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Abstract: Diffuse correlation spectroscopy (DCS) has widely been used as a non-invasive optical
technique to measure tissue perfusion in vivo. DCS measurements are quantified to yield
information about moving scatterers using photon diffusion theory and are therefore obtained
at long source-detector separations (SDS). However, short SDS DCS could be used for measuring
perfusion in small animal models or endoscopically in clinical studies. Here, we investigate the
errors in analytically retrieved flow coefficients from simulated and experimental data acquired
at short SDS. Monte Carlo (MC) simulations of photon correlation transport was programmed to
simulate DCS measurements and used to (a) examine the accuracy and validity of theoretical analyses,
and (b) model experimental measurements made on phantoms at short SDS. Experiments consisted
of measurements from a series of optical phantoms containing an embedded flow channel. Both
the fluid flow rate and depth of the flow channel from the liquid surface were varied. Inputs to
MC simulations required to model experiments were obtained from corrected theoretical analyses.
Results show that the widely used theoretical DCS model is robust for quantifying relative changes in
flow. We also show that retrieved flow coefficients at short SDS can be scaled to retrieve absolute
values via MC simulations.
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1. Introduction

Diffuse correlation spectroscopy (DCS) is a well-established optical technique capable of sensing
blood flow in biological tissue using multiply scattered light and has widely been applied to quantify
tissue perfusion in vivo [1–13]. The light source used in DCS is a long coherence length laser, which is
delivered to a medium of interest through a large-core optical fiber while the back-scattered (reflected)
intensity is collected using a small-core (single mode) fiber, placed at a fixed distance (the source-detector
separation SDS) from the center of the source fiber. The detected signal is transmitted to a photon
counter that in turn is electronically coupled to a hardware correlator board [14,15]. Experimental DCS
measurements yield the normalized intensity autocorrelation function, g2(τ) measured for a given fiber
geometry, which in turn is quantified by fitting via an analytical expression to extract flow-dependent
coefficients that characterize the dynamically scattered photon transport [15–17].

Theoretically, solutions to the unnormalized field correlation G1(τ) are found by considering it to
be governed by the modified photon diffusion equation[
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2
0〈∆r2(τ)〉

]
G1(r, τ) = S(r) (1)
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As discussed previously [15–17], D in Equation (1) is the photon diffusion coefficient of the medium
(determined from its absorption and reduced scattering coefficients µa, µ′s as D = [3(µa + µ′s)]

−1).
〈∆r2(τ)〉 is a correlation-time (τ) dependent term and represents the ensemble-averaged, mean-squared
displacement of moving scatterers in time τ. k0 is the wave-vector associated with the laser source and
S(r) describes the spatial geometry of the source to be modeled [15]. Two models are commonly used
for 〈∆r2(τ)〉: the Brownian flow model (where 〈∆r2(τ)〉 = 6DBτ) with Brownian flow coefficient DB;
the random flow model (where 〈∆r2(τ)〉 = V2τ2) where V is the average volumetric flow-speed of the
scattering particles [5,15,16,18–20].

In a semi-infinite turbid medium, for a collimated pencil-beam input, closed form analytical
solutions to G1(τ) in cylindrical geometry is given by

G1(τ) =
1

4πD

[
exp(−K(τ)·r1)

r1
−

exp(−K(τ)·r2)

r2

]
(2)

Here, K(τ) is dependent on the medium’s absorption, scattering and correlation-transport
properties as K(τ) = 3µaµ′s + µ′s

2k2
0∆r2(τ). r1 and r2 are given as r2

1 = ρ2 + z2
0 and r2

2 = ρ2 + (z0 + zb)
2,

where ρ is the SDS (i.e., the distance from the detection point on the surface of the semi-infinite medium
and the collimated input source). z0 and zb are dependent on the medium’s optical properties (via the
boundary conditions specified) as z0 = 1/µ′s and zb = 2AD and A is obtained from the relative refractive
index between the medium and detector, as discussed previously [17,19,21]. To match theoretical
predictions to experimental measurements the unnormalized field correlation G1(τ) is transformed
into the normalized intensity correlation via the Siegert relation, which gives that g2(τ) = 1 + β|g1(τ)|

2,
where g1(τ) = G1(τ)/G1(0), and β is a scalar constant that depends on detection geometry [15,16].

Equation (2) is derived from the formalism of photon diffusion theory and as such would be
expected to carry constraints on its validity (dictating geometry of measurements and the choice of
laser wavelengths) [22–26]. To satisfy these constraints, experimental measurements of DCS typically
use long SDS (>1 cm) and near-infrared laser sources. However, there could be clinical opportunities
for using endoscopically compatible DCS probes to assess tissue perfusion in vivo, which will need to
use short SDS for signal acquisition. Further, recent reports have employed DCS measurements at
short SDS (<1 cm) for quantifying tissue perfusion in small animal models [27–31]. Surprisingly, these
studies all reported that the classical diffusion-theory based theoretical expression in Equation (2) still
provided good parametrization of relative changes in tissue perfusion even at short SDS used. Here,
we further investigate the utility of Equation (2) to parametrize absolute and relative changes in flow
in turbid media measured experimentally data in controlled flow-phantoms at short SDS. Additionally,
we also investigate the use of Equation (2) to parametrize numerically simulated data at short SDS.

Monte Carlo (MC) based modeling of photon migration provide direct, numerical solutions to the
radiative transport equation and have been extensively used in the field of tissue spectroscopy [32].
They are well developed and have been used to quantify experimental measurements of diffuse
reflectance obtained in phantoms, animal models and human studies [33–37]. MC simulations can
be programmed to incorporate heterogeneous tissue architectures and can be used to accurately
model diffuse reflectance and correlation even at short SDS [32,38]. Thus, MC based photon transport
methods have been used to compute normalized field correlation in semi-infinite media, simulate
intensity correlation decays in complex layered scattering media and to validate improved theoretical
models [31,38–42].

Here, we first examine the impact of using Equation (2) to quantitatively retrieve 〈∆r2(τ)〉 from
g1(τ) that were simulated using MC models of semi-infinite media spanning a range of absorption,
scattering and Brownian flow diffusion coefficient DB at varying SDS. Next, we acquired DCS
measurements at a fixed short SDS of 0.15 cm, experimentally, in a set of flow-phantoms that included
an embedded flow-channel (containing the same liquid as the phantom). The phantoms were designed
to investigate how two physical parameters—the depth of the flow-channel from the optical probe and
the flow type and rate of fluid in the channel—influenced DCS measurements obtained on the surface.
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In Section 2, we describe the experimental methods used including the instrumentation, the design
of liquid phantoms and the construction of the flow-channel. We then outline the MC modeling
approach to simulate photon correlation transport and the tissue models simulated for analysis, discuss
the use of Equation (2) to parametrize simulated and experimental data and provide a description of
the goodness-of-fit metrics used. Section 3 presents the results of the analysis of the MC simulations
of semi-infinite models, followed by results from theoretical analysis of the experimental phantom,
and then show the comparison between MC models developed to simulate experimental measurements
on flow phantoms.

