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We investigate the practical applicability of video photoplethysmography (VPPG) to extract heart rates of subjects
using noncontact color video recordings of human faces collected under typical indoor laboratory conditions
using commercial video cameras. Videos were processed following three previously described simple VPPG algo-
rithms to produce a time-varying plethysmographic signal. These time signals were then analyzed using, to the
best of our knowledge, a novel, lock-in algorithm that was developed to extract the pulsatile frequency compo-
nent. A protocol to associate confidence estimates for the extracted heart rates for each video stream is presented.
Results indicate that the difference between heart rates extracted using the lock-in technique and gold-standard
measurements, for videos with high-confidence metrics, was less than 4 beats per minute. Constraints on video
acquisition and processing, including natural subject motion and the total duration of video recorded required for
evaluating these confidence metrics, are discussed. © 2018 Optical Society of America

OCIS codes: (000.4430) Numerical approximation and analysis; (100.2960) Image analysis; (280.4991) Passive remote sensing;

(330.4300) Vision system - noninvasive assessment.
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1. INTRODUCTION

Photoplethysmography (PPG) is a well-established optical
method that detects the time-dependent oscillations in the
intensity of transmitted light through living tissues to derive
cardiovascular information such as pulse rate, respiration, and
blood oxygen saturation [1]. However, light that is diffusely
backscattered from skin and imaged as reflectance from the ex-
posed skin surface (detected in the visible near infrared region)
can also be used to derive such temporal oscillations [2,3].
Acquisition and processing of color video data to compute pul-
satile waveforms and thus derive the heart rate (HR) has been
termed video photoplethysmography (VPPG) (or remote, non-
contact, imaging, or camera photoplethysmography) [4–14].

Given that VPPG can operate nonobtrusively, has relatively
low cost, and works with most natural (internal and external)
lighting conditions, its uses in practical applications have been
growing rapidly [15–17]. With the ubiquity of high-performance
video cameras in cell phones, its uses as a phone-based app have
also been investigated [18–22]. Applications of VPPG for remote
telemedicine, human behavioral studies, exercise and sports medi-
cine, neonatal monitoring, and clinical medicine have been
explored [13,23–28].

In its basic form, VPPG is used to process a region of in-
terest (ROI) in each video frame into one or more scalar values

to generate one or more time-varying signals of specified
durations. These time-domain signals are analyzed in the
frequency domain to extract dominant frequencies (where a
dominant frequency in the range of 0.8–3 Hz is expected to
represent the HR). A popularly used set of techniques to build
the VPPG-based pulsatile signal includes Independent
Component Analysis (ICA) and related statistical techniques
[29]. Studies have shown that to get best performance from
these methods, several times, manual interventions are needed
to correctly pick out the pulsatile signal from the derived
components during data processing while fully automated
functioning usually requires sophisticated processing methods
[5,20,30–34]. Analytical expressions have been derived to
calculate the pulsatile signal from video by several methods in-
cluding the modified Beer–Lambert approach, spatial filtering,
weighted ROI contributions, wavelet, and sparse matrix-based
decomposition methods [6,28,30,35,36].

Most reports of VPPG typically have been focused on de-
veloping improved algorithms for generating robust, noise-free,
pulsatile VPPG signals. Several of these have also sought a
means to identify the true HR signal in inherently noisy
VPPG signals and tend to employ computationally intensive
processing techniques. The focus of our work was to investigate
whether VPPG signals that can be generated almost directly

4360 Vol. 57, No. 16 / 1 June 2018 / Applied Optics Research Article

1559-128X/18/164360-08 Journal © 2018 Optical Society of America

https://orcid.org/0000-0001-7837-5492
https://orcid.org/0000-0001-7837-5492
https://orcid.org/0000-0001-7837-5492
mailto:vishwak@miamioh.edu
mailto:vishwak@miamioh.edu
https://doi.org/10.1364/AO.57.004360


from the color video data could be processed to accurately
identify the HR.

We present a simple method that is based on the physical
principle of using higher order harmonics to lock into funda-
mental frequencies in noisy power spectra, as those typically
obtained in VPPG data. Additionally, we also present a process
to construct a confidence metric to assess the HR extracted
using VPPG without any prior knowledge or gold-standard
measurements. We describe our technique as a postprocessing
filter that can be used by any VPPG algorithm that relies on
Fourier-based analysis for identifying a dominant pulsatile
frequency. We validate the performance of our algorithm by
comparing it to commercial gold-standard measures (pulse oxi-
meter and electrocardiograms) that were also used to measure
HR in these experiments.

