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Efficient computation 
of the steady‑state 
and time‑domain solutions 
of the photon diffusion equation 
in layered turbid media
Michael Helton1, Samantha Zerafa2, Karthik Vishwanath3,4 & Mary‑Ann Mycek1,2,4*

Accurate and efficient forward models of photon migration in heterogeneous geometries are 
important for many applications of light in medicine because many biological tissues exhibit a layered 
structure of independent optical properties and thickness. However, closed form analytical solutions 
are not readily available for layered tissue-models, and often are modeled using computationally 
expensive numerical techniques or theoretical approximations that limit accuracy and real-time 
analysis. Here, we develop an open-source accurate, efficient, and stable numerical routine to solve 
the diffusion equation in the steady-state and time-domain for a layered cylinder tissue model with an 
arbitrary number of layers and specified thickness and optical coefficients. We show that the steady-
state ( < 0.1 ms) and time-domain ( < 0.5 ms) fluence (for an 8-layer medium) can be calculated with 
absolute numerical errors approaching machine precision. The numerical implementation increased 
computation speed by 3 to 4 orders of magnitude compared to previously reported theoretical 
solutions in layered media. We verify our solutions asymptotically to homogeneous tissue geometries 
using closed form analytical solutions to assess convergence and numerical accuracy. Approximate 
solutions to compute the reflected intensity are presented which can decrease the computation time 
by an additional 2–3 orders of magnitude. We also compare our solutions for 2, 3, and 5 layered media 
to gold-standard Monte Carlo simulations in layered tissue models of high interest in biomedical 
optics (e.g. skin/fat/muscle and brain). The presented routine could enable more robust real-time 
data analysis tools in heterogeneous tissues that are important in many clinical applications such as 
functional brain imaging and diffuse optical spectroscopy.

Optical properties can be used as indicators of pathological and physiological conditions of biological tissue1,2. 
Accurate quantitation of these properties from experimental measurements depend on analytical models that 
need to account for the structural complexity of the tissue system. Therefore, it is important to consider the opti-
cal heterogeneity of biological tissues, which are usually approximated as optically homogeneous to facilitate data 
analysis3,4. Experimentally, light propagation measurements are made by illuminating the tissue surface with 
either a continuous, frequency modulated, or pulsed light source and collecting measurements of the scattered 
light after it has propagated through the tissue medium5,6. Measured optical signals are translated into absorp-
tion and scattering properties of the medium by utilizing an appropriate forward model of light transport that 
best represents the measured data7,8.

Light propagation in random media such as biological tissues is theoretically modeled using the Radiative 
Transfer Equation (RTE)9–11. Due to the highly scattering nature of these media, the RTE can be reduced to the 
diffusion equation, which gives analytical solutions in homogeneous, semi-infinite, or infinite slab geometries12,13. 
The RTE can also be solved by the Monte Carlo method which remains the gold-standard approach to calcu-
late light transport in media with complex geometries14 but is computationally expensive15. Although parallel 
implementations have significantly decreased the computational time of forward Monte Carlo simulations down 
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to several seconds16–19, they still broadly remain non-viable as inverse solvers to obtain optical properties from 
experimental measurements in real-time (< 1 s) which require thousands of forward simulations at different 
modelling parameters16,18.

Theoretical approaches that account for structural complexity in tissues provide improved reconstruction of 
optical properties using diffuse optical measurements when studying brain hemodynamics20. Although Monte 
Carlo methods can simulate light propagation in realistic head geometries derived from magnetic resonance 
imaging (MRI) data16, modeling the head as layered homogeneous slabs, each with their own set of optical 
properties, provided similar accuracy in reconstruction of optical properties3. Further, diffuse optical meas-
urements are applicable to various parts of the body that exhibit a layered structure (e.g. skin over top muscle, 
scalp and skull surrounding brain tissue). Therefore, an accurate, versatile and efficient analytical approach to 
model spatially and/or temporally resolved diffuse reflectance in layered media would enhance optical property 
reconstructions from diffuse optical measurements obtained in such layered media in vivo3.

Several methods to solve the diffusion equation for layered media have been reported in literature by using 
integral transforms21–24, method of images25, eigenfunctions26,27, or finite differences28. These methods do not 
give closed-form expressions directly in the spatial or time-domains for the photon fluence. Instead, the fluence 
in real-space is computed using numerical transforms24 or root-finding techniques26 which tend to increase 
numerical errors and computational costs29. For example, the integral transform approach24 solves the diffu-
sion equation in the spatial-frequency domain which then must be inverse space-transformed (e.g. 2-D inverse 
Fourier) for real-space calculations. An additional inverse time Fourier transform is required for computation 
in the time-domain24. Both of these transforms make calculations of the steady-state and time-domain solutions 
difficult to compute for a wide range of optical and geometrical inputs21,24. Other approaches have been developed 
to compute geometries with large layer thicknesses and high scattering coefficients and/or spatial frequencies but 
rely on approximations21,30–32. Given these challenges, the fastest reported computational times for time-domain 
fluence in multi-layered media range between 0.5–5 s, depending on the number of layers and numerical accuracy 
required23,26,30,33. Such computational performance would preclude direct use of such layered analytical solutions 
for real-time analysis as optimization of multiple parameters in layered media would take several minutes34.

In this report, we present an accurate and efficient procedure for computing the photon fluence in a layered 
cylinder using solutions to the diffusion equation23. Our code is open-source and well documented for ease of use. 
We overcome the computational difficulties noted above by modifying the solutions23 in the spatial-frequency 
domain for numerical stability, which allows for computation of arbitrarily sized inputs without approxima-
tions. Lastly, we use an inverse Laplace transform for better convergence in the time-domain which improved 
the numerical accuracy while decreasing the computational cost by several orders of magnitude35,36. Below we 
describe: (a) implementation of the numerical solutions in the steady-state and time-domain for diffuse optical 
reflectance and transmittance measurements in N-layered media, (b) verification of the numerical accuracy and 
stability of the approach in calculating photon fluence for several source-detector configurations and tissue mod-
els, and (c) validation by direct comparisons to Monte Carlo simulations of fluence in multi-layered tissue models.