2. Materials and Methods

2.1. Experiments

2.1.1. Instrumentation

Experimental DCS measurements were obtained using a home-built system that employed a
stabilized diode laser centered at 785 nm and coherence length of nearly 3 m (I0785SH0100B-TH-L;
Innovative Photonic Solutions, NJ, USA) as the source. The laser was coupled into one end of an SMA
terminated fiber (diameter 200 µm, NA 0.22) of a fiber optical probe. The sampling end of the probe
consisted of a detector fiber (diameter 8.2 µm) and was custom-fabricated (Gulf Photonics, Oldsmar,
FL, USA) with SDS of 0.15 cm. The distal end of the detector fiber was optically coupled to a single
photon counting module (ID100; ID Quantique, Geneva, Switzerland), which in turn was electronically
connected to a digital correlation board (LS Instruments, Fribourg, Switzerland). The correlator
was controlled by a computer and recorded DCS scans as normalized intensity autocorrelation
functions, g2(τ).

2.1.2. Liquid Phantoms

Liquid phantom media with required optical properties were prepared by mixing pre-determined
volumes of an absorbing solution (with negligible scattering) and scattering solution (with negligible
absorption), and diluting the resulting solution with deionized (DI) water, using protocols described
previously [33,43]. A suspension of 1.0 µm diameter polystyrene microspheres (Polybead microspheres,
07310, Polysciences Inc., Warrington, PA, USA) was used as the scatterer and its scattering coefficient was
calculated from Mie theory [44]. The absorber solution was prepared by dissolving bovine hemoglobin
(H3760; MilliporeSigma, MO, USA) in DI water, whose absorption coefficient was experimentally
measured using a transmission spectrophotometer (Cary 100 UV-Vis, Agilent Technologies, Wilmington,
DE, USA). The volume-fractions of absorber and scatter mixed together determined the absorption
and scattering coefficient of the final solution [33]. The liquid media used for phantoms were prepared
with absorption coefficient of µa = 0.075 cm−1 and reduced scattering coefficient µ′s = 12 cm−1. These
values for absorption and scattering at 785 nm (the laser wavelength) are within ranges previously
reported for different tissue types including bone, abdomen and white matter of the brain [45–47].

2.1.3. Flow-Chamber Description

Figure 1a shows a photograph of the phantom used and its schematic illustration in Figure 1b.
A plastic chamber with dimensions of 5.5 cm × 5.5 cm × 1.0 cm was filled with the liquid phantom
described above (having µa = 0.075 cm−1; µ′s = 12 cm−1 at 785 nm) and the chamber was placed atop a
homogenous solid phantom block with similar optical properties as the liquid phantom at 785 nm.
The chamber housed a clear plastic tube (inner diameter = 1.6mm, outer diameter = 3.2 mm; 8000–0004;
Thermo Fisher Scientific Inc., Miami, OK, USA) that was attached to two opposite sides of the chamber
using moldable glue (Sugru; FormFormForm Ltd., London, UK) and ran along the bottom surface
of the plastic chamber, parallel to one edge. One end of the plastic tube was connected to a syringe
pump (75900–00; Cole Parmer, Vernon Hills, IL, USA) that was controlled via software to produce a
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given volume flow rate F, while the other end of this tube drained into a sink. Assuming laminar flow,
the pump flow rate was converted to an average fluid flow speed in the channel as F = VchA, where A
is the cross-sectional area of the channel and Vch the flow speed. Since the same liquid phantom added
to the chamber was also loaded into the syringe pump, both the actively pumped and surrounding
liquid media had identical optical transport coefficients. F was set via software to one of four values:
F0 (pump turned off; 0 mL/h), F1 (1.44 mL/h), F2 (3.60 mL/h) or F3 (5.76 mL/h). Given a circular tube
of radius 0.08 cm, the average channel flow speeds were calculated to be 0.02 cm/s, 0.05 cm/s and
0.08 cm/s at F1, F2, and F3, respectively. These flow rates gave speeds in ranges reported for moving
red blood cells in capillaries [48].
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Figure 1. Photograph of the phantom flow chamber (a) and schematic of the flow chamber’s construction
and measurement system (b). The gray arrows in (b) show the direction of the fluid flow. The flow
rate F was controlled using a motorized syringe pump (see text). h is the distance from of the liquid
surface to the top of the flow channel, which was controlled by addition of specific volumes of the
liquid phantom to the chamber. The chamber (edges shown as thick black lines in (b) was placed atop
a homogeneous tissue phantom block with optical properties matched to the liquid phantom at the
laser wavelength. The DCS probe was positioned directly above the flow channel and at center of the
flow chamber.

2.1.4. Phantom Preparation and Measurement Protocol

Two primary parameters were varied in the flow phantoms as shown in Figure 1b—the volume
flow rate F through the flow channel and the depth D of the flow channel from the fluid surface.
The flow rate F was cycled through for four rates (F0–F3), for four cycles. The depth of the flow-channel
from the liquid surface was held fixed (from D0 to D3) for each flow speed cycle.

The plastic flow chamber had equal length and breadth (L = 5.5 cm), thus addition of a given
volume v of liquid to the chamber would raise the height of the fluid surface by ∆h = v/L2. For the
first phantom to be measured, the chamber was filled with prepared liquid media such that liquid
surface was visually assessed to have just submerged the flow channel. The depth of the flow channel
for this first phantom was assumed to be D0. DCS measurements were acquired in this phantom by
cycling through the four different flow rates (F0–F3), giving four measurements (labeled D0F0–D0F3).