2. METHODS

A. Overview of VPPG
Burgeoning interest in VPPG has led to many reports describ-
ing different types of algorithms for extracting the HR from
video data. All these studies have a set of basic (common) steps
that need to be completed. These include preprocessing the
video streams, tracking subject motion, identifying regions
of interest (ROIs), converting RGB components into a single
value, constructing a time signal for the video stream, applying
smoothing or bandpass filters, and finally processing the time-
domain signal to extract its dominant component. These steps
have been schematically summarized as a workflow in Fig. 1.
Each of these workflow steps are described in detail below.

B. Video Streams Used and Data Acquisition
Video data were acquired from 16 different participants to yield
a total of 27 distinct video recordings. Subjects were composed
of a racially diverse collection of male and female college stu-
dents (including Caucasians, African Americans, and Asian
Americans). Videos were all acquired indoors, under fluorescent
illumination while the participants were seated facing the cam-
era for the duration of the data acquisition. A light meter
(Sekonic L-308S-U Flashmate) was used to ensure the room il-
lumination was between 640 and 900 lumens for all video re-
cordings. Figure 1 shows video recording environments for three
representative videos used here. Thirteen video streams (with
consents from subjects) have been made (see Supplemental
Data: Visualization 1, Visualization 2, Visualization 3,

Visualization 4, Visualization 5, Visualization 6, Visualization 7,
Visualization 8, Visualization 9, Visualization 10,
Visualization 11, Visualization 12, and Visualization 13).

Four of these participants were recorded under three
different conditions—first the subject was asked to sit as still
as possible without talking. In the second condition, the subject
watched a video clip on a computer screen, and in the third
condition the subject had a conversation (they responded to
a questionnaire) with the experimenter. Each of these record-
ings lasted approximately 2 min, and they were obtained using
a standard consumer video camera (Canon VIXIA HF R700).
During acquisition of these videos, the participants wore a com-
mercial pulse oximeter (Innovo 430J-PE) to get a gold-standard
estimate of their HR.

Four video streams were collected from a different single
participant, as a part of an ongoing behavioral study. These four
recordings were acquired in two separate sessions on two differ-
ent days. The first video acquisition in each session commenced
after the participant had acclimatized to the room environment
for about 10 min. In the first session, the first video was re-
corded as the participant spoke extempore about close friends.
The second video in the session was recorded after the subject
spent 5 min in relaxation (deep breathing) and then was asked
to speak again about the same topic. In the second session, the
recordings were obtained as the participant keep their head still
on a support and remained silent. The first video in this session
was recorded at baseline and the second after they were asked to
walk up and down stairs. Gold-standard HR was acquired for
these four recordings using EKG signals collected using a
BIOPAC MP150 unit (BIOPAC Systems). The last 11 videos
were obtained from 11 participants as they were each delivering
a 5-min speech. Subjects sat facing the camera and were asked
to speak naturally while the gold-standard HR was obtained
using the commercial pulse oximeter.

All video recordings were made as the video camera was
mounted on a tripod and were stored as MPEG-IV data.
They had uniform frame rates of 29.9 fps. Videos were re-
corded with resolutions of 1920 × 1080 for the first set of 4
and last 11 subjects, and at 1280 × 720 for subject 5.

Stored video files were directly processed using MATLAB
following the procedures described below. All studies were con-
ducted under human subject protocols approved by the Miami
University IRB.

C. Preprocessing: Motion Tracking and ROI
Selection
Each of the 27 video files were first analyzed to reduce noise
from natural movements and to ensure that the VPPG signals
were derived from the same spatial regions, across frames.
This was achieved by the Kanade–Lucas–Tomasi facial
feature tracking available in MATLAB (Computer Vision
Toolbox, Mathworks, Natick MA). The ROI (approximately
100 × 50 pixels) was manually selected for the first frame of
all video streams processed such that it was situated on the fore-
head of the subject (see Fig. 1). Computer vision was then used
to track two regions—the subject’s face and the subject’s nose in
every frame, thus providing two rectangular regions that en-
closed the face and the nose. The location of the ROI in each
frame was determined such that its relative position from the

Fig. 1. Representative frames from two different videos to show re-
cording conditions and environments. ROI locations are outlined in
yellow. The workflow to extract HR from video using the VPPG tech-
nique employed is also shown.
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centroid of the nose-bounding rectangle was the same across
frames. The size of ROI in all frames was the same as the man-
ually selected region in the first frame. Thus, even though the
ROI was on the forehead, it was the nose feature that was
tracked to position the ROI. This method is expected to be
robust for translational motion of the subject’s face but not
to facial rotations. As described previously, failing to track sub-
jects’ motion from frame to frame could cause large errors in
extracting the HR [37]. Figure 2 shows the location of the
top-left pixel of the ROI for two video streams [Fig. 2(a): poorly
tracked ROI; Fig. 2(b): accurately tracked ROI]. For analysis
of the videos using VPPG, we use the variance in the location of
the ROI to estimate the degree of movement for subjects in the
videos as discussed below.