Methods
Theory.  In highly scattering turbid media such as biological tissue, the steady-state diffusion equation37

can be used to approximate light propagation in random turbid media where � , D = 1/(3µ′
s) , µa , and µ′

s denote 
the fluence rate, the diffusion coefficient, the absorption coefficient, and the reduced scattering coefficient, 
respectively37. The fluence can be used to calculate the diffusely reflected or transmitted intensity which are the 
quantities usually experimentally measured13. We assume an incident beam can be approximated by an isotropic 
point source located at a distance of z0 = 1/µ′

s from the incident surface. Using an integral transform, Eq. (1) can 
be solved in the spatial-frequency domain under extrapolated boundary conditions considering stacked layers 
of distinct absorption and scattering properties of arbitrary thickness as shown in Fig. 123,37. For the special case 
of a point source incident onto the center top of the cylinder, the fluence in the k th layer can be expressed in real 
space after applying an inverse finite Hankel transform23,37 by

where Jm is the Bessel function of first kind and order m and sn is determined from the roots of Jm such that 
Jm(a

′sn) = 0, n = 1, 2, ..., where n is the n th root of Jm . z is the detector depth within the medium in cylindrical 
coordinates such that �1(z = 0) is used for reflection calculations and �N (z = L) where L is the sum of all the 
layer thicknesses is used for transmission. The extrapolated boundary is determined with a′ = a+ zb where a 
is the radius of the cylinder and zb = 2AD where A is proportional to the fraction of photons that are internally 
reflected at the boundary12. Gk represents the Green’s function in the k th layer which must be solved separately for 
each layer. Derivations of Eq. (2) are given in Appendix A of the Supplementary material along with the explicit 
expressions of Gk in the topmost and bottommost layers. Applying inverse transforms directly to Gk as previously 
given23,37 can lead to numerical overflow for large layer thicknesses, scattering coefficients, and frequencies. To 
overcome these issues, we give expressions for Gk in terms of exponentially decaying terms that will not cause 
numerical overflow for large arguments and do not require any approximations.

Time-domain solutions are often computed using the inverse Fourier transform by using the substitution 
µa → µa + iω/c and computing the real and imaginary parts of the fluence in the frequency domain at many 
frequencies (400–4000)23,35. As these Fourier integrals are slow to converge and can rapidly oscillate, the number 

(1)D∇2�(�r)− µa�(�r) = −S(�r)

(2)�k(ρ) =
1

πa′2

∞
∑

n=1

Gk(sn, z)J0(snρ)J
−2
1 (a′sn)



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:18979  | https://doi.org/10.1038/s41598-022-22649-4

www.nature.com/scientificreports/

of nodes needed for Gaussian integration methods are highly dependent on input parameters which makes the 
Fourier integral difficult to accurately and efficiently compute35. Instead, an inverse Laplace transform with 
iω → s̄ can be used and numerically integrated along a complex contour35,36. Utilizing a contour that begins and 
ends in the left hand plane Re z → −∞ forces a rapid decay of the integrand making for easier and faster numeri-
cal integration by using trapezoidal rules36. The corresponding solution for the time-domain fluence is then

where B denotes the Bromwich path with s̄ being a complex number along the contour. A single contour is 
considered for rapid evaluation of the fluence at many time points for t ∈ (t1, t2)

35,36. The full derivation of the 
time-domain solution shown in Eq. (3) along with details of the numerical Laplace transform are provided in 
Appendix B of the supplementary material.

Numerical algorithm and verification.  To calculate the steady-state fluence in real space, a finite inverse 
Hankel transform (Eq. (2)) must be numerically computed. While calculation of solutions in the time-domain 
requires Eq. (2) to be evaluated at N complex valued absorption terms during the numerical inversion of the 
Laplace transform in Eq. (3). The numerical accuracy and efficiency of the procedure depend on the convergence 
and difficulty of computing the two sums. Since both the computation of the steady-state and time-domain 
fluence depends on Eq. (2), the accuracy and computational speed depend primarily on how many terms n of 
the infinite sum are retained in Eq. (2). To allow for computation over an arbitrary number of terms we have 
expanded the hyperbolic functions given previously23 in terms of exponential functions which also reduces the 
computational time by simplifying the expressions. Additionally, we have precomputed the roots of J0 and devel-
oped a custom procedure for calculation of J0(x) which reduces the computational time substantially.

As exact, closed-form solutions for the photon fluence in layered media are not available, we validate our 
solutions in layered media to closed-form homogeneous solutions for semi-infinite media13. In these validations, 
each layer in our tissue-model was set to have the same optical properties as the homogeneous medium along 
with large lateral boundaries. This allows us to precisely quantify numerical errors and determine convergence of 
our solutions in terms of the number of terms retained in the sum in Eq. (2). We first compare Eq. (2) evaluated 
with 2 and 8 layers of similar optical properties to the semi-infinite solution13 and to Monte Carlo simulations 
in a semi-infinite medium. Next, we compare the accuracy of Eq. (2) as a function of the number of terms n 

(3)�k(ρ, t) =
1

πa′2

∞
∑

n=1

1

2π i

[
∫

B
es̄tGk(sn, z, s̄) ds̄

]

× J0(snρ) J
−2
1 (a′sn)

Figure 1.   Schematic of a cylindrical turbid medium with an arbitrary number of layers and thickness where the 
source term is located on the center of the cylinder top ( ρ0).