Next, 1.0 mL of phantom was added to the container, which was estimated to increase the depth
of the channel from the surface by approximately ∆h = 0.03 cm, as done previously [49]. The depth of
the flow channel from fluid surface was D1 = D0 + ∆h. DCS measurements were acquired for a full
cycle of pump volume flow rates (F0–F3) and gave phantoms D1F0–D1F3. The process was repeated
twice—each time, 1 mL of liquid was added to the chamber (increasing depth of channel by 2∆h and
3∆h). Thus, DCS measurements were obtained for 16 phantoms, corresponding to each depth and
flow-rate used and were sequentially measured in sets of 4, starting from D0F0-D0F3 and ending in
D3F0-D3F3. It is worth noting that this experimental protocol implied that in all but the first set of four
measurements, the pump had been active for at least one cycle of operation before additional media
was added to the chamber (i.e., D1F0 was measured chronologically after D0F3).
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2.1.5. Data Acquisition

For each phantom, prepared phantom liquid media (with viscosity nearly that of water) was
added to the container, stirred gently and allowed to come to rest (3–5 min). DCS measurements were
obtained by moving the optical fiber probe vertically toward the liquid surface. The probe was situated
at the center of the phantom container and oriented such that the line connecting the center of the source
and detector fiber was perpendicular to the flow channel and was positioned using custom probe
holder (mounted on a linear optical stage that allowed the probe head to be moved away or toward
the liquid surface). Once the liquid phantom was prepared, the probe was moved till it just broke
the surface tension of the liquid medium. Five scans were recorded for each phantom with changing
flow condition. Each DCS scan was acquired for 1s and had count rates ranging between 80–100 kHz.
The probe was then removed, new media added, and the process repeated for depths D1–D3.

2.2. Monte Carlo Simulations of Correlation Transport

Light propagation in tissue-like media can be numerically simulated by construction of stochastic
trajectories of individual photon packets, where the variables governing the evolution of these
trajectories are determined by an input tissue model’s optical properties and sampled using MC
techniques [32,50]. In these simulations, several (106–108) individual photon packets are launched and
aggregate quantities of interest (such as the photon flux, fluence, absorbance and fluorescence) are
tracked spatio-temporally, for a given tissue model. For the studies here, we modified a time-resolved
MC photon transport model (previously described in detail [49,51]) to include simulate of photon field
correlations in reflection geometry. We note that MC modelling of photon transport in scattering media
are well discussed elsewhere [50,51], and we therefore confine description of aspects pertinent only to
tracking of field correlations in the MC model.

Correlation transport was integrated into the MC model by adding a new variable (programmed
into the simulation) to track the field correlation carried by each photon packet, as it was transported
from the source to the detector, following the methodology described before [15,39,40]. To track the
decay of the normalized photon-field correlation g1(τ), it was assumed that moving particles were
uniformly distributed in each tissue layer modeled, moved uncorrelated to each other and that all
photon scattering events were from dynamically moving particles. Under those conditions, g1(τ) was
expressed as

g1(τ) = exp
[
−

1
6

q2
〈∆r2(τ)〉

]
(3)

In Equation (3), 〈∆r2(τ)〉 represents the mean-squared displacement term of particles contributing
to dynamic scattering in time τ, while q is the magnitude of momentum transfer due to a scattering
event. Each scattering event undergone by a photon packet tracked in the MC simulation provides

specific q associated with it. Thus, in the geometry of the MC model, if
→

k 1 and
→

k 2 represented
directions associated the incoming and scattered photon packets, then q2 = 2k2(1− cosθ), where θ

is the single-scattering angle (i.e., the angle between
→

k 1 and
→

k 2) sampled by the MC model, for the

photon packet being tracked [15,40]. Since |
→

k 1| = |
→

k 2| = k = 2π/λ, and λ (the wavelength of the
laser) is known, Equation (3) was used to update this variable, through the flight of the photon packet
simulated using

gN+1
1 (τ)→ gN

1 (τ)· exp
[
−

1
6

q2
·∆r2

i (τ)
]

(4)

In Equation (4) the superscripts N and N + 1 refer to the field correlation variable (for a given
photon packet within the MC simulation) before the Nth and (N + 1)th scattering event, respectively
with q2 being computed at the Nth scattering event. ∆r2

i (τ) was the mean-squared displacement of
the scattering particles in layer i (where the scattering event occurred) and was set either to 6DBτ for
Brownian flow, or to V2τ2 for random flow [15]. Thus, inputs to the MC simulations (for each layer)
required flow coefficients DB (or V2) together with the layer optical properties. ∆r2

i (τ) in Equation (4)
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was computed (depending on inputs either as Brownian or as Random flow) dynamically, through the
path of each photon packet tracked.

Each photon packet launched had initial value of g1
1(τ) = 1. If a photon packet exiting the medium

was detected by the simulation, the photon packet’s field correlation variable was multiplied with the
exiting photon weight (to account for all path-length dependent absorption losses) and accumulated
into a global field correlation variable, g1(τ, ρ), where ρ indexed the spatial detector location for
the exiting photon. At the end of the simulation, g1(τ, ρ) was normalized such that g1(0,ρ) = 1
(i.e., g1(τ, ρ) was divided by the number of photons detected, for each detection-bin). The MC model
used here yielded surface reflectance g1(τ, ρ) for photons exiting into annular, concentric rings on the
surface of the medium (ρ identifies the distance of the collection annulus from relative to a source at
the origin).

2.3. Tissue Models Simulated

2.3.1. Semi-Infinite Models

The first set of simulations consisted of 210 runs modeling different semi-infinite media with
each run producing g1(τ) for 20 SDS (uniformly spaced between 0.1–2 cm). The optical properties
of the media simulated obtained by permuting through five scattering coefficients (µ′s: 3 − 15 cm−1),
seven absorption coefficients (µa: 0.05 − 0.5 cm−1) and six Brownian flow coefficients (DB: 5 × 10−9–3
× 10−8 cm2/s) following the ranges as reported recently [31]. These MC simulations were compared
against theoretical calculations to assess both the predictions of theory (forward model), as well as
parametrization of the simulations (inverse model), as described in Section 2.4.

2.3.2. Three-Layer Models

The second set of MC simulations modeled experimental measurements. Each measurement from
a phantom (for given depth and flow speed) was modeled as a 3-layered slab (following the schematic
in Figure 1b). Layer 1 was liquid covering the flow chamber, whose layer thickness represented depth
of channel from surface. Layer 2 was the flow channel having fixed thickness of 0.15 cm (to match
the inner diameter of the tubing used) and Layer 3 representing the solid phantom block (thickness
of 5 cm).

We note that this modeling architecture does not account for the plastic tube-wall (present
experimentally). Modeling the tube wall as an additional layer with (with low values of absorption,
scattering and Brownian correlation-decay coefficient relative to the liquid layer) did not change
simulated outputs relative to an equivalent 3-layer model and thus we chose to represent flow phantoms
as a 3-layer model. Since Layer 1 and Layer 2 contained the same liquid medium, and since the
optical coefficients for Layer 3 (solid block) was similar to that of the liquid phantom, we modeled all
layers as having identical transport coefficients and refractive indices, matching those of the liquid
phantom used.