D. Constructing a VPPG Time Signal

1. Converting ROI in a Frame into a Single Value
The RGB values for each pixel in the ROI for each frame need
to be converted into a single value. As noted above, there are
several different algorithms that have been proposed to achieve
this [17]. Here we use three such previously proposed
algorithms that were computationally simple to implement.

The first method is a ratiometric technique derived
as an approximation of the modified Beer–Lambert law,
developed by Xu et al. [6]. In this method, the spatially aver-
aged values of the red and green channels in ROI of two
consecutive are used to derive the pulsatile signal, �t� ��
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notation, the P1
G and P1

R refer to the spatially averaged ROI
intensity values of the green and red channels (subscripts indi-
cate color plane) of the first frame (superscripts indicate frame
number), respectively [6].

The second algorithm constructs a VPPG time signal by
calculating the mean value of all pixels in the green channel
for the ROI, in each frame [4]. This represents the most direct
means to access information from a single channel that would
be spectroscopically expected to be sensitive to hemoglobin
absorption in the tissue [13,38].

The third VPPG algorithm also used information from a
single channel but converted the RGB color space to the
hue-saturation-value (HSV) color space and then used the
average of the hue (H) channel in the ROI of each frame to
generate a time signal [39]. This method has been previously

described as a better means of capturing spectroscopic informa-
tion content from the red, green, and blue channels simulta-
neously [40].

The resulting temporal signal from each of the three
methods was then used for extraction of the HR frequency
either directly (no filtering) or after digital filtering using a finite
impulse response bandpass filter (passband: 0.5 and 8 Hz).

2. Sliding Time Window
In any application of VPPG it is necessary to select a set of
contiguous frames from which the time signal can be generated.
The number of sequential frames needed, along with the total
number of frames available in a data set, determine the number
of ways such sets of contiguous frames can be constructed. In
our data sets, we used 120 s of video that was acquired at nearly
30 fps, and thus had a total of 3600 frames. Therefore, there are
2500 different sets comprising 900 sequential frames (i.e.,
spanning 30 s each) that could be selected. Each of these
2500 sets can be used in turn to generate VPPG signals.
Thus, we could generate 2500 different estimates of VPPG
HR (from each of 2500 sets of time signals). The median value
of the HR derived from each of these 2500 HR was taken to be
the HR for that video stream. The idea of the sliding window is
similar to the time-frequency analysis (including wavelets)
described by other reports [4,35].

E. Lock-In Method to Extract the HR
The primary expectation in VPPG is that the dominant
frequency component of the constructed time signal will yield
the pulsatile rate. This is true when the temporal signal ex-
tracted from a video stream accurately represents a plethysmo-
graphic time signal. Most published reports recover the HR as
the frequency at which the power spectrum of the VPPG time
signal peaks. However, the VPPG time signal is inherently
noisy, and the peak of the power spectrum for such noisy time
signals does not correctly identify the HR (relative to a
gold-standard measure) and is illustrated in Fig. 3.

Data in Fig. 3(a) shows the power spectra obtained from one
of the participants (P3, sitting still condition), while Fig. 3(b)
shows the power spectrum for another participant (P4, talking
condition). Power spectra were obtained by Fourier transform-
ing VPPG signals constructed from 30 s of each video stream,
using the Xu algorithm [6]. Dashed vertical lines indicate HR
values from pulse oximeter readings for the same 30 s durations.

Here, we present a method that seeks to identify the HR
from such noisy data. We hypothesize that even in the presence
of noise, a pulsatile frequency component would produce
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Fig. 2. Plots of the top left pixel of the ROI as a function of frame
number. (a) shows a situation where the computer-vision-based
tracking of the ROI was erratic, while (b) shows an example for
smoothly tracked ROI.
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Fig. 3. Representative power spectra derived using two VPPG sig-
nals, from two different video streams, for two participants [(a) still
and (b) talking]. Vertical dashed blue line shows the gold-standard
HR values for these video streams.
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higher order harmonics, while random noise would not have
these harmonics. We call this technique of finding the HR
in VPPG as the lock-in identification. The lock-in method
operates by first calculating the power spectrum of any con-
structed VPPG time signal. Next, we select a set of (at most)
10 frequencies, f i, where the calculated power spectrum had
largest amplitudes. These were arranged in descending order of
their corresponding amplitudes. For each of these peak-
frequencies f i, the power spectrum was analyzed to detect a
local peak (where a local peak was defined as having a value
higher than its two neighbors) closest to 2f i (first harmonic)
and closest to 3f i (second harmonic)—denoted as 2f i and

