−1. Fig. 1(a) shows the sample points
of µa vs. µs. The data has been uploaded as Data File 1 in supplemental material.

According to the diffusion approximation, when the SDD is larger than a mean free path given
by MFP = 1/(µa + µ

′
s), the dependency of diffuse reflectance R(µa, µs, g) on optical parameters is

approximately reduced to R(µa, µ′s) [3]. A histogram distribution of the MFP in the training data
used is shown in Fig. 1(b). In the MC simulations used to generate training data, we choose 11
SDDs from 0.14 cm to 0.34 cm in 0.02 cm increments to simulate the diffuse reflectance. From
Fig. 1(b), we observe that a large fraction of our simulations should have R depending on (µa, µ′s)
because MFP ≪ SDD which gives more credibility to solving for µ′s instead of each of µs, g.

2.1.2. Neural network forward model (NNFM)

The MC data is then used to train a neural network forward model (NNFM) that learns the
mapping from optical parameters (µa, µs, g) to diffuse reflectance R. 90% of the MC data (4500
instances) were used for training and 10% (500 instances) were used for testing the trained model.
The NNFM takes the optical parameters (µa, µs, g) as the input and predicts the diffuse reflectance
from the 11 SDDs; that is, the NN has 3 inputs and 11 outputs.

Alternatives to the current ML method were also explored. We employed a user-friendly neural
network called DJINN [25] that automatically determines optimal hyperparameters, of which the
performance can be found in our previous work [26]. We also examined the accuracy of a couple
of basic simple machine learning models, for example, a nonlinear regression model without
hidden layers and a simple gradient boosting regressor, whose performance illustrations have

https://doi.org/10.6084/m9.figshare.23500881
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Fig. 1. (a): The 5000 sample points of µa, µs in the MC simulations. Points are sampled
using Latin hyper-cube method to fill up the space. The red dashed lines indicate where we
truncated the data for the extrapolation tests that are discussed in Section 3.1.2 (Data File
1). (b): The histogram distribution of MFP of our sample points. In our MC simulations
the shortest source detector separation distance was 0.14 cm so that for the vast majority of
cases simulated MFP ≪ SDD (Data File 1).

been included as Visualization 3 and Visualization 4 in supplemental material. These alternative
approaches were not able to fit the forward problem as well as the deep fully-connected neural
networks considered in this work.

With a fully-connected neural network to fit the forward MC calculations, through a series of
adjustments based on the ideas of parsimony and robustness, we fine-tuned and cross-validated
the network architecture [27]. Ultimately, our model consists of four fully-connected hidden
layers, incorporating 10, 30, 80, and 50 neurons each, resulting in a total of 7461 trainable
parameters. The architecture of the Neural Network Forward Model (NNFM) is depicted in
Fig. 2.

The output data are scaled into [0, 1] as diffuse reflectance over the 11 SDDs vary significantly
from each other. Rectifier activation function (ReLU) [28] was applied in all layers except that
sigmoid was applied to the output layer to match the scale of the output values. Mean squared
error (MSE) was used to optimize the weights in the neural network. Earlier study comparing the
time efficiency of the NNFM to Monte Carlo was showed in our paper [26] and more details are
given in the discussion section 4.

2.2. Neural network-based inverse model

The typically-used MC-based inverse model generates its LUT over a grid of µa, µ′s and assumes
g to be a constant. At each point of (µa, µ′s), a Monte Carlo simulation is performed to calculate
the diffuse reflectance. In our approach, the NNFM generates the LUT instead. The NNFM
takes in values for all grid points of (µa, µ′s) simultaneously and produces predictions for diffuse
reflectance across the entire parameter space. To maintain consistency with the legacy MC-based
inverse model, we assume a constant value of g = 0.9.

2.2.1. Lookup table

Compared to traditional MC-based inverse model, the trained NNFM takes the place of MC
simulations for generating the LUT. The grid of optical coefficients used in the NN-based inverse
model was kept identical to the previously used MC-based inverse model in [29]. 82 points for
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Fig. 2. Structure of the neural network forward model (NNFM). The 4 fully connected
hidden layers have 10, 30, 80, and 50 neurons, respectively.

µa were distributed between 0 an 200 cm−1 and 66 points of µ′s between 0.1-150 cm−1. The
anisotropy factor g was set to be fixed at 0.9. For any given inputs of of µa, µs, and g, the trained
NNFM provided the predicted diffuse reflectance R at all points of the LUT grid to generate the
table.