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18979  | https://doi.org/10.1038/s41598-022-22649-4

www.nature.com/scientificreports/

considered in the summation for different input parameters µ′
s1 , µ

′
s2 , µa1 , µa2 , z, and a. The accuracy is compared 

to the computation when using n = 50,000 terms in quadruple precision.
Solutions in the time-domain require computing both the infinite sum in Eq. (2) as well as numerically 

performing the inverse Laplace transform in Eq. (3). Strategies to invert the Laplace transform could allow for 
significantly faster convergence compared to the Fourier transform35,38, however the obtention of the inverse 
Laplace transform is not always an easy or even possible task to perform38. Therefore, the accuracy of the numeri-
cal approach to invert the Laplace transform must be rigorously tested. We focus on two attributes in performing 
the numerical integration in Eq. (3) that affect both the convergence and numerical accuracy: (a) the number 
of Laplace space evaluations N used to evaluate the Laplace integral in Eq. (3) and (b) the contour width deter-
mined from � = t2/t1 where t ∈ (t1, t2) . The effect of both of these parameters on the convergence and numeri-
cal accuracy are again examined by comparison to closed-form homogeneous analytical solutions. We show 
the reconstruction of the time-domain signal for high scattering and high absorbing media at short and long 
distances and times where the numerical reconstruction has been difficult to perform32,35. We have included in 
Appendix A extended discussion on how to efficiently compute Eq. (2), which also directly affect the computation 
of Eq. (3), and the advantages compared to other routines21. Additionally, we give approximations for reflectance 
simulations ( z = 0 ) that are accurate for double precision arithmetic (see Supplementary Fig. S3) which can 
decrease the computational time by 2–3 orders of magnitude.

All the numerical routines and figures presented here were developed using the Julia programming language 
(v1.7.0)39. Numerical simulations were performed on a MacBook Pro with an Apple M1 chip (MacOS version 
11.1) and 16 GB of memory. Simulations in the steady-state utilized a single core while the inverse Laplace 
transform in the time-domain used multi-threaded parallelism. Here, the Laplace space evaluations were evenly 
distributed across the 4 cores and 8 threads of the M1 chip. All benchmarks are done in double precision arith-
metic using v0.8.0 of LightPropagation.jl.

Validation with Monte Carlo.  To validate the derived analytical solutions, the fluence is compared with results 
obtained from Monte Carlo simulations. The Monte Carlo method simulates the propagation of photons through the 
scattering medium using appropriate probability functions and random number generation15,16. In the limit of an infi-
nitely large number of photons used in the simulations, the Monte Carlo method is an exact solution of the RTE15. We 
utilized an independent open-source Monte Carlo code provided by the Virtual Photonics Technology Initiative40 to 
validate the layered diffusion theory model. The optical properties used were taken from literature using three biologi-
cally relevant tissue models with an isotropic emitting source at a depth of z0 = 1/µ′

s1 and a Henyey-Greenstein phase 
function. The anisotropic factor was assumed to be g = 0.8 for all layers. The Monte Carlo simulations used 5× 107 
photons for each simulation which visually reduced the effect of stochastic noise for all bin widths in the spatial and 
time domain. For all comparisons the refractive index of the medium is assumed to be nr = 1.4 where the external 
medium is assumed to be air nr = 1.0 . The fluence as a function of t and/or ρ and z was recorded in discrete bin widths 
of �t = 0.02 ns, �ρ = 0.99 mm, and �z = 0.27 mm.

Results
Numerical accuracy of the layered diffusion equation.  In Fig. 2, the fluence on the top boundary 
( z = 0 ) in a semi-infinite medium with optical coefficients µa = 0.1 cm−1 , µ′

s = 10 cm−1 , g = 0.8 , nr = 1.4 is 
simulated using Monte Carlo methods in the steady-state and time-domain. We compare the results to solutions 
of the diffusion equation in a semi-infinite medium13 and to Eqs. (2) and (3) when solved for a 2 and 8 layered 
medium with the same optical coefficients in each layer. Here, we used a cylinder radius of a = 20 cm and a 
total cylinder length L of 10 cm (i.e., the thickness of each layer in the 2 and 8 layered model was 5 and 1.25 cm, 
respectively) to approximate a semi-infinite medium. As previously shown13, diffusion theory exhibits excellent 
agreement with relative errors ( |1−�DT/�MC |) < 0.05 compared to Monte Carlo simulations given enough 
scattering events. Equation  (2) also shows excellent agreement to the closed-form semi-infinite solution13 in 
both the steady-state and time-domain giving similar relative errors to the Monte Carlo results.

In contrast to the semi-infinite solution13, the numerical accuracy of Eq. (2) is affected by the termination of 
an infinite sum after n terms. For example, given a large amount of terms ( n ≈ 1500 ), the layered simulations 
shown in Fig. 2 can approximate the closed-form semi-infinite solution close to the limits of the numerical 
precision (detailed below). In practice, the sum should be terminated once a desired precision is reached. For 
example, to achieve similar relative tolerances to the Monte Carlo results in Fig. 2a, the steady-state fluence used 
n = 500 for ρ < 2 cm, n = 1000 for ρ < 7 cm, and n = 1500 for ρ < 10 cm whereas in Fig. 2b we use just n = 50 
for both the 2 and 8 layer simulations in the time-domain for ρ = 1.5 cm. In general, to simulate lower fluence 
values a larger number of roots in Eq. (2) will be required to achieve similar relative errors. Consequently, the 
number of terms n required in Eq. (2) will be dependent to varying degrees on the input optical properties and 
cylinder dimensions considered.