Table 1 shows the required inputs (with values for experimentally known parameters) needed to
simulate photon correlation from the three-layer phantom models. In Layers 1 and 3 the correlation
flow coefficients were modeled as diffusive with a given Brownian diffusion coefficient; for Layer 2 it
was modeled as diffusive only when the pump was inactive (phantom F0). The flow in Layer 2 was
modeled as random flow, when the fluid was actively pumped. The Brownian flow-coefficient inputs
for layers 1 and 3 were kept fixed for all flow speeds (for fixed depth). Input values of all Brownian
flow coefficients needed were obtained using theoretically analyses (described in Section 3.3.1).

Increasing depth of the flow channel were modeled via MC simulations by increasing the
thickness of Layer 1 (from z1 = D0) in increments of 0.03 cm, to match experimentally expected values.
The thickness of layer 1 at depth D0 needed to be empirically determined (described in Section 3.3.2).
Changes in channel flow rates were modeled by varying flow coefficients used for Layer 2 such that
the relative change in flow F2/F1 and F3/F1 in the MC models matched experiments. The flow speed in



Appl. Sci. 2019, 9, 3047 7 of 21

Layer 2 at flow rate F1 (1.44 mL/h) was needed and was also empirically determined (described in in
Section 3.3.2). MC predictions of g2(τ) simulated for experimental phantoms were obtained for the
experimental SDS of 0.15 cm.

Table 1. Optical coefficients used for simulations of three-layered tissue models.

Layer # µa (1/cm) µs (1/cm) g Refractive Index, n z1 (cm) 〈∆r2(τ)〉

Layer 1

0.075 120 0.9 1.35

h 6DBτ

Layer 2 0.15 6DBτ or
V2τ2

Layer 3 5 6DBτ

2.4. Theoretical Analyses

Both the simulated and measured data were presented as normalized intensity field correlation
for theoretical analyses. Since measurements provide normalized intensity correlations, the theoretical
unnormalized field correlation from Equation (2) was transformed into the intensity correlation via the
Siegert relation (g2(τ) = 1 + β|g1(τ)|

2) as mentioned before [15,16] and thus experimental data were
fitted using Equation (2) via a non-linear least-squares optimizing algorithm (lsqcurvefit in MATLAB)
to retrieve coefficients describing 〈∆r2(τ)〉 and β.

Two functional forms used previously to describe 〈∆r2(τ)〉 were used—the Brownian flow model
or the random-flow model [16,17]. When scatterers are assumed as moving diffusively in the medium
〈∆r2(τ)〉 = 6DBτ. Scatterers moving under actively pumped flow are modeled as random flow with
〈∆r2(τ)〉 = V2τ2. These two flow models can also be combined together as a shear-flow model where
the mean squared displacement contains both terms, 〈∆r2(τ)〉 = DBτ+ V2τ2 [52]. Experimental data
were analyzed using three flow models: for Brownian flow model DB was obtained, for the random
flow the speed of the particles V was obtained, and for the shear-flow model both coefficients DB

and V were obtained. All other variables needed to evaluate Equation (2)—i.e., the optical properties
of the medium, SDS, refractive index of medium and detector—were set matched to experimentally
used values.

Equation (2) was used in two ways to analyze MC simulated data. The first (as forward model)
was to employ it to calculate G1(τ) from inputs of a given simulation, to match it directly against to MC
simulations (at any needed SDS). The second way was as the inverse model as used for the analysis of
experiments. However, to keep this procedure identical to processing of experimental data, simulated
g1(τ) data were first translated into g2(τ) (using a fixed value of β = 0.48) before least-squares fitting.
As in the experimental analysis, the fit coefficients describing ∆r2(τ) and β were obtained. All other
variables needed to evaluate Equation (2)—i.e., the optical properties of the medium, SDS, refractive
index of medium and detector—were matched to simulated inputs.

2.5. Goodness-of-Fits: Fit Residuals

The results of fitting the measured, simulated and calculated correlation functions across the
different experimental phantoms and MC models were quantified by using a non-negative scalar

value χ2, as a measure of the goodness-of-fit. This was calculated as χ2 =
∑M

m=1

[
gmeas

2 (τm) − g f it
2 (τm)

]2
,

where gmeas
2 was the intensity correlation (measured or simulated) and g f it

2 was the fitted intensity
correlation (using Equation (2) or simulated). A perfect fit would have χ2 = 0, and thus the lower the
χ2 the better the goodness-of-fit. The index m corresponds to discrete correlation-time bins (as output
by the hardware correlator using a multi-tau data accumulation scheme). For analysis here, there were
a total of M = 178 logarithmically spaced bins (i.e., the correlation times were evenly spaced on a log
scale), matching experimental data with τ1 = 1 µs and τM = 1 s.
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3. Results

3.1. Simulations in Semi-Infinite Phantoms

3.1.1. Forward Theoretical Calculations vs. Simulations

Figure 2 presents direct comparisons of MC simulated g2(τ) (symbols) and forward calculations
using Equation (2) (lines). Each plot shows data from five different tissue models (squares: µ′s = 3/cm;
triangles: µ′s = 6/cm; circles: µ′s = 9/cm; asterisks: µ′s = 12/cm; diamonds: µ′s = 15/cm). Figure 2a,b show
data for media with absorption µa = 0.05/cm, at SDS of 0.15 and 1.5 cm respectively. All simulated
and theoretical models shown in Figure 2 had fixed Brownian flow coefficient of DB = 2 × 10−8 cm2/s.
Data in Figure 2c,d) are for media with higher absorption µa = 0.42/cm, at same SDS as Figure 2a,b
respectively. The χ2 fit-residuals are shown within legends for each simulated model in Figure 2a and
d and are in accordance with known limitations of diffusion theory—i.e., data simulated for long SDS
were fit better Figure 2c,d, relative to data from shorter SDS Figure 2a,c and simulated media with
lower albedo (where the albedo a = µ′s/(µ′s + µa)) were fit worse relative, to media with higher albedo.Appl. Sci. 2019, 9, x 8 of 21 
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Figure 2. MC simulations (symbols) and forward theoretical calculations using Equation (2) (lines) for
media with low and high absorption (top and bottom rows) at SDS of 0.15 and 1.5 cm (left and right
columns). Each figure shows data for 5 media with varying scattering distributed between µ′s = 3/cm
(squares) to µ′s = 15/cm (diamonds).