2.2.2. Solving the inverse problem

For any measured diffuse reflectance data, an initial guess for µa, µ′s is chosen. The squared-error
between the measured spectrum of diffuse reflectance RM(λi) and the values from the the LUT,
RLUT (λi), i = 1 · · ·N corresponding to the initial guess in the table µa, µ′s is calculated. The
squared-error is given by

E =
N∑︂

i=1
[RLUT(λi) − RM(λi)]

2. (1)

where λi, i = 1 . . .N are the chosen wavelengths for the measured spectrum RM(λ). Then, the
Levenberg–Marquardt least-squares criterion is employed to find the optimal solution for optical
parameters. The guess for µa, µ′s is updated with by stepping between grid points in the LUT
until spectra of µa, µ′s are found that minimizes the error E.

2.2.3. Experimental phantoms for validation

We validated the performance of our NN-based inverse model using DRS data from two previously
reported experimental data sets [29].

The DRS system consists of a light source using a tungsten halogen lamp (HL2000-HP,
OceanOptics, Dunedin, FL), detectors from a charge-coupled device (CCD) array-based spec-
trometer (USB4000, OceanOptics, Dunedin, FL) and fiber-optics probes (SMA-terminated
fiber-optic probes) that are connected to both of the light source and the detectors. A picture of
the DRS system can be found in Fig. 1 in the paper [29]. Before performing a measurement, any
other light in the environment is turned off. When measuring, the lights source illuminates the
target phantom through one of the probes, then the other probes receive the diffused light on the
surface of the phantom and transfer it to the spectrometer. The spectrometer then analyzes the
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diffused light to give a spectrum of light intensity over wavelengths. To eliminate noise from the
light source itself, the environment and the device, two strategies are taken: 1) The light source
was pre-warmed in advance and is kept on during the whole set of measurements. This approach
helps stabilize the light source output and mitigate fluctuations. 2) A reference spectrum obtained
from measuring a reference medium, represented by a white puck, was employed as a scaling
spectrum. This reference spectrum is used to calibrate the raw DRS data acquired from the
phantoms, effectively reducing noise and enhancing the accuracy of the measurements.

The liquid phantoms were prepared by mixing known volumes of monodisperse polystyrene
microsphere suspension as scatterer and hemoglobin powder dissolved in water as absorber,
characterized by an optical absorption spectrophotometer (Cary 300, Varian Inc, Walnut Creek,
CA). The liquid phantoms tested in this report were prepared following protocols that were
established by previous studies [9,10]. A prepared phantom’s optical absorption and scattering
data were obtained by measuring the absorption of the hemoglobin solution in a spectrophotometer
and using Mie theory to estimate its scattering [10]. Here, we used two phantom data sets. The
first data set was obtained in 12 liquid phantoms that were prepared by serial additions of small
volumes of the absorber to an initial optical phantom of known µ′s and µa, thus these phantoms
had nearly identical scattering but had increasing absorption. The second data set contained 11
phantoms which were prepared by serial additions of the polystyrene microspheres to an initial
phantom and thus had nearly constant µa but increasing µ′s. For phantom set 1, the expected
absorption coefficient was calculated to be between 10−4 to 3.5 cm−1 while the µ′s varied between
from 150 to 260 cm−1 for the wavelength range 450-650 nm. For the second phantom set, the µa
varied between 10−4 and 1.6 cm−1 while the µ′s ranged between 100 and 350 cm−1. For all these
phantoms, g varies between 0.915 and 0.935.

Note that while the reduced scattering coefficient of some of the phantoms may seem relatively
high among biological tissues commonly seen, various studies have reported a wide range of
scattering coefficients, with tissues such as white matter and skin epidermal layers demonstrating
notably high values [30]. We intend to evaluate the NN-based inverse model across a spectral
region spanning from the visible to near-infrared (NIR) region across a variety of tissue sites
including the skin layers and brain.

Before solving the inverse problem for the phantoms, calibration of the measured diffuse
reflectance spectra needs to be performed. This was done by choosing one phantom in the data
set as the reference for the other phantoms. The raw measured diffuse reflectance spectrum of
each phantom was divided by the spectrum of the reference phantom. This calibration process is
called reconstruction, and different reconstructions result in different spectra and solutions for
the optical parameters. In other words, for phantom set 1, there were 11 reconstructions for each
phantom because there were 12 different reference phantoms in total. For phantom set 2, there
were 10 different reconstructions for each phantom as there were 11 phantoms.

