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Abstract: Diffuse correlation spectroscopy (DCS) is a non-invasive optical technique that can
measure brain perfusion by quantifying temporal intensity fluctuations of multiply scattered
light. A primary limitation for accurate quantitation of cerebral blood flow (CBF) is the fact
that experimental measurements contain information about both extracerebral scalp blood flow
(SBF) as well as CBF. Separating CBF from SBF is typically achieved using multiple source-
detector channels when using continuous-wave (CW) light sources, or more recently with use of
time-domain (TD) techniques. Analysis methods that account for these partial volume effects are
often employed to increase CBF contrast. However, a robust, real-time analysis procedure that
can separate and quantify SBF and CBF with both traditional CW and TD-DCS measurements
is still needed. Here, we validate a data analysis procedure based on the diffusion equation in
layered media capable of quantifying both extra- and cerebral blood flow in the CW and TD. We
find that the model can quantify SBF and CBF coefficients with less than 5% error compared
to Monte Carlo simulations using a 3-layered brain model in both the CW and TD. The model
can accurately fit data at a rate of <10 ms for CW data and <250 ms for TD data when using a
least-squares optimizer.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Adequate cerebral blood flow (CBF) is required for delivery of oxygen and other nutrients to brain
tissue, allowing CBF to serve as a biomarker for brain function and health [1]. The quantitation of
CBF is therefore important for managing and diagnosing brain injury or other diseases associated
with ischemia or inadequate vascular autoregulation [2]. Diffuse correlation spectroscopy (DCS)
is an optical technology that noninvasively measures blood flow by quantifying temporal speckle
fluctuations of a coherent light field illuminating the tissue surface, usually in the near-infrared
spectrum [3–5]. Detected photons in such applications must propagate through the extra-cerebral
scalp and skull layers to reach brain tissue [6,7]. The backscattered light intensity temporally
fluctuates and is quantified via its temporal autocorrelation function [2,8]. Analytical solutions
of the correlation equation are then obtained using diffusion theory and are used to fit measured
autocorrelation functions to extract a quantitative blood flow index (BFi, cm2/s), which has been
shown to be a good surrogate for CBF measured in vivo [2,3,9–11].

Traditionally, DCS systems have used continuous-wave (CW) light sources which require long
source-detectors separations to increase sensitivity to CBF [12,13] as the CW-DCS signal is
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significantly impacted by shallower extracerebral scalp blood flow (SBF) changes [2,6]. More
recently, using picosecond pulsed lasers as sources has allowed DCS to operate in the time-domain
(TD), which can increase sensitivity to deeper tissues by gating the photons time of flight to
measure the autocorrelation at different time windows [14–17]. Several studies have demonstrated
the potential advantage of TD-DCS compared to CW-DCS for measuring deeper flow changes at
shorter source-detector separations [14,16–18]. However, although TD-DCS signals can select
for longer pathlengths, these photons still traverse the superficial layers at least twice which must
be accounted for in data analysis [19].

A major challenge in using DCS for neuromonitoring is that the detected light intensity interacts
with all of the tissue layers in the propagation path (e.g., scalp, skull, cerebrospinal fluid (CSF),
brain) [7,9,12,20]. Homogeneous diffusion models are typically used for their simplicity and
speed, but extracted BFi metrics have been shown to non-linearly depend on the flow properties of
each layer [12]. Several analysis methods have been developed to account for these partial volume
effects by using differential path-length factors [21–23], selecting longer photon pathlengths by
weighting fits to shorter correlation times [6,22], or by using pressure modulation procedures
[24,25]. Although useful for enhancing sensitivity to CBF, these methods do not eliminate top
layer flow contributions as they still assume some level of tissue homogeneity [23]. Alternatively,
using heterogeneous brain models simulated with Monte Carlo (MC) methods [6,7] or analytical
solutions to the multi-layered correlation diffusion equation [9,20,22,23,26,27] have shown
promise for more robustly separating SBF from CBF [7,9,20].

The increase in available computational resources has led to the MC approach becoming more
popular due to its higher accuracy at short source-detector separations and ability to accommodate
complex tissue geometries [7,19,28]. Additionally, the MC method may be more robust than
layered analytical models which can be numerically unstable [7]. However, for DCS to be
employed to monitor patients in clinical settings, data analysis tools must be able to continuously
and accurately quantify CBF changes for rapid treatment in the clinic [7]. A major limitation
of MC is its high computational cost which mostly precludes its use in real-time data analysis
[7,29,30].

Layered analytical models can provide a good compromise between reconstructive accuracy [31]
and computational speed, yet they still remain significantly slower to compute than homogeneous
models and are not typically used in inverse problems [7]. Forward models for TD-DCS in layered
media have also been derived [32], but to the best of our knowledge have not yet been applied as
inverse solvers, as TD solutions require orders of magnitude higher computational effort than
CW approaches [33]. Currently, most applications employ homogeneous tissue models with
diffusion theory for both CW- and TD-DCS [14], or use heuristic exponential based fitting for
quantifying the BFi [19].