3.1.2. Fitting Simulations Using Theory

Direct calculations of g2(τ) from diffusion theory deviated at short SDS relative to MC predictions,
but Equation (2) could be instead used to freely fit simulated data for DB the Brownian diffusion flow
coefficient as described in Section 2.4. Symbols in Figure 3a–d show the same simulated data as in
Figure 2a–d, respectively, while lines show fitted diffusion theory calculations. It is clear that the
theoretical data fit simulations near perfectly, even at short SDS of 0.15 cm Figure 3a,c and for low
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albedo media. Although the numerical fits in Figure 3 matched numerical simulations much better
than direct forward calculations Figure 2, these numerical fits are obtained at the cost of errors in
retrieved flow coefficients.Appl. Sci. 2019, 9, x 9 of 21 
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Figure 3. MC simulations (symbols) with fitted curves using Equation (2) (lines) via optimizing for 
the Brownian flow coefficient 𝐷 (inverse model) to minimize 𝜒ଶ residuals. Simulated data shown 
in (a,d) are identical (in the same order) as Figure 2a,d. Data in (a,c) are for SDS of 0.15 cm (at low and 
high absorption coefficients respectively), while data in (b,d) are for SDS of 1.5 cm. 
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Figure 3. MC simulations (symbols) with fitted curves using Equation (2) (lines) via optimizing for the
Brownian flow coefficient DB (inverse model) to minimize χ2 residuals. Simulated data shown in (a,d)
are identical (in the same order) as Figure 2a,d. Data in (a,c) are for SDS of 0.15 cm (at low and high
absorption coefficients respectively), while data in (b,d) are for SDS of 1.5 cm.

3.1.3. Errors from Theoretical Fits

In Figure 4, retrieved values of the absolute Brownian flow coefficients (from each fit) are shown
as contour maps from 35 simulations (spanning 7 absorption and 5 scattering coefficients) with fixed
Brownian flow coefficient DB = 2 × 10−8 cm2/s, for three different SDS (Figure 4a: SDS = 0.15 cm;
Figure 4b: SDS = 0.45 cm; Figure 4c: SDS = 0.75 cm). With decreasing SDS, the retrieved values of DB

increased from its expected (known) value of DB = 2 × 10−8 cm2/s. Figure 4d–f show the same data as
Figure 4a–c, but as percent-errors relative to the true input value (of DB = 2 × 10−8 cm2/s). As seen
before, errors associated with retrieved flow coefficients were highest for small SDS and low albedos.
These data also indicate that extracted DB depended on the optical properties of the media, and the
SDS used.

Figure 5 shows the averaged percent-error for extracted DB with varying SDS, for the six DB

coefficients simulated (squares: 5 × 10−9 cm2/s; up-triangles: 1 × 10−8 cm2/s; circles: 1.5 × 10−8 cm2/s;
asterisk: 2 × 10−8 cm2/s; diamonds: 2.5 × 10−8 cm2/s; down-triangles: 3 × 10−8 cm2/s). For each line
(i.e., at fixed DB), the percent errors at each SDS shown in Figure 5 was the mean across all 35 simulated
models (spanning seven µa and five µ′s values with given DB), while error-bars are standard-deviations.
Abscissa of each line (for each DB) are shown staggered in Figure 5 to show six distinct markers, since
the computed errors (and distributions) were nearly identical across all DB values. In other words,
the percent-error in retrieved DB was independent of the flow coefficient used and only depended on
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the optical properties of the medium and the SDS used. These data are in agreement with findings
published in a recent report that investigated short separation DCS with MC simulations [31].
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3.1.4. Relative Changes in Flow Coefficients: Simulations vs. Theory 

Even though there were errors in absolute values of retrieved 𝐷 coefficients when simulations 
at high albedo and/or short SDS were fit with Equation (2), relative changes in derived flow 
coefficients could be compared in media with given (fixed) optical scattering and absorption but 
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Figure 4. Retrieved flow coefficients obtained via using Equation (2) to fit simulations (top-row) and
corresponding percent-errors (bottom-row) for 35 different MC simulations spanning seven µa and
five µ′s values and fixed DB = 2 × 10−8 cm2/s. Data are shown as contour maps for 3 different SDS
(left column: SDS = 0.15 cm; middle column: SDS = 0.45 cm; right column: SDS = 0.75 cm). Note that
the color-bar scale is fixed for the top row but changes across SDS for the bottom row.
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Figure 5. Percent-errors in retrieved Brownian flow coefficient DB with varying SDS from analysis
of simulations. Lines show data for 6 simulated DB coefficients (identified in the legend). Symbols
represent mean percent errors calculated across all available simulations for given SDS and DB,
while error bars shows standard deviations. Data for each point (in each line) was computed across
35 simulations run (see text) with varying absorption and scattering. The lines were identical to each
other and are shown staggered only for visual clarity.

3.1.4. Relative Changes in Flow Coefficients: Simulations vs. Theory

Even though there were errors in absolute values of retrieved DB coefficients when simulations at
high albedo and/or short SDS were fit with Equation (2), relative changes in derived flow coefficients
could be compared in media with given (fixed) optical scattering and absorption but changing DB.
Figure 6 shows the mean relative change in extracted DB coefficient, at three different SDS—where the
relative change in DB at each SDS, was calculated as the ratio of the retrieved DB coefficient for a given
simulation (i.e., for given medium optical coefficients), by the DB retrieved from a matched simulation
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but with DB = 5 × 10−9 cm2/s. The mean value of the relative changes in DB thus calculated across each
of the 35 simulations (spanning all 7 µa and 5 µ′s coefficients) are shown by three bars, each for different
SDS in Figure 6. The red asterisks indicate error bars computed as the standard deviation across each
of these 35 simulations and were nearly zero, indicating that predicted relative changes in DB values
from theoretical analyses, were near exactly as modeled by the simulations, across all SDS.
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Figure 6. Relative change in extracted flow coefficients (relative to values obtained from media
simulated with DB = 5 × 10−9 cm2/s) at three different SDS. The true relative change in DB (x-axis) was
obtained from input values to simulations, while the derived values (y-axis) were obtained from fitted
coefficients (see text).