3. Results

3.1. Performance of NNFM

The performance of the converged NNFM is presented in Fig. 3. We use the normalized mean
absolute error (NMAE), which is calculated as the mean absolute error (MAE) between the true
data y and the predicted value ŷ, divided by the mean value of |y| over all instances in the data:

NMAE =
MAE(y, ŷ)
mean(|y|) (2)

where N is the number of instances in the data, y is true data and ŷ is the predicted value. The
reason of using NMAE is because relative error is misleading due to the presence of very small
values in diffuse reflectance, especially at large SDDs [26].
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Fig. 3. Predictions of diffuse reflectance as estimated by NNFM versus the values compute
via MC. The black solid line represents perfect fit where RMC = RNNFM. The dots are
predictions for the test data set. The color of the points indicates the SDD as illustrated in
the color bar. For example, blue dots are predictions for diffuse reflectance at 0.16 cm, and
red dots are predictions for data at 0.34 cm. Note that values at each of the source-detector
distances are individually scaled into [0, 1] so as to be shown in the same figure. The overall
NMAE of all predictions is 0.018. Performance of using simpler ML models can be found
in supplemental material Visualization 3 and Visualization 4, which show less accurate
predictions.

These results demonstrate that the NNFM is capable of reproducing results consistent with the
MC calculation over a range of diffuse reflectance and SDDs.

3.1.1. Data size for training NNFM

As MC data is needed to train the NNFM, it is reasonable to wonder how the size of training data
affects the performance of the NN. The training set size was varied as a percentage of the 5000
MC samples in increments of 2%, 4%, 6%, 8%, 10%, 20%, 30%,. . . , 80%, 90%. The test data
remained 10% of the original data (5000×10%=500 MC simulations) and was fixed in all the
comparisons. Both sets were randomly selected from the whole MC data without replacement.
We trained the NNFM independently 20 times for each training set size and obtained a total of 20
NMAE values. Fig. 4 shows the results of these comparisons. The training result data has been
uploaded as Data File 2 in supplemental material.

As depicted in Fig. 4, it is evident that the error steadily converges as the amount of training
data increases. The discrepancy between the Normalized Mean Absolute Error (NMAE) values
for 80% and 90% of the training data is approximately 0.002 indicating a small derivative with
respect to adding more data. Given this observation, it is unlikely that the error will converge to
a substantially smaller value even with an additional 4500 instances of Monte Carlo (MC) data.
Considering this and additional cost of getting more MC data, we stick with the model trained
with 4500 instances, which accounts for 90% of the available MC data. The error convergence
trends and the minimal difference in performance between 80% and 90% of the training data
strongly support the notion that augmenting the training data further will have very small impact
on reducing the error.

3.1.2. Extrapolation

To investigate the performance of the NNFM when dealing with optical parameters outside the
range of the training data, we split the data as indicated by the red lines in Fig. 1(a). We repeated

https://doi.org/10.6084/m9.figshare.23500779
https://doi.org/10.6084/m9.figshare.23500782
https://doi.org/10.6084/m9.figshare.23500770


Research Article Vol. 14, No. 9 / 1 Sep 2023 / Biomedical Optics Express 4732

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Training data size (×5000)

0.05

0.10

0.15

0.20

0.25

0.30

N
M

A
E

Fig. 4. Error of the NNFM over varying sizes of training data. The red dots are averaged
total NMAEs and error bars represent the variance when re-training the model 20 time (Data
File 2).

the training of the model by removing the upper or lower 10% of µa or µs from the training set
and placing it in the test set. For example, the red dashed line on the left splits data to investigate
extrapolation for µa below those in training data. The NNFM was trained on the data on the right
side of the red dashed line and makes predictions for data on the left. The red dashed line on the
top splits data to investigate extrapolation for µs above that line. In total, we investigated four
extrapolation cases, respectively 10% on each edge of the data in Fig. 1(a).

The results of this analysis are presented in Fig. 5. As shown in the figure, the NNFM is robust
when extrapolating above the training data, i.e., when µa or µ′s is larger than the data in the training
set. However, it loses more accuracy when extrapolating to smaller µa and µ′s. In particular, we
observe that the error of extrapolating smaller µa is significantly larger than extrapolating smaller
µ′s, and the predicted diffuse reflectance is underestimated. This is likely due to the fact that the
ML model has not encountered sufficient instances during training where almost no photons are
absorbed. But when extrapolating towards smaller µs, there is less scattering but not vanishing
scattering, so the model has no problem extrapolating towards smaller µ. To validate the above
explanation, we have applied MaxAbsScaler and logarithmic transformations of the features, of
which the extrapolation results can be found in the supplemental material Visualization 1 and
Visualization 2. The extrapolation did not materially change with these alternate approaches.
Therefore, we hypothesize it is not the scaling for the data that is the causing the extrapolation
issue.