In Fig. 3, we investigated the convergence properties of Eq. (2) as a function of the number of terms n 
used in the summation. We considered an example 2-layer medium with baseline optical properties of 
µ′
s1 = µ′

s2 = 10 cm−1 , µa1 = µa2 = 0.1 cm−1 , ρ = 1.0 , l = (0.1, 20) cm, z = 0 cm, and a = 8 cm. The flu-
ence was calculated as a function of summation terms n ∈ (50, 3500) for varying ranges of 6 input parameters 
( µ′

s1, µ
′
s2, µa1, µa2, z, a ) while keeping all other variables constant. The absolute difference between this calcula-

tion which was done in double precision and a calculation done in quadruple precision with n = 50,000 is shown 
in Fig. 3. The convergence of Eq. (2) is highly dependent on the scattering coefficient in the first layer µ′

s1 as seen 
in Fig. 3a. Increasing µ′

s1 severely diminishes the convergence of Eq. (2) when z = 0 (see Supplementary material 
in Appendix A for extended discussion). On the other hand, for the range of values shown here, µa1, µa2 , and µ′

s2 
had a negligible effect on the convergence. There is a close relationship between µ′

s1 and z as shown in Fig. 3a,e and 
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their effect on the convergence of Eq. (2). When z ≈ z0 with z0 = 1/µ′
s1 , Eq. (2) requires a high number of terms 

to converge. This is also the primary reason why increasing the scattering coefficient also requires significantly 
more terms when z = 0 as z0 ≈ z . Additionally, increasing a results in slower convergence due to smaller values 
of sn during the sum. The routine can be made accurate down to absolute errors of the machine precision used 
in the calculation. For example, Fig. 3 was calculated using double precision arithmetic with machine precision 
ǫ ≈ 10−16 . The loss of precision in calculating J0(snρ) in Eq. (2) is the primary limitation of the routine. For 
typical µ′

s1 found in biological tissue ( µ′
s1 < 50 cm−1 ), n < 1000 is usually sufficient. For example, only 50 terms 

were used in Fig. 2b resulting in similar relative errors compared to Monte Carlo simulations when using 5000 
terms. However, the numerical procedure should check for convergence during the summation of Eq. (2) so that 
n can be dynamically determined during the routine.

The accuracy of the time-domain solution given in Eq. (3) is affected by both the termination of the sum in 
Eq. (2) as previously discussed and the numerical inversion of the Laplace integral in Eq. (3). We focus on two 
main attributes for the convergence of the inverse Laplace transform: (a) the hyperbola contour size (propor-
tional to � = t2/t1 ) and (b) the number of Laplace space evaluations N used to evaluate the Laplace integral 
in Eq. (3) by comparing the time-resolved fluence simulated with Eq. (3) to the semi-infinite solution13. The 
fluence is simulated at ρ = 1 cm on the top boundary ( z = 0 ) using a 4-layer model with layer thicknesses of 
lk = (0.5, 1.5, 3.0, 5.0) cm, µ′

s = 10 cm−1 and µa = 0.1 cm−1 with a radius of 15 cm to approximate a semi-infinite 
geometry. Typically, the time-domain signal is required at many values in some range t ∈ (t1, t2) where it becomes 
significantly more efficient to use a single contour for all time points35.

In Fig. 4a, we show the absolute (top) and relative (bottom) errors between Eq. (3) and the semi-infinite 
solution13 at a single instant of time t = 1.0 ns as a function of N, for four different values of � . Variable values of 
� are achieved by using different t1 values of 1.0, 0.1, 0.01, and 0.001 ns such that �t1 = 5 ns is fixed and t = 1 ns 
is within the bounds of (t1, t2) . The absolute errors were similar for any t value within t ∈ (t1, t2) while the relative 
error was dependent on the value of t (i.e. larger relative errors are observed at long times when the fluence is 
lowest). Less than 20 Laplace evaluations were needed to give absolute errors < 10−8 even for large values of � . 
We can also see that the sum exponentially converges allowing it to be accurately computed with the midpoint 
rule41. The main limitation is that the function must be evaluated at very small and large values along the contour 
which leads to floating point errors limiting the procedure to absolute errors approaching the machine preci-
sion. Additionally, the evaluation points along the contour depend on N which can not be reused for different 
values of N. Therefore, for the best computational performance N must be determined before the computation.

In Fig. 4b, we considered a single contour � = 200 to reconstruct 600 time points in t ∈ (0.03, 6.0) and we 
show these for four different values of N. A larger N improved the overall accuracy and was relatively independent 

Figure 2.   Equations (2) and (3) computed for both 2 and 8 layers agree with Monte Carlo simulations within 
relative errors of 0.05 which matches the errors achieved with the semi-infinite (SI) solution13. We show the (a) 
steady-state and (b) time-resolved fluence calculated with Monte Carlo simulations and diffusion theory for 
a semi-infinite medium with optical coefficients µa = 0.1 cm−1 , µ′

s = 10 cm−1 , g = 0.8 , nr = 1.4 and z = 0 
cm. We considered the same optical properties in each layer and laterally infinite geometries in (2) and (3) to 
approximate semi-infinite media. The relative error between the diffusion theory results and Monte Carlo are 
shown below.
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of the time point t ∈ (0.03, 6.0) for a given N. For larger contours � = t2/t1 a higher number of N are needed 
to reconstruct the time-domain signal over the whole time window t ∈ (t1, t2) for a given absolute error. For 
example, Fig. 4b shows the same � but reconstructs the time-domain signal for different values of N. However, 
smaller values of N are not able to reconstruct accurately over the entire time window due to the lower fluence 
values �(ρ, t) at later times. A given N reconstructs the time-domain signal over the entire window at a relatively 
fixed absolute error. Therefore, larger relative errors will be observed at later times when the fluence is lowest.