3.1.5. Scaling Factors: Linearly Correcting Retrieved DB Coefficients

Given relative changes in DB could be computed across optically identical media but with different
flow coefficients, we derived correction factors (for each medium with given optical coefficients and
required SDS). These correction factors were calculated as the ratio of the simulated (input) Brownian
flow coefficients simulated, to the flow coefficient retrieved via fitting the simulation using Equation (2).
Thus, retrieved DB coefficients, for any medium, could be appropriately scaled and corrected to
estimate an absolute flow coefficient. Figure 7 shows the correction factor maps obtained (across the
35 simulated media) at two different input DB coefficients (Figure 7a,c: DB = 1 × 10−8 cm2/s; Figure 7b,d:
DB = 3 × 10−8 cm2/s) for two different SDS (Figure 7a,b: 0.25 cm; Figure 7c,d: 1.05 cm). The similarity
of these derived correction factors in Figure 7a–d indicate that they were nearly identical for either
flow coefficient. Since a correction factor of unity would indicate that retrieved flow coefficient was the
same as that modeled, the correction factors in Figure 7a,b (short SDS) are correspondingly lower, than
those for Figure 7c,d (longer SDS).

Figure 8a shows the average absolute values of retrieved DB coefficients, across the 6 different sets
of simulations (with each set having fixed DB ranging from 5 × 10−9 cm2/s through 3 × 10−8 cm2/s in
intervals of 5 × 10−9 cm2/s), for four SDS (squares: 0.15 cm; triangles: 0.55 cm; circles: 1.05 cm; asterisks:
1.95 cm). The error bars show the standard deviation in retrieved DB values across the 35 simulated
media with varying optical properties (the dashed line is y = x). Figure 8b shows the average absolute
value of the corrected DB coefficients, for the same data shown in Figure 8a where each retrieved flow
coefficient was corrected by multiplication with correction factors derived. Correction factors for each
tissue model and SDS were obtained from the set simulations with input DB = 3 × 10−8 cm2/s. As was
seen previously in Figure 6, corrected flow coefficients yielded values that were near exactly identical
to the true (input) value for DB, across all DB coefficients.
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Figure 7. Scaling (correction) factors determined using simulations at two SDS (top: 0.25 cm; bottom:
1.05 cm) shown for two different media with two different flow coefficients (left: DB = 1 × 10−8 cm2/s;
right: DB = 3 × 10−8 cm2/s). Each panel shows data for 35 MC simulations spanning seven µa and five
µ′s values (see text). Note that the color-bar scale changes for data in top and bottom rows.
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Figure 8. Estimated Brownian flow coefficients vs. simulated values. (a) shows the coefficients 
obtained directly by fitting simulated data, where each line shows data for different SDS. Symbols 

Figure 8. Estimated Brownian flow coefficients vs. simulated values. (a) shows the coefficients obtained
directly by fitting simulated data, where each line shows data for different SDS. Symbols were average
values obtained from 35 simulated media having fixed DB (but changing optical properties); errorbars
show standard deviations. (b) shows the same data in (a) after appropriate scaling by correction factors
(see text). The errorbars in (b) are smaller than the size of symbols shown and different lines (for
different SDS) are shown staggered only for clarity. The dashed line in Figure 8a,b shows y = x.

3.2. Diffusion-Theory Based Analysis of Experiments

3.2.1. Flow Models for Fitting Experimental Data

As described above, experimental phantoms included a flow channel with the fluid in the channel
being either actively pumped (flow phantoms F1–F3) or with pump turned off (flow phantom F0) and
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were designed to examine the impact of flow dynamics on DCS measurements. However, theoretical
fits to these data could be obtained by using the Brownian flow model (〈∆r2(τ)〉 = 6DBτ), the random
flow model (〈∆r2(τ)〉 = V2τ2) or the shear-flow model (〈∆r2(τ)〉 = DBτ+ V2τ2).

Figure 9a,b show theoretical fits (lines) to an experimental acquisition of g2(τ) (symbols) when
the pump was switched off (phantom D0F0 Figure 9a) and when pump flow rate was F3 = 5.76 mL/hr
(phantom D0F3, Figure 9b). Theoretical fits for the three different flow models used are shown by
lines (dash-dotted: Brownian flow; solid: random flow; dashed: shear flow). As seen visually (and
by χ2 residuals in figure legends), the fits to data are poor for the random flow model in Figure 9a
and for the Brownian flow model in Figure 9b, while they are excellent for the random flow model in
Figure 9b and for the Brownian flow model in Figure 9a. Given that experimentally measured g2(τ)

had markedly different decay profiles (by design) in these two phantoms, the results are as anticipated.
The shear-flow fit was however able to fit both experimental flow profiles with (χ2 <0.01) and all
experimental data presented below were analyzed using the shear-flow model. This fitting process
yielded flow coefficients DB and V, corresponding to the diffusive and the bulk flow components,
respectively, for each phantom.
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Figure 9. Experimental data (symbols) and fits using Equation (2) for three different flow models
(dash-dotted: Brownian; solid: Random; dashed: shear) for two different flow phantoms. (a) shows
representative data in phantom D0F0 (pump flow turned off) while (b) shows data from phantom D0F3

(highest pump flow).

3.2.2. Absolute vs. Relative Flow-Coefficients in Phantoms

Figure 10a shows extracted DB coefficients in phantoms vs. the experimentally controlled pump
flow rate. Each symbol-line shows data at fixed channel depth (squares: depth D0; triangles: depth D1;
circles: depth D2; asterisks: depth D3). The derived Brownian flow coefficients DB decreased with
increasing flow rates, when the flow channel depth was shallowest, while it increased with increasing
flow, as the height of the liquid surface above the flow channel was raised. Figure 10b shows the
extracted speed of the moving particles V from phantoms vs. changing fluid flow speed in the channel.
Each symbol-line shows data for fixed channel depth (as in Figure 10a). The pump-flow rate, F shown
in Figure 10a was converted to a fluid flow speed in the channel (as described in Section 2.1.3) using
F = VchA, where A was area of a tube with diameter equal to the inner diameter of the flow channel
(0.16 cm). The derived speed of moving particles on the other hand increased with increasing fluid
flow speed for the shallow channel depths (squares and triangles in Figure 10b). However, the derived
flow speed did not increase linearly with pump flow rate in phantoms with deeper channels (circles
and asterisks in Figure 10b).