Overall, our results suggest that we can have more confidence in the predictions made by the
NNFM for data with larger optical parameters than our training data. These findings also indicate
that the training data should include the minimum possible optical parameter values that the
model may be asked to evaluate.

3.2. Fitted diffuse reflectance spectra of measured phantoms

The model first fits the R(λ) spectra of phantoms utilizing Levenberg–Marquardt least-squares
criterion for minimizing the squared-error between fitted spectrum and measured spectrum as
described in Section 2.2.2. The fitted R spectra of of phantoms in phantom set 1 using MC-based
inverse model and the NN-based inverse model are compared in Fig. 6. Fitting only of phantoms
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Fig. 5. (a) Extrapolation of µa below the training data. The model was trained with data
on the right side of the red dashed line on the left of Fig. 1(a) and the predictions of the
trained NNFM for the data on the left side of the line are shown here. NMAE=0.162.
Performance of extrapolating to upper µs using MaxAbsScaler and logarithm scaler can be
found in supplemental material Visualization 1 and Visualization 2. (b) Extrapolation of
µa above the training data. NMAE=0.112. (c) Extrapolation of µs below the training data.
NMAE=0.057. (d) Extrapolation of µs above the training data. NMAE=0.027. In each of
the figures, 10% of the data is removed from each edge of the parameter range shown in
Fig. 1(a) and excluded from the training set. The NNFM is trained with the remaining of
90% data. The color of each dot indicates the SDD as in Fig. 3
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with absorption levels 3rd, 5th, 7th, 9th, 11rd (from low absorption to high absorption) are
showed when using phantom 1 as reference. Fig. 6(a) shows the fitted spectra using the LUT
generated by MC simulations and Fig. 6(b) is the fitted spectra using LUT generated by the
NNFM. In both of Fig. 6(a) and Fig. 6(b), upper plot is the fitted diffuse reflectance spectra and
the lower plot is the residual between the measured spectra and fitted spectra.
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Fig. 6. (a) MC-based inverse model fitted R spectra and the residual (Dataset 1, Ref. [33]
and Dataset 2, Ref. [34]). (b) NN-based inverse model fitted R spectra and the residual.
Fitted R spectra of phantoms 3rd, 5th, 7th, 9th, 11st in set 1 when using phantom 1 as
reference are shown. In the diffuse reflectance plots, dashed lines are the measured diffuse
reflectance, the curves with dots are the fitted diffuse reflectance using the corresponding
inverse model. Colors mean different absorption levels (Dataset 1, Ref. [33] and Dataset 3,
Ref. [35]).

From the residual plots, it is observed that the MC-based fitting has good agreement with
the NN-based fitting with some minor discrepancies, which is expected since the NNFM is a
data-driven approximation of forward MC simulations instead of a first-principle approach like
MC. As shown in Fig. 6, the fitted reflectance is worse in phantoms with high absorption and
longer wavelengths, when the absorption coefficient of the reconstructed targets is significantly
different from the reference phantom used (phantom 1 for the data here). When we reconstructed
the same reflectance data by using phantom 11 as the reference, we observed that the fitting to
phantom 1 became worse (data not shown).

3.3. Inverse solution for measured phantoms

The wavelength-averaged values over 450-650 nm of the inferred optical parameters are calculated
and shown in Fig. 7. The errors bars are the standard deviation (std) over the different
reconstructions using different reference phantoms and the circles are the mean values. To
evaluate the accuracy, We calculate the Euclidean distance (ED) between the circles and their
expected values. The Euclidean distance is the square root of the squared-error defined in (1).

From Fig. 7, we see that the NN-based inverse model is able to solve for µa and µ′s with
comparable accuracy. Moreover, the NNFM-based results are more accurate in estimating µ′s than
the MC-based results. However, the variation in recovered absorption for different reconstructions
is larger with the NNFM compared to the MC-based method.
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Fig. 7. (a) Solution for µa of phantom set 1 using MC-based inverse model. ED= 0.28
(Dataset 1, Ref. [33] and Dataset 2, Ref. [34]). (b) Solution for µa of phantom set 1 using
NN-based inverse model. ED= 0.25 (Dataset 1, Ref. [33] and Dataset 3, Ref. [34]). (c)
Solution for µ′s of phantom set 2 using MC-based inverse model. ED=5.26 (Dataset 4, Ref.
[36] and Dataset 5, Ref. [37]). (d) Solution for µ′s of phantom set 2 using NN-based inverse
model. ED=4.14 (Dataset 4, Ref. [36] and Dataset 6, Ref. [38]). In the above figures,
wavelength-averaged values of solutions over 450-650 nm are shown. The dashed line
represents the perfect fit. The circles are the mean values over different reconstructions for the
wavelength-averaged solutions. The errors bars are the variance over all the reconstructions.
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4. Discussion