In this report, we develop and apply diffusion theory based analytical solutions of DCS signals
in layered media to overcome existing challenges and validate its: (1) physical accuracy compared
to MC simulations, (2) numerical stability and computational speed, and (3) use in inverse
solutions to recover BFi from signals measured in layered head-tissue models. We present
the theoretical framework for both CW- and TD-DCS based on the diffusion equation for an
N-layered turbid medium [34,35]. The model’s performance is verified by comparisons to MC
simulations across a range of source-detector separations for both the CW and TD. We examine
using the forward model as an inverse solver and benchmark quantitative recovery of both SBF
and CBF from a 3-layered brain model. We conclude by discussing the advantages of CW and
TD systems from the results, establishing the sensitivities of CW- and TD-DCS in recovery of
SBF and CBF, and investigating the impact of source-detector separations and delay times on
these sensitivities.
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2. Methods

2.1. Diffusion theory in layered media

The motion of scattering particles is associated with the unnormalized electric field temporal
autocorrelation function G1 which in highly scattering turbid media such as biological tissue
can be approximated with the correlation diffusion equation [3]. Solutions to the correlation
diffusion equation can be obtained by first solving the regular photon diffusion equation

D∇2
Φ(r⃗) − µaΦ(r⃗) = −S(r⃗) (1)

and then replacing the absorption coefficient with a dynamic absorption term µd
a → µa+2µ′sDBk2

0τ
[8]. Φ, D , S(r⃗) and µa denote the fluence rate, the photon diffusion coefficient, the source
configuration, and the absorption coefficient, respectively, where D = (3µ′s)−1 and µ′s the
reduced scattering coefficient. DB is the Brownian flow-diffusion coefficient, k0 = 2πn/λ
is the wavenumber and λ is the wavelength of the light source [36]. It is assumed that the
mean-square displacement of the scattering particles over time τ undergoes Brownian motion
(i.e., ⟨∆r2(τ)⟩ = 6DBτ).

Because solutions to the photon diffusion equation can be used to calculate G1 by a simple
replacement, existing methods to solve the diffusion equation for specific geometries and boundary
conditions can be extended for calculating autocorrelation using diffusion theory [8,14]. Here, we
extend our computationally efficient method [35] to solve the diffusion equation using extrapolated
boundary conditions for fast calculation of the autocorrelation function in an N-layer tissue
model made up of axially layered cylinders, each with independent µa, µ′s, and thickness l [34].
Assuming an incident beam onto the center of the topmost cylindrical layer can be approximated
by an isotropic point source located at a distance of z0 = 1/µ′s from the incident surface, Eq. (1)
can be solved in real space [35] by

Φ(ρ, z = 0) ≈ ΦSI(ρ) +
1
πa′2

∞∑︂
n=1

Ĝ(sn, z)J0(snρ)J−2
1 (a′sn) (2)

where Jm is the Bessel function of first kind and order m and sn is determined from the roots of
Jm for Jm(a′sn) = 0 where n = 1, 2, . . . is the nth root of Jm. z is the location of the detector within
the medium in cylindrical coordinates and ΦSI(ρ) is the steady-state fluence for a semi-infinite
medium [37]. An extrapolated boundary is determined using a′ = a + zb where a is the radius of
the cylinder and zb = 2AD where A is proportional to the fraction of photons that are internally
reflected at the boundary [38]. For clarity on nomenclature, G1 represents the unnormalized
temporal autocorrelation function whereas Ĝ represents the Green’s function in the top layer due
to an isotropic source located in the top layer.

For the solutions presented here, we utilize the approximate forms in Eq. (2) given previously
[35] which are accurate when z ≈ z0. We have shown that given µ′s1>2 cm−1 and a>>ρ at z = 0
these forms are accurate to at least 16 digits which is exact in double precision arithmetic [35].
The expression for the Green’s function Ĝ in the top layer in Eq. (2) is

Ĝ(sn, z) =
eα1(z+z0−2l1)(1 − e−2α1(z0+zb1))(1 − e−2α1(z+zb1))

2D1α1

×
D1α1n2

1β3 − D2α2n2
2γ3

D1α1n2
1β3(1 + e−2α1(l1+zb1)) + D2α2n2

2γ3(1 − e−2α1(l1+zb1))

(3)

where αk =
√︂
(µak + 2µ′skDBkk2

0)/Dk + s2
n. The subscript k signifies the kth layer of the cylinder

with distinct absorption µak and scattering µ′sk in each layer. In general, the quantities β3 and γ3
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are obtained by downward recurrence relations with start values

βN = DN−1αN−1n2
n−1(1 + e−2αN−1lN−1 )(1 − e−2αN (lN+zb2 ))

+ DNαNn2
n(1 − e−2αN−1lN−1 )(1 + e−2αN (lN+zb2 ))

γN = DN−1αN−1n2
n−1(1 − e−2αN−1lN−1 )(1 − e−2αN (lN+zb2 ))