Since the fluid flow in the channel was well-controlled experimentally, we examined relative
changes in flow coefficients in the phantoms with actively pumped flow (i.e., across F1–F3). Relative flow
rates in experiments were calculated as ratio of the pump flow rates of F2/F1 and F3/F1 corresponding
to relative flow rates of 2.5 and 4, respectively. Relative changes in phantoms (at each channel depth)
were calculated by dividing derived flow coefficients by the flow coefficients obtained for phantoms
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at pump flow F1. These data are shown in Figure 10c (for the Brownian flow coefficient ratios) and
in Figure 10d (for the shear-flow speed coefficient ratios). Figure 10c,d only show three flow speeds
(at each depth) as it does not include data from phantoms when the pump was inactive.
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the retrieved Brownian diffusion DB and flow speed V, for each phantom. Each line shows fixed
channel depth (shown in legend), symbols show mean values and error bars are standard deviations
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3.3. Simulating Experimental Data Using MC

DCS measurements made on the experimental phantoms were modeled using MC simulations and
required input coefficients to describe the phantom model (as described in Section 2.3). These modeling
results are presented as two separate cases below, corresponding to phantoms with active flow (pump
turned on) and those with inactive flow (pump turned off). In both these cases, the optical transport
coefficients and refractive indices for all layers in the tissue model were set to optical coefficients and
refractive index of the liquid phantom used, the thickness of layer 2 was matched to the flow channel
diameter, and thickness of layer 3 was set to 5 cm (as noted in Table 1). Four input coefficients needed
to be determined for simulating each MC phantom tissue model: the height of the liquid layer h above
the flow channel, and the three flow coefficients for each of the three phantom tissue model layers.

3.3.1. Modeling Phantoms with Inactive Flow

The correlation transport coefficients in each layer of the simulated phantoms when the pump
was inactive (i.e., for flow F0 phantoms), were treated as identical across layers and were each set
to the same Brownian flow coefficient DB. Since the fluid in the channel was identical to the liquid
media above it, the three-layer model in this case was equivalent to a semi-infinite medium and used
h = 0. The input value of DB to the MC phantom tissue model was derived by correcting the Brownian
flow coefficient obtained from theoretical fitting—i.e., the retrieved DB from experimental fits was first
multiplied by 0.83 (the correction factor) and then used as input to the MC model. This correction
factor was obtained from previously run semi-infinite MC simulations (described in Section 3.1.5 and
Figure 7), at the optical transport coefficients of the liquid phantom (µa = 0.075/cm and µ′s = 12/cm),
at the experimentally employed SDS (0.15 cm).
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Since variations were observed in DB coefficients across phantoms D0F0 −D3F0, (as seen in
Figure 10a), the input Brownian coefficients for MC phantom models simulating different channel
depths were obtained by correcting DB from experimentally fitted data from each phantom at F0,
at each channel depth. Thus, the DB coefficient obtained from the four phantoms D0F0 −D3F0 were
each multiplied by 0.83 to create input values to MC simulations (since phantoms had same optical
properties and were measured at fixed SDS, they had the same correction factor). Figure 11a–d show
representative g2(τ) data measured in phantoms (symbols), the corresponding theoretically Brownian
flow model fitted using Equation (2) (dashed line), and predicted using MC simulations (solid line),
for phantoms D0F0 −D3F0, respectively. It is worth noting that the theoretical lines were obtained by
fitting the measured data, while the MC data were directly computed (for given inputs). Table 2 lists
the values of the input coefficients used in these simulations.
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Figure 11. DCS measurements (symbols) for phantoms D0F0 −D3F0, (a–d, respectively) with theoretical
fits using a Brownian-flow model (dashed line) and MC predictions (solid line). Each MC model used
input DB values obtained from scaling the theoretically fitted values (see text).

Table 2. Input coefficients for MC flow phantom models. ∆h was constrained to be 0.03 cm experimentally
while the relative change in fluid flow speed from flow rate of F1 to F2 was 2.5 (change from F1 to F3

was 4).

Phantom Layer1 Thickness z1 [cm] DB [cm2/s] (Layers 1&3) DB [cm2/s] (Layer 2) V [cm2/s] (Layer 2)

D0F0

h0 = 0.02 3.6 × 10−9

3.6 × 10−9 -

D0F1 - 5.7 × 10−3

D0F2 - 1.42 × 10−2

D0F3 - 2.28 × 10−2

D1F0

h1 = h0 + ∆h = 0.05 7.9 × 10−9

7.9 × 10−9 -

D1F1 - 5.7 × 10−3

D1F2 - 1.42 × 10−2

D1F3 - 2.28 × 10−2

D2F0

h2 = h1 + ∆h = 0.08 8.9 × 10−9

8.9 × 10−9 -

D2F1 - 5.7 × 10−3

D2F2 - 1.42 × 10−2

D2F3 - 2.28 × 10−2

D3F0

h3 = h2 + ∆h = 0.11 9.3 × 10−9

9.3 × 10−9 -

D3F1 - 5.7 × 10−3

D3F2 - 1.42 × 10−2

D3F3 - 2.28 × 10−2

3.3.2. Modeling Phantoms with Actively Pumped Flow

As described above, measurements from phantoms were obtaining by changing both the depth of
the flow channel and the fluid flow rate in the channel. There were thus 12 phantoms with actively
pumped fluid flow—they are identified individually by a combining a flow rate (F1–F3), with the
channel depth (D0–D3). In order to simulate measurements using MC models in these phantoms,
inputs for the thickness of Layer 1 (height of the liquid layer h, above the flow channel) and flow
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coefficients for the three layers were needed. For active pumping, correlation transport in Layer 2
(the flow channel) was modeled as random flow, while in Layers 1 and 3 (the liquid media above and
below the flow channel, respectively) it was modeled as Brownian, with both layers having the same
DB. These DB input values were obtained, for each depth, from corresponding MC models shown in
Figure 11 (i.e., from phantoms with no active flow).

Input values for two remaining parameters—the depth of the flow channel from surface and
the flow speed of the medium in the flow channel—had to be determined. Across 12 phantoms with
active flow, relative changes (in both these parameters) were experimentally well controlled. Increases
in channel depth (from one depth to the next) was experimentally estimated to approximately be
∆h = 0.03 cm. Therefore, if the phantoms at depth D0 had Layer 1 thickness of h0, then Layer 1 thickness
for phantoms with flow channel at depth D1 would be h1 = h0 + ∆h (and further as h2 = h1 + ∆h and
h3 = h2 + ∆h). Similarly, changes in flow speeds could be calculated from experimentally used flow
rates—i.e., if the input flow speed V1 was known for phantoms with flow F1, the flow speeds for flow
F2 and F3 would scale as V2 = V1F2/F1 and V3 = V1F3/F1.