In this paper, we have first used an NNFM as a surrogate model for forward MC simulations
for photon transport to estimate the diffuse reflectance reaching a detector. Once trained, unlike
the traditional MCLUT that requires a MC simulation for each point of the grid, the NNFM is
able to make predictions for grid points fast, significantly saving time and computational cost. In
our previous work [26], we compared the MC simulation time distribution over 1750 sample
points of (µa, µs, g) with the training time and prediction time of the NNFM. MC simulation
time ranged from 10-3500s, while the NNFM training time only took 75s and prediction time
took 0.093s for 350 predictions, 0.113s for 1000 predictions and 0.112s for 1500 predictions. It
was demonstrated that the NNFM model is faster than MC simulations by a factor of 102 − 104.
Even considering the training time, the NNFM is 5 − 102 times faster. Furthermore, while the
time of a MC simulation depends the number of photons being simulated and the values of the
optical properties, time to make an NNFM prediction does not vary with these factors. In contrast
to MC predictions and lookup-table interpolation, NNFM prediction time does not necessarily
increase linearly with the number of predictions due to hardware efficiencies exploited in modern
ML libraries. Consequently, the NNFM is able to generate tables with higher speed and more
flexibility as making predictions for any grid takes almost the same computational cost, giving a
potential faster tool for clinical diagnosis.

We also investigated how much MC data is needed to sufficiently train a NNFM. In our
numerical experiments we found that 2000 or more MC simulations are enough to build an
accurate model. Extrapolation was also studied by removing particular ranges of µa and µs from
the extremes of the training data. We demonstrated that the NNFM is robust in extrapolation
towards higher values of both µa and µs, but the accuracy suffers when the model is asked to
extrapolate below the values used to train the model.

Note that while the Neural Network Forward Model (NNFM) is solely trained and tested on
Monte Carlo (MC) simulation data, the performance of the inverse model utilizing the trained
NNFM in estimating optical parameters of DRS data is the best test of the approach. Thus, while
certain assumptions are made regarding the geometry, phantom profiles, and fiber profiles in
the MC data, their precise details become less significant as long as the overall feasibility and
validation of the inverse model on DRS data are convincingly demonstrated. This ensures that
the inverse model’s practical effectiveness is not hindered by the specifics of the MC simulation
assumptions, affirming its potential for accurate and reliable estimation of optical parameters in
real-world scenarios.

We then modified the traditional MCLUT by replacing the MC forward simulations with the
trained NNFM. The NN-based inverse model was validated on two experimental data sets. Our
results show that the LUT based on the NNFM is a feasible approach with similar accuracy in
inferring µa and µs compared to the traditional MCLUT, and that the NNFM approach led to a bit
larger variance over different reconstructions. Overall, the NN-based inverse model outperforms
the traditional MCLUT due to its higher efficiency and better flexibility with comparable accuracy.
These results for using NNFM for inversion on phantoms indicate that this technology should be
tested on real world, biological tissues in future work.

With the NNFM being a fast and easy approach to making predictions for the diffuse reflectance,
a continuous inverse model without lookup tables is currently being investigated by the authors.
This would allow the inverse model to choose values that are not on a grid as they are with the
LUT approach. This could lead to more accurate results. Moreover, while in this paper we kept g
a constant as in the traditional MCLUT method, it would be possible to make predictions for µa,
µs, and g without combining µs and g into a single parameter using neural networks. This would
allow the model to take into account the fact that g is not constant in many realistic scenarios. We
would also repeat the training study completed in section 3.1.1 that such a model with varying g
has similar convergence properties.
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In conclusion, we have demonstrated the potential of building a data-driven generic inverse
model for DRS to estimate optical parameters with measured diffuse reflectance spectrum, and
we will continue developing a more accurate and more user-friendly inverse model to serve as a
potential clinical diagnostic tool.
Disclosures. We declare no conflicts of interest.

Data availability. Data underlying the results presented in this paper are available in Data File 1, Ref. [31], Data
File 2, Ref. [32], Dataset 1, Ref. [33], Dataset 2, Ref. [34], Dataset 3, Ref. [35], Dataset 4, Ref. [36], Dataset 5, Ref.
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