+ DNαNn2
n(1 + e−2αN−1lN−1 )(1 + e−2αN (lN+zb2 ))

(4)

with the downward recurrence given by

βk−1 = Dk−2αk−2n2
k−2(1 + e−2αk−2lk−2 )βk + Dk−1αk−1n2

k−1(1 − e−2αk−2lk−2 )γk

γk−1 = Dk−2αk−2n2
k−2(1 − e−2αk−2lk−2 )βk + Dk−1αk−1n2

k−1(1 + e−2αk−2lk−2 )γk
(5)

We note that we seek just the terms β3 and γ3 which must be determined recursively if the total
number of layers N is larger than 3. In that case, Eq. (4) is used to generate starting values in
the recurrence relation, then Eq. (5) is used recursively until β3 and γ3 are obtained. If N = 2,
β3 = 1 − e−2α2(l2+zb2) and γ3 = 1 + e−2α2(l2+zb2). For N = 3, only Eq. (4) is needed to calculate
β3 and γ3. Presenting the coefficients in terms of exponentially decaying functions prevents
numerical overflow in the inverse transforms and increases numerical stability [35].

For solutions in the time-domain, an inverse Laplace transform is performed using the
substitution µa → µa + s̄/c with c being the speed of light in the medium. The time-dependent
fluence Φ(ρ, t) can be expressed by

Φ(ρ, t, z = 0) ≈ ΦSI(ρ, t) +
1
πa′2

∞∑︂
n=1

1
2πi

[︃∫
B

es̄tĜ(sn, s̄) ds̄
]︃
× J0(snρ)J−2

1 (a′sn) (6)

where ΦSI(ρ, t) is the time-domain fluence in a semi-infinite medium [37]. B denotes the
Bromwich path where s̄ is a complex number along the contour. We use a hyperbola contour as
detailed previously [35,39]. Such a contour forces rapid decay in the integrand leading to more
accurate and faster computation of the inverse time transform [35].

At this point, we need to relate the unnormalized electric field temporal autocorrelation
function G1 to the fluence rates previously derived. In this study, as well as most experimental
settings, we are interested in the reflected light intensity at the top boundary (z = 0). The diffuse
reflectance is typically calculated as the current across the boundary or the flux [37]

Rf (ρ) = −D∇Φ(ρ, z) · (−z)|z=0 (7)

Alternatively, the reflectance can be written as a combination of both the fluence and flux terms
[37] and for a medium of refractive index 1.4, the combined reflectance can be written as

R(ρ) = 0.118Φ(ρ) + 0.306Rf (ρ) (8)

The unnormalized temporal autocorrelation of the electric field function G1 is simply calculated
from the reflectance by replacing µa → µd

a

G1(ρ, τ, Db) = R(ρ, µd
a) (9)

The normalized electric field temporal autocorrelation function g1 is then calculated by

g1(ρ, τ, Db) = G1(ρ, τ)/G1(ρ, τ = 0) (10)

For solutions in the time-domain, the TD fluence given in Eq. (6) is used to calculate the
reflectance in either Eq. (7) or Eq. (8), which are then translated to G1 using Eq. (9).



Research Article Vol. 14, No. 1 / 1 Jan 2023 / Biomedical Optics Express 371

2.2. Baseline flow tissue models using Monte Carlo simulations

To assess the accuracy and robustness of the described diffusion theory model to extract depth-
dependent flow parameters, we consider a physiologically relevant 3-layer brain model consisting
of the scalp, skull, and brain layer, as reported previously [9]. In this work, we only consider
variations in BFi coefficients for scalp blood flow (SBF) and cerebral blood flow (CBF). All other
parameters including the optical properties and layer thicknesses were held constant as shown in
Fig. 1. The refractive index of each layer was also kept constant at 1.4 and the external medium’s
refractive index equal to 1.0 to simulate air. Blood flow in the skull layer was assumed to be
negligible (BFi = 0).

Fig. 1. Schematic of the optical properties and layer thicknesses of the 3-layer brain model
used in the Monte Carlo simulations. The scalp and cerebral blood flow coefficients are
varied while keeping all labeled properties constant.

Using the optical properties and layer thicknesses shown in Fig. 1, the MC method was used to
simulate a set of CW and TD normalized autocorrelation functions g1. A previously developed
MC code for photon propagation in laterally infinite layered media [40] was used to simulate the
unnormalized autocorrelation function G1(τ, ρ, t). The bin widths for ∆t and ∆ρ were ± 5 ps
and 0.5 mm, respectively. 500 million photons were used for each simulation. For CW-DCS,
G1(τ, ρ) was obtained by summing G1(τ, t) across the total time-of-flight simulated (from 0
ns to 7.5 ns) [14]. Following previous reports [9], we used 10 evenly spaced values for CBF
∈ [20, 90] cm2/Gs and 10 values of SBF ∈ [2.5, 30] cm2/Gs such that SBF ∈ [1/8, 1/3]× CBF.
For the case when SBF = 30 cm2/Gs, only 6 values of CBF from 20 − 58 cm2/Gs were used.
This resulted in 96 total combinations of tissue flow models that were stored for source-detector
separations ρ ∈ [0.1, 3.05] in step sizes of 0.05 cm. The normalized autocorrelation functions
g1(τ) was obtained by dividing G1(τ, t) by G1(0, t).