Input values for h0 and V1 were sought by running a set of simulations that varied h0 (between
0–0.05 cm) and V1 (between 0.04 and 0.001 cm/s) to find values that matched experimental measurements
for phantom D0F1 with lowest χ2 residuals. From these set of initial simulations, the tissue model
with h0 = 0.02 cm and V1 = 5.7 × 10−3 cm/s, produced the lowest χ2 residuals relative to experimental
data acquired in phantom D0F1. Once h0 and V1 were known, required inputs for all 12 tissue
models (D0F1 −D3F1, D0F2 −D3F2 and D0F3 −D3F3) were generated by scaling them across phantoms.
The (scaled) input values of the coefficients (sought as inputs) for all the 3-layered tissue models
constructed are shown in in Table 2.Appl. Sci. 2019, 9, x 17 of 21 
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Figure 12. Comparisons of experimentally measured data (circles), diffusion theory-based fits (dashed
line) and MC predictions (solid line) for the 12 phantoms with actively pumped. (a–d) show these data
when flow rate was F1 = 1.44 mL/h for depths D0–D3. ((e–h) show the same sequence of depths at flow
rate F2 = 3.6 mL/h and (i–l) for flow rate F3 = 5.76 mL/h).

Figure 12 shows comparisons of experimental measurements (symbols), diffusion theory fits with
shear-flow model (dashed black lines) and the MC simulations (solid lines) for one representative
measurement, for each of the 12 phantoms with active flow. Data in Figure 12 are organized such
that moving across a row, changes channel depth (D0: Column 1; D1: Column 2; D2: Column 3; D3:
Column 4) while moving down a column changes channel flow rate (F1: Row 1; F2: Row 2; F3: Row 3).
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As seen in Figure 11, the data generated by the MC simulations matched experimental measurements
as well as the fitted theoretical curves (χ2 residuals are shown in each figure). Thus, the MC tissue
model used could accurately represent the experimental phantom system used.

4. Discussion

We examine the quantitative impact of analyzing experimental DCS measurements made at short
SDS using Equation (2), for different phantoms (with varying optical transport and flow properties)
and use MC simulations to directly compare theoretical calculations across range of SDS. Simulations
showed expected behavior, where long SDS DCS data well matched and short SDS data being poorly
matched for direct, forward comparisons to calculations from Equation (2) Figure 2. However, DCS data
obtained at short SDS were well fit using theory at the cost of errors in extracted flow coefficients
Figures 3 and 4. Relative changes in perfusion could still be quantified exactly using theory, even for
SDS < 0.1 cm Figures 5 and 6. as long as the optical properties of the media considered were not
changing. MC simulations were shown to be accurate for calibrating and correcting theoretically
retrieved coefficients, given the SDS and optical properties of the medium Figures 7 and 8.

Equation (2) could also directly be used to examine changes in flow in phantoms but required
that flow dynamics include both Brownian and Random flow components Figure 9. As shown in
Figure 10a,b, extracted both the diffusive flow and random flow coefficients extracted from theoretical
analyses of experimental data (at SDS of 0.15 cm) increased with experimentally increasing flow rates.
However, the Brownian flow component DB changed proportionally with flow rate only when the flow
channel was submerged deeper below the surface (estimated to be more than 500 µm here). While,
for shallower channel depths the flow speed V linearly changed with experimentally controlled flow
speed. Relative changes in extracted flow coefficients in phantom experiments when flow was actively
pumped showed that the ratios of theoretically extracted flow speeds were almost exactly as expected
experimentally, but only when the channel depth was shallowest Figure 10d.

These results taken together with relative flow changes extracted in MC simulations for
semi-infinite media Figure 8, indicate that theoretical analysis of DCS measurements using Equation (2)
is robust and can be used to quantitatively assess changes of relative flow within turbid media, even
at short SDS as long as the optical properties and SDS do not change. These conclusions are in
accordance with previous findings regarding the accuracy absolute flow rates vs. relative flow at longer
SDS [13,16,53]. Our results support findings from recent studies, where Equation (2) was successfully
used to examine relative changes in DCS flow coefficients from both simulations and in vivo studies in
animal models, at short SDS [27,28,30,31]. However, our findings also indicate that quantification of
relative perfusion changes reported by these studies would be estimated more accurately, if the relative
changes in perfusion at the short SDS channels were computed with MC-derived correction factors
with corresponding changes in media optical properties they measured.

We were also able to predict experimental measurements with MC simulations across all phantoms
used Figures 11 and 12. These data showed excellent fits in all phantoms (χ2 < 0.03). Given that inputs
to tissue models and experiments were tightly coupled and constrained, these data indicate good
fidelity of the experimental phantom system used here. Although MC simulations for active flow
phantoms matched changes in relative flow rates used experimentally, the absolute value of flow rates
(listed in Table 2) were nearly 3.7 times lower than those expected—i.e., the average flow speed in
the channel experimentally (given a tube of radius 0.08 cm, and flow rate F1 = 1.56 mL/h) would be
V1 = 2.1 × 10−2 cm/s but the MC inputs for flow speed of in layer 2 was V1 = 5.7 × 10−3 cm/s (data in
Figure 12b).

There could be a few different reasons for this issue: for e.g., our MC model assumed a flat velocity
profile for correlation transport in the channel but a parabolic flow-profile may better physically
represent our experimental system; the MC simulations also did not consider flow directions (relative to
photon trajectories) in calculations of correlation transport in Equation (3); we also did not investigate
simulations in semi-infinite media using random flow models to examine how they were impacted at
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short SDS. Lastly, the phantom models though were carefully constructed and measured still includes
uncertainty about the depth the channel from DCS probe may impact these results. These topics will
be examined in future investigations.

Although Equation (2) is widely used to quantify DCS measurements mainly due to its simplicity
and ease of use, there have been recent reports that have developed improved theoretical formulations
to model DCS measurements directly using correlation transport modeled using the radiative transport
theory [54,55]. Such approaches would be better suited for analyzing DCS measurements made at
short SDS separations and could be investigated in more detail in the future using the MC simulations
and experimental platform presented here.

In summary, we establish that the theoretical expression in Equation (2) used to model DCS
measurements of dynamically back scattered reflectance from turbid media can be robust for fitting
data obtained experimentally (and numerically) across a wide range of SDS. The parameters obtained
from theoretically modeled fits of measurements can be used to quantitatively parametrize relative
changes of fluid flow at short SDS only when the optical properties of the media are not changing,
across changing flow conditions. Yet, derived flow coefficients using Equation (2) can be linearly
corrected to provide absolute flow coefficients, if the optical properties and SDS are known, via MC
generated calibration factors. Our findings show that such MC derived correction factors are applicable
to DCS measurements that were made at with SDS as small as 0.15 cm.
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