We note that calculations in Fig. 4b are only shown up to the point where the time-domain signal is not 
accurately reconstructed. Therefore, it is recommended to use a t1 as late as possible and choose N based on the 
dynamic range of time-domain signal required. For example, 12 Laplace evaluations were typically required to 
reconstruct the time-domain signal with a dynamic range of 3 orders of magnitude where 24 evaluations can 
provide roughly 6 orders of magnitude which represent typical dynamic ranges of time-domain systems8,42. 
Increasing the number of evaluations does not decrease absolute errors once the errors reach the machine pre-
cision. Coincidentally, we have found that the numerical inversion of the Laplace transform is also limited by 
absolute errors approaching the machine precision, similar to the numerical computation in the spatial domain.

Figure 3.   The rate of convergence of the infinite sum in Eq. (2) depends mostly on input parameters µ′
s1 , z 

(detector depth), and a (cylindrical radius) while showing little dependence on µa1 , µa2 , and µ′
s2 . We show the 

absolute error between Eq. (2) when calculated in quadruple precision using n = 50,000 and when calculated 
in double precision as a function of the number of terms n used in (2) for different values of (a) µ′

s1 , (b) µa1 , (c) 
µ′
s2 , (d) µa2 , (e) z, and (f) a. We fix the other properties to µ′

s = 10 cm−1 , µa = 0.1 cm−1 , l = (1.0, 20.0) cm, 
a = 10 cm, and ρ = 1 cm.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:18979  | https://doi.org/10.1038/s41598-022-22649-4

www.nature.com/scientificreports/

Figure 4.   (a) The (top) absolute and (bottom) relative errors for the time-domain reconstruction at a single 
time value t = 1 ns in (t1,�t1) between the time-domain solution in Eq. (3) and the semi-infinite solution as a 
function of the number of Laplace space evaluations N. Larger contour sizes ( ∝ � ) require higher values of N 
to reach similar accuracies. (b) Reconstruction of the time-domain signal at 600 time points in t ∈ (0.03, 6.0) 
corresponding to � = 200 considering four different values of N. The semi-infinite solution is shown as black 
circles with the resulting absolute error between the semi-infinite and layered solution shown in the bottom plot. 
The absolute error is dependent on N, which is similar for all time values considered in t ∈ (t1, t2).

Figure 5.   Equation (3) can be computed to absolute errors up to the machine precision compared to 
homogeneous closed form models at high scattering over a wide range of times and distances away from 
the source. (a) Time-resolved fluence from a 4-layered highly scattering media with optical properties µ′

s = 
80.0 cm−1 and µa = 0.1 cm−1 at ρ = 0.2 and ρ = 3.5 cm. Computation was performed using double precision 
arithmetic. (b) Time-resolved fluence at the top boundary of a 4-layered media with optical properties µ′

s = 10.0 
cm−1 and µa = 0.6 cm−1 at ρ = 3 and ρ = 6 cm. Computation was performed using octuple precision arithmetic. 
The semi-infinite solution is shown as markers with the absolute error between the two solutions shown below.
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The previous examples have focused on modest values of µ′
s , µa, ρ , and layer thicknesses. In Fig. 5, we 

reconstruct the time-domain signal for high scattering media and large layer thicknesses over a wide range of 
times which has previously been previously difficult due to numerical overflow29–31. In Fig. 5a, the time-domain 
signal on the top boundary ( z = 0 ) for a high scattering medium µ′

s = 80 cm−1 and µa = 0.1 cm−1 at ρ = 0.2 and 
ρ = 3.5 cm is shown. We considered a 4-layered medium with the same optical properties in each layer with layer 
thicknesses lk = (0.5, 1.5, 3.5, 30.0) cm and a cylinder radius of 15 cm for comparison to a semi-infinite model13. 
We used n = 1000 roots in Eq. (2) with N = 24 Laplace evaluations at ρ = 3.5 cm and N = 72 evaluations at ρ 
= 0.2 cm. Although the fluence at ρ = 0.2 cm is significantly larger, we considered t ∈ [0.004, 6.0] resulting in a 
� = 1500 whereas at ρ = 3.5 we considered t ∈ [0.8, 6.0] giving � = 7.5 . This again highlights that the number 
of Laplace space evaluations is highly dependent on � . Even considering a very large layer thickness l4 = 30 
cm and large reduced scattering coefficient µ′

s = 80 cm−1 , the time-resolved fluence can be easily simulated in 
double precision arithmetic, very close to the source, and at both early and late times.

In Fig. 5b we show calculation of the time-domain fluence at the surface ( z = 0 ) for very low fluence values 
from a high absorption medium ( µ′

s = 10.0 cm−1 and µa = 0.6 cm−1 ) at two detector locations of ρ = 3.0 cm 
and 6.0 cm and for t ∈ [0.1, 6.0] . These calculations were performed in octuple precision using N = 168 Laplace 
evaluations and only n = 600 roots in Eq. (2) which reconstructed the time-domain signal over 50 orders of 
magnitude in dynamic range with high numerical accuracy. The absolute error is relatively constant for t ∈ (t1, t2) 
which leads to a higher relative error at lower fluence values. An increase in amount of Laplace evaluations is 
needed for very low fluence values and can also be observed by extrapolating the asymptote of convergence in 
Fig. 4 to very low absolute errors. Lastly, the roots of J0 must be calculated in higher precision to achieve the 
shown absolute errors.

Comparison to Monte Carlo simulations.  Next, we compared the solutions obtained from Eqs.  (2) 
and  (3) to Monte Carlo simulations for both the steady-state and time-domain. We consider three different 
tissue geometries that are of high clinical interest and have been extensively used to model light propagation in 
different organ systems previously: a 2-layer model24, a 3-layer model representing a skin/fat/muscle layer32, and 
a 5-layer brain model43 representing a scalp, skull, cerebrospinal fluid (CSF), and a gray and white matter layer.