Simulated MC g1(τ) were then fit to recover the SBF and CBF of the top-most and bottom-most
layer using Eq. (10) with both reflectance models Rf (ρ) given by Eq. (7) and R(ρ) with Eq. (8).
These fits were performed for varying ρ in the CW domain and for different t values in the TD.
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Each fit set the range of fitting for τ where 0.02<g1(τ)<0.98 as the fit window. Estimates of SBF
and CBF were retrieved using a non-linear fitting tool in the Julia programming language [41]
based on the Levenberg-Marquardt algorithm [42]. Forward solutions were computed using the
numerical model (Eq. (7) and Eq. (8)). The optical properties and layer thicknesses of all the
layers were considered known and were required as inputs to the inverse solver.

2.3. Noise model and sensitivity analysis

We briefly consider the sensitivity of g1(τ) to a change in the analytical model’s respective BFi
(e.g., SBF and CBF). The effect of noise on the sensitivity metric is considered using a previously
accepted noise model [43,44]. We use a simplified version where the standard deviation of the
noise in g1(τ) is proportional to

σ(τ) ≈ exp(ρ) ·

√︄
(1 + exp(−γτ))

Tint
(11)

where Tint is a combination of the correlator bin time interval and integration time (i.e.,
measurement duration), ρ is the source-detector separation, and γ is the decay rate of g1(τ) [44].
The noise was added to g1(τ) after multiplying the standard deviation with a random number
between [-1, 1]. In Fig. 2, we show examples of the added noise on g1(τ) for two source-detector
separations, ρ = 1 and 3 cm, with constant optical properties, µ′s = 10 cm−1 and µa = 0.1 cm−1.
We consider homogeneous flow values of 1 and 20 cm2/Gs in g1(τ) and g∗1(τ), respectively, for
better visualization. Two noise models, σ1(τ) and σ2(τ), were calculated using Eq. (11) with Tint
values of 1 and 5. γ was calculated from the decay rate of g1(τ).

Fig. 2. Example flow models at two source detector separations, g1(τ, ρ = 1 cm) and
g∗1(τ, ρ = 3 cm), with two levels of added noise, σ1(τ) and σ2(τ), computed with Eq. (11)
using Tint = 1 and 5, respectively.

The sensitivity of g1(τ, BFi) to a flow change, ∆BFi, was estimated by calculating the relative
change in g1(τ), (1 − g1(τ, BFi + ∆BFi)/g1(τ, BFi)), due to the perturbation. This allows for
sensitivity estimates of CW- and TD-DCS to separate changes in SBF and CBF with noise.
We note that the sensitivity can also be affected by τ, ρ, µa, and µ′s. Here, we compare the
sensitivity for ρ ∈ (0.1, 3.5) cm with fixed optical properties, µ′s = 10 cm−1 and µa = 0.1 cm−1.
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The dependence on τ was accounted for by averaging the relative change across a logarithm
scaled array of τ values corresponding to 0.05<g1(τ)<0.95.

3. Results

In Fig. 3, we compare the CW normalized autocorrelation function g1(ρ, τ) simulated with the
MC method and those calculated with diffusion using Eq. (7) and Eq. (8). Comparisons are
shown for two different flow models at two source-detector separations of 0.4 and 3 cm. For
Fig. 3(a), flow parameters of 6 and 20 cm2/Gs were used for the SBF and CBF, respectively
whereas a SBF and CBF of 27 and 20 cm2/Gs, respectively are shown in Fig. 3(b). Optical
properties and layer thicknesses are as shown in Fig. 1.

Fig. 3. Comparison of the continuous-wave normalized autocorrelation function g1(τ, ρ)
simulated with the (symbols) Monte Carlo method and diffusion theory using the (blue solid
line) R(ρ) or (orange dash line) Rf (ρ) reflectance models at two source-detector separations
and at flow rates of (a) SBF = 6 cm2/Gs; CBF = 20 cm2/Gs and (b) SBF = 27 cm2/Gs;
CBF = 20 cm2/Gs. The model using R(ρ) in Eq. (8) showed better agreement relative to
Rf (ρ) in Eq. (7) for the shorter source-detector separations and larger τ.
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The largest difference between the two reflectance models can be observed at the shorter
source-detector separations. Excellent agreement between MC and diffusion theory is observed
when using Eq. (8), even at short distances of ρ = 4 mm. A larger difference is observed when
using just the flux term described by Eq. (7) at short distances, however this expression becomes
more accurate farther away from the source. At the longer distance ρ = 3 cm, both expressions
show good agreement to the MC method. However, there is a small deviation for small g1 values
(<0.2) when using Rf whereas R is able to match the MC simulations over the full τ window.

In Fig. 4, we compare the solutions for the TD-DCS g1(ρ, τ, t) when simulated with the MC
method and calculated from diffusion theory using both reflectance models R and Rf . Data in each
figure are shown for a tissue model that has a SBF and CBF of 18 and 43 cm2/Gs, respectively
for two time values of 0.79 and 2.49 ns. The figures show these data at two source-detector
separations, 0.2 and 2 cm (as noted in axis labels) in Fig. 4(a) and Fig. 4(b), respectively. In
contrast to the CW domain, the choice in using Eq. (7) or Eq. (8) showed little difference between
each other to calculate g1(ρ, τ, t). Either calculation had very good agreement to the MC method
showing only small deviations from each other when g1(ρ, τ, t)<0.1. Larger differences between
Monte Carlo and diffusion theory were observed for shorter source-detector distance and longer
time gates (Fig. 4(a), t = 2.49 ns). However, it is also useful to note that MC simulations exhibit
higher noise for longer times which could be causing these differences.

In Fig. 5, the results of the inverse fitting procedure for the CW domain are shown. Here, the
diffusion model is used as a forward model to fit for both SBF and CBF using the MC method
as baseline simulations. In Fig. 5(a) and Fig. 5(b), the recovered SBF and CBF are shown,
respectively for all 96 of the flow tissue models recovered at two source-detector separations
of 1 and 2.5 cm. For these figures we show just the fits using the Rf reflectance model as only
small differences between the two reflectance models are observed at these two source-detector
separations. There was a larger difference from true flow coefficients as determined by the MC
simulations (black dashed lines) and recovered coefficients using the diffusion model when SBF
was larger, however this did not appear to affect the accuracy of recovered CBF. A larger ρ = 2.5
cm was able to better recover CBF, though, both ρ = 1 and 2.5 cm showed sensitivity to SBF and
CBF.

In Fig. 5(c) and Fig. 5(d), the average percent error 100 × ((BFiMC − BFiDT )/BFiMC) between
the recovered SBF and CBF, is shown averaged across all 96 tissue models for four source-detector
separations when using the two reflectance models. As shown in Fig. 3, at short distances
(ρ = 0.5 cm), R(ρ) produces significantly more accurate results. Interestingly, the reflectance
model using just the flux Rf (ρ) produced slightly more accurate results at the longer distances
(ρ>1 cm). The error in recovered SBF also slightly increases at longer distances as the sensitivity
to the top layer decreases as we move farther away from the source. On the other hand, the
recovered CBF significantly improves as we move to larger separations (Fig. 5(d)).

The percent error in recovery of relative SBF and CBF are shown in Fig. 5(e) and Fig. 5(f),
respectively for the two reflectance models at five source-detector separations. The relative error
is calculated by normalizing the values of the true and recovered BFi of the first tissue model
shown in Fig. 5(a) and Fig. 5(b) (SBF=2.5 cm2/Gs; CBF = 20 cm2/Gs), and averaging the
percent error across all the tissue models. The choice to normalize to the first tissue model is
rather arbitrary, however the best absolute accuracy was observed for low SBF so this resulted in
shifting absolute values the least. Good recovery of SBF is observed even at very short distances
(ρ = 2.5 mm) while error increases after 1 cm due to the decrease in sensitivity to SBF. In this
case, using R(ρ) produced more accurate estimates of SBF. For CBF, large errors are observed at
short distances (ρ = 5 mm) due to the very limited sensitivity to deeper layers at short separations.
This error rapidly improves to less than 5% for ρ>1 cm for both reflectance models.

In Fig. 6, the results of the inverse fitting procedure for the TD are shown. Similar to the CW
domain, the inverse problem fits for two parameters, SBF and CBF. However, we show results
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Fig. 4. Comparison of the time-domain normalized autocorrelation function g1(τ, ρ, t)
simulated with the (symbols) Monte Carlo method and diffusion theory using the (blue
solid line) R(ρ) or (orange dash line) Rf (ρ) reflectance models at two time values and at
source-detector separations of (a) ρ = 0.2 cm and (b) ρ = 2 cm. A single flow model
is considered where SBF = 18 cm2/Gs and CBF = 43 cm2/Gs. Both reflectance models
showed similar accuracy.
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Fig. 5. Results of inverse fits using CW-DCS diffusion theory fitted to MC simulated
g1(τ, ρ) curves. The recovered (a) SBF and (b) CBF coefficients are shown for two values of
ρ where the black dashed lines represent the true flow values used in the MC simulations,
for each tissue model, when recovered with the Rf reflectance model. The percent error
between recovered absolute values of (c) SBF and (d) CBF is averaged over all the tissue
models at four source-detector separations using both reflectance expressions (Eq. (7) and
Eq. (8)). The average error in relative flow changes of (e) SBF and (f) CBF are shown when
recovered values of the first tissue model (as shown in (a) and (b)) are normalized to one.
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using only the flux reflectance model, Rf , as the two reflectance models produced errors within
3% of each other for all simulations. Therefore, we focus on the recovery of the flow coefficients
at time values of 0.5, 1.5, and 2.5 ns. In Fig. 6(a) and Fig. 6(b), we report results for all 96 tissue
models at a single source-detector separation of ρ = 1 cm for the three time values to recover
SBF and CBF, respectively. Similar to the CW results, the recovery of SBF depended on the
absolute SBF value as larger SBF values produced larger errors particularly for late time values.
However, recovery of CBF was not affected by higher errors in recovery of SBF. As expected,
shorter times were able to recover SBF better, while later times were better able to recover CBF.
Rather surprisingly, the short time (t = 0.5 ns) also showed large sensitivity to CBF.