The optical properties considered in the 2-layer model are µa1 = 0.2 cm−1 , µa2 = 0.1 cm−1 , µ′
s1 = 13 cm−1 , 

and µ′
s2 = 12 cm−1 with layer thicknesses of l1 = 6 mm and l2 = 90 mm. We report the optical properties of the 

3-layer muscle and 5-layer brain model in Table 1. For all tissue models, we consider the index of refraction for 
each layer to be nr = 1.4 with the external index of refraction being air ( nr = 1 ). The anisotropy g = 0.8 was 
consistent for all layers in the Monte Carlo simulations. In all cases we compare the fluence on the top bound-
ary ( z = 0 ) as a function of ρ for the steady-state calculations and as a function of t in the time-domain for 
ρ = 0.45, 1.45, and 3.05 cm.

In Fig. 6, we compare the steady-state and time-domain fluence when simulated using the Monte Carlo 
method and diffusion theory. The left column shows the steady-state fluence �(ρ) for ρ ∈ (0.15, 10) cm simu-
lated using Eq. (2). Excellent agreement (relative errors < 0.1 ) is observed for all three tissue models, however 
the agreement is not uniform. The 2-layer model showed the best agreement for all values of ρ where the results 
asymptotically agreed with the Monte Carlo method. The 3-layer muscle model showed good agreement for 
ρ < 5 cm, but did not asymptotically agree. These results are consistent with recent reports45 that showed a break-
down in diffusion theory when the mean free path approaches the thickness of the top layer. Here, a top layer 
thickness of 1.2 mm was used. Although the significance of these errors were not studied on the reconstruction 
of optical properties, the relative errors between Monte Carlo solutions are less than 0.1 for ρ < 6 cm. Diffuse 
optical measurements are not usually collected at such large distances due to low signal to noise. A similar effect 
is observed in the brain model Fig. 6e where agreement (relative error < 0.1 ) is observed for ρ < 6 cm, how-
ever longer distances show higher errors. These errors can be mostly attributed to the limitations of diffusion 
theory to accurately model the low scattering CSF layer44. Our analytical solutions utilized µ′

s = 3.5 cm−1 to 
most accurately model the low scattering CSF layer with diffusion theory as previously suggested44, though the 
choice of µ′

s significantly affects the resulting fluence calculated with diffusion theory for ρ > 6 cm. If µ′
s is less 

than 4 cm−1 , a severe overestimation of the fluence is seen. Practically, for ρ > 6 cm it may become unrealistic 
to consider the CSF and other brain layers as parallel planes. We note that all models had similar disagreements 
for ρ < 0.5 cm which is a known limitation of diffusion theory13.

In the right column of Fig. 6, we show the time-domain fluence for ρ = 0.45, 1.45, 3.05 cm simulated using 
Eq. (3) and compare to Monte Carlo results. The 2-layer model is well approximated by diffusion theory in the 
time-domain for each value of ρ given enough scattering events illustrated by the uniform agreement across 
a wide range of time values. As in the spatial domain, the time domain results for the 3-layered model do not 
asymptotically converge to Monte Carlo simulations due to the small top layer thickness. The agreement is not 
uniform for each value of ρ as shorter distances are better approximated until much later arrival times. This is in 
contrast to the 5-layer model where the errors are relatively flat at all times and distances. This could be attrib-
uted to only presenting results in the time-domain for ρ < 3.05 cm, whereas the effect of the low scattering CSF 
layer is more significant for ρ > 6 cm. We note that the precise choice of µ′

s in the CSF layer for the distances 
and times shown do not significantly affect the time-domain simulations compared to the steady-state results. 
Additionally, decreasing the discretization of t, ρ and z and simulating for more photons in the Monte Carlo 
method will reduce the noise, however, smaller discretization will not improve agreement between diffusion and 
Monte Carlo where they do not asymptotically agree.

Computational time.  In Table 2, we show the amount of time in microseconds to compute the steady-state 
fluence in the top layer, �1(ρ, z = 0) , for a given number of terms n considered in the sum in Eq. (2) for 2, 4, 
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Figure 6.   Comparison of the (left column) steady-state and (right column) time-domain fluence using 
diffusion theory (lines) simulated using Eqs. (2) and (3) and the Monte Carlo method (symbols) for the tissue 
geometries representing a (top row) 2-layer, (middle row) 3-layer muscle, and (bottom row) 5-layer brain tissue 
models. The relative error between the Monte Carlo results and diffusion model are shown in the plots below. 
The diffusion approximation displayed relative errors less than 0.1 over a large domain of arguments suggesting 
it could be used in a variety of diverse tissue geometries.
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8 and 16 layers. Different values of optical properties do not significantly affect the computation time (when n 
is fixed), which is instead dependent on the number of roots n used in the sum. Though, increasing n does not 
linearly increase the computational time as shown in Table 2 because it is faster to compute J0(snρ) at large argu-
ments with asymptotic expansions. This affects the total run time because the calculation of J0(snρ) accounts for 
nearly 40 % of the run time where the computation of G1(sn, z) takes most of the remaining time. For realistic 
applications where less than 1000 roots are needed, the fluence can be calculated in less than ≈ 100 μs for up to 
8 layers.

The time-domain routine must compute the steady-state routine for N ( ≈ 12−24 ) complex absorption val-
ues. This procedure lends itself well to parallelism as each computation is independent and can be used at each 
time point needed. Therefore, performance is limited by the runtime listed in Table 2, however using a complex 
absorption term increases the runtime by 2.5×. In Table 3, we show the runtime in microseconds for the time-
domain fluence as a function of the Laplace space evaluations N for 2 and 4 layered media considering n = 600 
roots in Eq. (2) and 1024 time points. We note that the time values do not have to be linearly spaced as when 
using the Fast Fourier Transform.

If a dynamic range of 3 orders of magnitude is needed ( N ≈ 12 ), the fluence can be simulated in less than 300 
μs. The performance in the time-domain is highly dependent on the CPU used and its multi-core performance. 
When using an Intel CPU 8700k with 6 cores and 12 threads the runtimes can be decreased by 30% compared to 
using a MacBook Pro M1 as shown in Tables 2 and 3. The number of Laplace evaluations used should be in mul-
tiples of the available number of threads. We note that the load times for multi-threaded applications represent 
a significant portion of the total runtime. For a low number of Laplace evaluations (< 16) these computational 
times can be reached within 2× using a single core. The advantage of these procedures is that rapid simulation 
can be performed on a personal laptop while allowing for time-domain runtimes to be significantly reduced 
with higher end CPUs.

Discussion and conclusion
Limitations of homogeneous tissue-models to describe light transport in layered biological media have been dis-
cussed previously4,46. Although analytical models that incorporate heterogeneous optical properties are becoming 
more frequent30,47,48, their use, particularly in inverse calculations, is limited by their numerical accuracy and 
efficiency29. Therefore, homogeneous models are typically used given their simplicity and efficiency in solving 
inverse problems that require 100–1000 evaluations of the forward model to reach convergence. Neural net-
works can also be used to quickly ( ≈ 50 ms) estimate tissue optical properties in inverse problems49. However, 
they require long training times and are roughly 1000× slower than the presented analytical model for forward 

Table 1.   Optical properties and layer thicknesses for the 3 layer skin/fat/muscle32 and 5 layer brain tissue used 
in the Monte Carlo simulations43. The diffusion model utilized the same parameters except a µ′

s = 3.5 cm−1 
was used in the CSF layer44.

Skin, fat, muscle model32 Brain model43

µa cm
−1

µ
′

s cm
−1 l (cm) µa cm

−1
µ
′

s cm
−1 l (cm)

Skin 0.15 15 0.12 Scalp 0.18 19 0.5

Fat 0.02 12 0.38 Skull 0.16 16 0.8

Muscle 0.2 5 10.0 CSF 0.04 0.25 0.2

– – – – Gray 0.36 22 0.5

– – – – White 0.14 9.1 4

Table 2.   Number of microseconds to compute steady-state fluence where n is number of roots in Eq. (2).

Layers n = 100 n = 500 n = 1000 n = 5000

2 8 33 64 268

4 9 38 75 341

8 13 60 118 469

16 19 93 184 850

Table 3.   Number of microseconds to compute the time-domain fluence where N is the number of Laplace 
space evaluations.

Layers N = 8 N = 16 N = 32 N = 64

2 262 490 930 1860

4 298 558 1090 2130
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calculations49,50. Several solutions for photon diffusion in layered media have been reported, but present technical 
difficulties for numerical computation. We have investigated a previously developed model23,37 that has received 
wide interest30,47,48,51. However, the model relies on numerical inverse transforms for obtaining the photon fluence 
for both steady-state and time-domain simulations which limits the numerical accuracy and speed. For example, 
the computation of the steady-state fluence requires the inversion of a Bessel-type 1-D inverse transform (Eq. 2) 
over the k th root of the zeroth order Bessel function J0 . The discrete version has several advantages compared to 
using Gaussian integration21,24 as the roots can be precomputed to improve the overall speed of the routine and 
can be implemented with strict convergence criteria for accurate computation over a wide range of input argu-
ments using a variable number of roots. This is important because the convergence of Eq. (2) is highly dependent 
on the model inputs (Fig. 3), where different optical properties and tissue geometries require a different number 
of roots to be used. However, these expressions require numerical integration over hyperbolic functions that can 
numerically overflow for large input arguments or at large roots of J0.

In this work, we provide numerically stable expressions for the Green’s functions in terms of exponentially 
decaying functions, which facilitates accurate computation for large input arguments (e.g., scattering, layer 
thickness, spatial frequency) over any root of J0 without approximations or loss of generality that are usually 
required to numerically compute Eq. (2)30,31. As shown in Fig. 3, the accuracy and speed of computed solutions 
is determined by the number n of roots used in the sum in Eq. (2) which is most dependent on µ′

s1 , a, and z. In 
practice, the values used for the cylindrical radius of the tissue-model a (Fig. 3f) should be kept as small as pos-
sible to increase convergence but should be large enough to accurately represent lateral boundary conditions. 
Although the total number of n largely dictates the speed and accuracy of the routine, the algorithm is limited 
to simulating Eq. (2) with absolute errors up to the machine precision in the calculation. This is largely due to 
the finite precision used in the calculation of J0(snρ) in Eq. (2) which is limited to absolute tolerances approach-
ing the machine precision. For higher precision calculations, it is important to calculate the roots of J0 in the 
desired precision to simulate fluence values down to the machine precision. For experimental measurements 
with background noise, fluence values below the epsilon value of double precision ( ǫ ≈ 10−16 ) are rarely needed. 
Additionally, computing J0 accounts for the majority of the routine’s runtime especially when the fluence is 
required at multiple spatial locations, as is the case in many tomography52 or functional imaging53 applications. 
New numerical routines for the computation of J0 were developed that decrease computational time by at least 
3×54 compared to using standard routines55. An advantage of the routine presented is that computing the fluence 
at 10 arbitrarily specified spatial locations takes only 3× longer than the times reported in Table 2. Although 
it can be difficult to directly compare computational times of different routines, as they depend highly on the 
computational resources and effort put into them, we were able to simulate the steady-state fluence 500–1000× 
faster than previously reported21,51. We note that these times are achieved on a personal laptop using a single core.