The resulting percent error shown in Fig. 6(a) and Fig. 6(b) between the true MC values
and recovered values using diffusion theory were then averaged across all tissue models for
source-detector separation of ρ = 0.5, 1 and 2 cm. The average error in recovered SBF and CBF
for the three time values are shown in Fig. 6(c) and Fig. 6(d), respectively. The late time value,
t = 2.5 ns, showed the highest and most volatile error in recovered SBF. This can be explained by
the inconsistent recovery at higher absolute values of SBF as shown in Fig. 6(a). The error in
recovered SBF using t = 0.5 and 1.5 ns was less than 10% in all the source-detector separations
shown.

The recovered CBF was less than 4% at all time values when ρ = 0.5 cm, however for t = 0.5
ns the error increased at larger source-detector separations to over 10% when ρ = 2 cm. In
Fig. 6(e) and Fig. 6(f) we show the percent error in relative changes in SBF and CBF, respectively
when normalizing the starting values to the first tissue model. In contrast to the CW results, the
relative errors were actually worse than absolute recovery due to the much noisier recovery of
SBF at faster flow rates. Though, recovery of CBF using t = 1.5 and 2.5 ns was less than 2%.

To better understand the results presented in Figs. 5 and 6, in Fig. 7 we show an example
flow model with baseline SBF and CBF of 20 and 60 cm/Gs, respectively in the (Fig. 7(a)
and Fig. 7(b)) CW domain at two source-detector separations (ρ = 0.5 and 4.5 cm) and in the
(Fig. 7(c) and Fig. 7(d)) TD at two delay times (t = 0.5 and 2.5 ns) at a single source-detector
separation (ρ = 1 cm). The baseline optical properties are as shown in Fig. 1. We next increase
either SBF or CBF by three times to show the sensitivity of g1(τ) on the two flow parameters. In
the CW domain, increasing SBF by 3 times has an effect at both short (ρ = 0.5 cm) and long
(ρ = 4.5 cm) source-detector separations. However, the effect is more uniform at shorter distances
while longer distances are more affected at later delay times (Fig. 7(a)). On the other hand, the
short distances show little effect to changes in CBF (Fig. 7(b)) except at shorter delay times. This
effect is more pronounced at the longer source-detector distance where more sensitivity to CBF is
observed. In the TD, the shorter delay time (t = 0.5 ns) shows a large sensitivity to SBF changes
while showing less sensitivity to CBF. The later time (t = 2.5 ns) shows a much larger sensitivity
to CBF while only showing a minimal though non-negligible sensitivity to SBF.

In Fig. 8, we quantitatively compared the sensitivity in CW- and TD-DCS from a relative
change in g1(τ) due to a doubling in the respective flow coefficient of interest (e.g., SBF and
CBF) with other variables constant as a function of source-detector separation ρ ∈ [0.1, 3.5] cm.
The baseline optical properties and flow parameters are as described in Fig. 1 and Fig. 7. To
account for variable sensitivities to SBF and CBF as a function of τ, the relative change was
averaged in the window 0.05<g1(τ)<0.95. In Fig. 8(a) and Fig. 8(b) we show the sensitivity of
CW-DCS to an increase in SBF and CBF, respectively. In addition to the direct calculation of
the forward model, we compute the sensitivity metric after adding noise using Eq. (11) with
two measurement collection times, Tint = 1 and 5 labeled as σ1(τ) and σ2(τ), respectively. The
error bars correspond to the standard deviation after averaging over 50 samples of random noise
generation. In Fig. 8(c) and Fig. 8(d) the same is shown considering the sensitivity of TD-DCS
to an increase in SBF and CBF at two photon delay times of t = 0.5 and 2.5 ns as labeled directly
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Fig. 6. Results of the inverse fitting process when fitting the time-domain diffusion theory
model to simulated g1(τ, ρ, t) with the MC method. The recovered (a) SBF and (b) CBF
coefficients are shown for three values of t when ρ = 1 cm where the black dashed lines
represent the true flow values used in the Monte Carlo simulations. The percent error
between recovered absolute values of (c) SBF and (d) CBF is averaged over all the tissue
models at three source-detector separations for three t values. We show just the error using
the Rf (ρ, t) reflectance model as it was similar to R(ρ, t). Averaged relative error normalized
to the first tissue model is shown for values of (e) SBF and (f) CBF.
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Fig. 7. The sensitivity of the CW g1(τ) to an increase of either (a) SBF or (b) CBF by three
times at two source-detector separations. A similar example is shown in (c) and (d) for the
TD g1(τ) at a single source-detector separation (ρ = 1 cm) and two time values for SBF and
CBF, respectively.

for each group of noise models. We note the black lines represent the sensitivity directly from
the analytical model without any added noise and do not have error bars.

For the SBF sensitivity shown in Fig. 8(a), we can see that the CW model shows the highest
sensitivity to SBF at shorter distances while steadily decreasing at longer source-detector
separations. However, the TD shows a relatively constant sensitivity to SBF over the whole range
of ρ. In fact, the sensitivity slightly increases as we increase the source-detector distance. This
can be explained by the fixed photon path length within the medium and that to maintain the same
path length in the medium at longer distances from the source the average photon has to travel
more in the shallower layers. On the other hand, the CW model shows an increasing sensitivity to
CBF as we increase the source-detector separation (Fig. 8(d)). However, the sensitivity appears
to have only logarithmic growth. As in the SBF case, the TD CBF sensitivity is relatively
independent to the source-detector separation and only decreases slightly at larger distances.
It was also worthwhile to observe that the TD sensitivity seems to saturate quickly (for t>2.5
ns), whereby increasing the time gates only marginally increased CBF sensitivity. At larger
source-detector separations the added noise model significantly affects the expected sensitivity to
both SBF and CBF.
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Fig. 8. The average relative change of g1(τ) from increasing the (left column) SBF and
(right column) CBF by two times in the (top row) CW and (bottom row) TD at two photon
arrival times (t = 0.5 and 2.5 ns) as a function of source-detector separation. Two noise
models, σ1(τ) and σ2(τ), were considered using a collection time, Tint, of 1 and 5 seconds,
respectively, as computed with Eq. (11). The CW domain shows a varying sensitivity to
both SBF and CBF as a function of source-detector separation whereas the TD shows a
relatively constant sensitivity.

4. Discussion

Layered analytical models have been employed with success in CW-DCS applications to recover
flow coefficients [9,20,23,27] but are not typically used for TD-DCS analysis due to their increased
complexity and computational cost [32]. We have validated a layered diffusion model based on
our previous work [35] that allows for solving the inverse problem in both CW- and TD-DCS.
The main advantages of this approach is its better numerical stability, ability to provide error
tolerances, computational speed, and ability to provide fast gradient information [35]. This
allows for forward simulation of the CW and TD autocorrelation function in ≈ 20 and ≈ 150
microseconds, respectively. Typically, the inverse problem for the fits shown here took <10
and <250 milliseconds to fit for both SBF and CBF in the CW and TD, respectively. Although
this is orders of magnitude faster than both MC simulations and previously reported layered
models [7,33,34], using homogeneous models that only fit a single parameter are about 10x
and 60x faster in the CW and TD, respectively. These reported times were all done using a
single core on a personal laptop. The computational time is also linearly dependent on the
number of τ values considered in the inverse problem and should be kept as sparse as possible
for faster data processing. Additionally, we only considered fitting two parameters (SBF and
CBF) while other coefficients were considered known. The effect of optical property errors have
been previously investigated [9,20,36]. However, the forward model simultaneously computes
both the TD reflectance along with g1(τ), allowing it be used with TD near-infrared spectroscopy
measurements to fit for optical properties along with DCS measurements to fit for flow coefficients
[45,46] with similar forward computational times.
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A disadvantage of the presented model are the limitations given by the validity of diffusion
theory [7]. The Monte Carlo method has become more popular as computing resources are more
readily available to overcome some of the concerns of diffusion theory at short source-detector
separations [7,28]. However, we have found that the diffusion model can accurately recover
absolute flow coefficients at very short separations (ρ = 4 mm) in the CW domain while being
able to recover relative errors at even shorter separations, which is inline with previous research
[40]. We investigated two equations that seek to model the reflectance as just the flux or a
combination of the fluence and flux [37]. We have found that for CW measurements, using both
the fluence and flux (Eq. (8)) provides more accurate results at shorter source-detector separations
and smaller values of g1(ρ, τ). This translated to better recovered error (Fig. 5 c and d) at shorter
separations, however this did not provide better error for source-detector separations longer than
1 cm. On the other hand, we did not find any significant differences between the two reflectance
models when computing the TD autocorrelation. At short source-detector separations (≈ 2 mm),
we found the time-domain model could be used more freely to model g1(τ, ρ, t) when selecting
for later arriving photons t>0.5 ns (Fig. 4).