Computation of the time-domain signal requires an additional inverse time transform which is usually per-
formed with the Fourier Transform30. Here, we have used the inverse Laplace transform35,36 for faster and more 
accurate reconstructions of the time-domain signal. We have found that 12–24 terms in the Laplace integral 
are needed in Eq. (3) to reconstruct the time-domain signal with dynamic ranges of 3–6 orders of magnitude, 
which is the range of current experimental systems8,42. Due to the decreased number of evaluations needed 
in the inverse time transform, the computational times for time-domain simulations are 1000–10,000× faster 
than what is usually reported depending on the number of layers considered and accuracy required23,26,33. Most 
of the performance gain can be attributed to utilizing the faster converging Laplace transform instead of the 
Fourier transform35 while other improvements come from other numerical optimizations for the steady-state 
calculation and threaded parallelism as further discussed in Appendix A in the Supplementary material. The 
Laplace transform can also evaluate the time-domain fluence up to absolute errors approaching the machine 
precision as shown in Fig. 4. The number of terms needed in the Laplace transform for adequate convergence 
will depend highly on the contour size � = t2/t1 which is recommended to be kept as small as possible for faster 
reconstructions.

A primary limitation of the layered solutions presented here is that a large amount (500–5000×) of terms 
are required in the computation of Eq. (2) when z = 0 which is required for reflectance calculations. As seen in 
Fig. 3, increasing the top layer scattering coefficient will significantly increase the number of terms required in 
Eq. (2), while the convergence is mostly independent of deeper layer optical properties. This can be explained by 
the slow convergence of the particular solution of the Green’s function when z ≈ 1/µ′

s1 . When z is farther away 
from the source depth z0 as seen in Fig. 3e, only a few terms are needed. However, if we approximate that z ≈ z0 , 
it becomes possible to sum the particular solution of the Green’s function exactly which improves convergence 
significantly. We present detailed derivations of this approximation in Appendix A in the Supplementary material 
and show that such an approximation when µ′

s1 > 2 cm−1 and z = 0 can simulate the fluence with relative errors 
down to 10−14 (Supplementary Fig. S3), which is as accurate as the exact forms in double precision arithmetic due 
to floating point errors. Therefore, it is highly recommended to use such an approximation in double precision 
arithmetic which can decrease computational times by 2–3 orders of magnitude depending on the input µ′

s1 , 
allowing for computation of the steady-state fluence in less than a microsecond (Supplementary Fig. S4). This 
approximate form also allows for very accurate simulation for large scattering coefficients where it is difficult for 
the exact expressions to converge due to the slow exponential decay of the sum.

Finally, in addition to testing the numerical accuracy and efficiency, we have tested the physical approximation 
of diffusion theory compared to the Monte Carlo method by using three previously reported layered tissue models 
that approximate several different organ systems24,32,43. We note that solutions to the RTE in layered media have 
been presented which are more accurate than the diffusion approximation but, like Monte Carlo methods, come 
at increased computational cost45. Additionally, the situations presented in Fig. 6 represent the simplest forms of 
heterogeneous media consisting of layered slabs which may be a rather crude approximation of complex biologi-
cal media. Though, the use of such a simple approximation has been shown to provide similar accuracy to more 
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realistic tissue geometries in a brain model using atlas based meshes3. The primary disadvantages of diffusion 
theory are the inability to correctly predict photon fluence for short time scales and source-detector separations 
and the requirement that µ′

s >> µa
10,11. A recent report also indicated that the diffusion approximation could 

increase inaccuracies far away from the source in layered models where layer thicknesses are small compared to 
the mean scattering length45. We found that for a top layer thickness of 1.2 mm, these predictions were in agree-
ment with the results reported in Fig. 6, but we also find that such errors were only significant at distances of 
ρ > 5 cm for steady-state calculations. These errors were not apparent in the time-domain for ρ = 0.45, 1.45, 3.05 
cm when t < 4 ns (Fig. 6). We also find that our solutions from diffusion theory agree well with Monte Carlo 
simulations for a 5-layer model of the brain even when considering a thin CSF layer of low scattering (Fig. 6).

In conclusion, we have developed and verified an open-source, easy-to-use numerical algorithm to accurately 
and efficiently compute solutions of the diffusion equation in layered media. The absolute errors of the routine 
can be made arbitrarily accurate and can simulate both the steady-state and time-domain fluence 3 to 4 orders 
of magnitude faster than previously reported. Therefore, the routine could be used in inverse procedures to 
recover optical properties of measured data in real-time (1–10 Hz). It can also be employed for rapid generation 
of the intensity profile in layered media at multiple spatial locations and varying optical properties, as required 
in tomography and functional imaging applications. These solutions are also easily amendable to solve the cor-
relation diffusion equation in layered media. An additional advantage of the routine is that the computational 
time marginally increases with the addition of a new layer, as a 4-layered medium can be computed within 10% 
of the time to compute 2-layers. This could allow for more accurate simulations in highly layered media such as 
the brain at little cost to total run times. Additionally, we showed good agreement between diffusion theory and 
Monte Carlo simulations in three separate tissue geometries of clinical interest.

Code availability
All software used in this manuscript are freely available online with documentation at https://​github.​com/​helto​
nmc/​Light​Propa​gation.​jl. The code for the numerical inversion of the Laplace Transform is also available at 
https://​github.​com/​helto​nmc/​Lapla​ce.​jl along with several other algorithms not shown in this manuscript to 
invert the Laplace transform. The code for calculating Bessel’s functions is available at https://​github.​com/​Julia​
Math/​Besse​ls.​jl.
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