One of the primary reasons to use a layered model is the ability to recover and separate both
extracerebral and cerebral flow changes. In the CW domain, the diffusion theory model was
able to recover SBF within 10% of the Monte Carlo simulations for source-detector separations
between 0.4 and 3 cm (Fig. 5(c)). The error slightly increases as we increase in source-detector
separation which can be explained by the decrease in sensitivity to SBF at longer distances
(Fig. 8(a)). On the other hand, increasing the source-detector separation rapidly improved the
estimates of CBF which was recovered within 10% for ρ>2 cm. Perhaps most interesting is the
rate at which the error improves (Fig. 5(d)) in recovered CBF as we increase ρ, which could be
explained by the rate at which the sensitivity to CBF increases. In Fig. 8(b), we see an almost
logarithmic growth in sensitivity in the CW domain where a rapid rise in sensitivity is seen as
we increase ρ up to 2 cm with just a smaller marginal increase after. We briefly considered a
simplified noise model applied to both the CW and TD in Fig. 8. Although we showed steady
improvements in recovered CBF at longer distances with no noise, adding noise can significantly
affect sensitivities as we increase source-detector separation and decrease the measurement
duration. Therefore, the marginal increase in recovered accuracy at longer source-detector
separations and the decrease in expected sensitivity due to noise suggests that there is an optimal
distance for measurement. In other words, the optimal distance will be after a large gain in
sensitivity but short enough to maintain adequate signal to noise.

TD-DCS provides potential for better sensitivity to deeper tissues, and therefore CBF, by
selecting for later arriving photons [14]. When considering just g1(τ, ρ, t), we also demonstrated
the larger sensitivity to CBF when compared to CW g1(τ, ρ). Figure 6(d) shows that the TD is
able to recover CBF within less than 5% error between source-detector separations of 0.5 and 2
cm. A primary advantage is even using relatively short time windows of 0.5 and 1.5 ns contrast
to CBF is still high. As shown in Fig. 8(b), using very late time windows doesn’t substantially
increase the CBF sensitivity. This is experimentally important as using shorter time windows
improves signal to noise contrast, thus using moderate time gates (1-2 ns) could provide similar
sensitivities to very late gates while providing more contrast. Additionally, we found that the
sensitivity and CBF recovery accuracy is mostly independent of the source-detector separation.
We do note that the data and sensitivities reported here are specific to the tissue geometry
considered. Therefore, having a larger extracerebral layer or higher scattering coefficients could
influence these results. Finally, making substantial claims on the ability of TD measurements
to better quantify CBF compared to CW is difficult [47]. In Fig. 8(b), we show a theoretical
comparison based on g1(τ) which does show that TD measurements have a much larger sensitivity
to CBF when ρ<2.5 cm. However, experimentally we measure g2(τ) which can be related to
g1(τ) by the Siegert relation [3]. The effect of β in the Siegert relation can dramatically affect



Research Article Vol. 14, No. 1 / 1 Jan 2023 / Biomedical Optics Express 382

the sensitivities of each domain to CBF that we calculate in Fig. 8(b) and Fig. 8(d) [47,48].
Therefore, comparing the CW and TD for experimental measurements must consider the effects
of the instrument response function, coherence length, time gate, and noise. The simplified noise
models we discuss in Fig. 8 must also consider the effect of photon arrival time and gate width
which we did not consider. Future studies will focus on more rigorous noise models and their
effect within the inverse problem as well as incorporating instrument response functions and
finite coherence to properly compare absolute sensitivity of CW and TD measurements.

We also found that the diffusion model in both the CW and TD showed a slight offset in
recovered SBF as the absolute value of SBF approached that of CBF. However, we did not find
that this had any effect on recovered values of CBF. This could be explained by a more difficult
inverse problem when the two flow coefficients have similar values, however we did not observe
any crosstalk in the two coefficients as CBF was largely unaffected by these increased errors in
SBF. We also note the importance of absolute SBF values in sensitivity calculations. As SBF
increases, the sensitivity of both CW and TD g1(τ) become more sensitive to changes in SBF.
We show a typical physiological flow rate of SBF and CBF in Fig. 7 where SBF is a third of the
speed of CBF. In Fig. 7 we can see that every g1(τ) has some sensitivity to SBF even in the CW
domain at long source-detector separations (ρ = 4.5 cm) and in the time-domain at long delay
times (t = 2.5 ns). This effect is more pronounced for higher SBF values, though if SBF was
much less than a third of CBF we would see less of a sensitivity to SBF. Although this fact is
less important when using layered models as they can more robustly model these changes, using
homogeneous models will show variable sensitivities to both SBF and CBF depending on their
absolute flow rates. These findings suggest that more complicated models might be necessary
even when selecting for photons of longer pathlengths and larger source-detector separations.

5. Conclusion

We developed and verified a diffusion based layered analytical model that can be used to recover
estimates of both scalp and cerebral blood flow in real-time when using either continuous-wave or
time-domain diffusion correlation spectroscopy. Utilizing a reflectance model that uses both the
fluence and flux allows for absolute recovery of flow parameters at source-detector separations
as short as 4 mm whereas relative recovery was demonstrated down to separations of 2 mm for
continuous-wave measurements. The verified model was able to simultaneously recover SBF and
CBF within 5% of Monte Carlo simulations in under 10 ms and 250 ms in the continuous-wave
and time-domains, respectively allowing its use for real-time data analysis. All analysis tools are
openly available online [49].
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