3f i.
Note that 2f i need not be the same as 2f i. A scalar score si was
then calculated for each peak frequency f i, using the following
equation:

si �
1

P�f i�Δf

�
max�Δf , j2f i −

2f i� · P�2f i��
max�Δf , j3f i −

3f i� · P�3f i�
�
: (1)

In Eq. (1), P�f i� represents the amplitude of the power
spectrum at each of the selected peak frequencies, while
P�2f i� and P�3f i� are the amplitude of peaks detected closest
to the second and third harmonics of f i, Δf is the spacing of
frequencies in the power spectrum, and the max function re-
turns the higher of its two input arguments. Essentially, the
score in Eq. (1) would have low values if the amplitude of
the power spectrum P�f i� was large and small amplitude peaks
were found at (or close to) the first and second harmonics (i.e.,
the max function returns Δf ). Thus, using this lock-in
method, the estimated HR was the frequency that had lowest
score as calculated in Eq. (1).

3. RESULTS

A. Harmonics in Synthetic Data
Figure 4 illustrates the utility of using the lock-in scheme. A
temporal signal was generated by repeating a random signal
(of length T 0)N times [Fig. 4(a)], and its corresponding power
spectrum was calculated [Fig. 4(b)]. It is apparent that the
power spectrum of the periodic signal has peaks at harmonics
of the fundamental frequency (f 0 � T −1

0 ). Moreover, the larg-
est amplitude in the power spectrum was found at 4f 0. We
tested 100 such synthetically generated signals (with funda-
mental frequency of 1.25 Hz to simulate a 75 BPM HR) using
the lock-in technique. The temporal signals were analyzed with
or without bandpass filtering (between 0.4 and 8 Hz). The
lock-in technique correctly identified the fundamental fre-

quency 90% of the time (the fundamental frequency f 0

was the tallest peak 8% of the time) with no bandpass filtering.
The correct fundamental frequency was extracted 94% of the
time by the lock-in technique for the bandpass filtered time
signal (the fundamental frequency had largest amplitude
22% of the time).

B. Processing with Sliding Windows
As discussed above, it is possible to use a short continuous seg-
ment (30 s) of the video stream to compute the VPPG HR
while the video recording itself can be much longer (120 s).
Figure 5 shows how a sliding window of 30 s can be used
to analyze a 120 s long video stream (participant P2, still con-
dition). The x axis denotes the midpoint of the time window
used to construct the 30 s window, while the y axis is the HR
derived for each 30 s interval (symbols—VPPG; line—pulse
oximeter). The VPPG algorithm of Xu et al. [6] was used
to derive the time signal, which was bandpass filtered, and
the HR was obtained using the lock-in method.

A 2-min long video can therefore yield several estimates of
HR as shown in Fig. 5. We use the median of these VPPG-
derived values to provide a single value as the HR for the video
and use the standard deviation of these values as a measure of
uncertainty in its estimation (across the duration of 120 s).
Thus, this sliding window analysis yielded both the HR and
its variance. Figure 6 shows a correlation plot comparing the
VPPG-derived median HR (using a 30 s sliding window to an-
alyze 120 s of video data) and the gold-standard estimates of
HR across the same 120 s interval, for all 27 videos. Here,
the median VPPG HR for each video stream is plotted on
the x axis while the gold-standard-derived HR on the y axis.
The error bars for each point along each axis represent the
variances in these values across the 120 s. The VPPG data were
processed as in Fig. 5.

These data are also provided in tabular form in Table 1 for
each video and list conditions under which the video data were
collected, HR values derived using the peak of the Fourier
power spectrum, HR values derived from the lock-in method,
the gold-standard HR data, and the mean percent errors
between the VPPG HR relative to gold-standard values.
Videos for P1, P3, P4, and P5 listed in Table 1 are available as
Visualization 1, Visualization 2, Visualization 3, Visualization 4,
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corresponding power-frequency spectrum. This signal was sampled at
30 Hz to simulate the camera acquisition.
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Visualization 5, Visualization 6, Visualization 7, Visualization 8,
Visualization 9, Visualization 10, Visualization 11,
Visualization 12, and Visualization 13.

The line of perfect correlation is the line with equation
y � x and is shown as the blue solid line in Fig. 6. However,
the data in Fig. 6 clearly indicate that only a few videos yielded
VPPG HR values that were near the gold-standard HR values.
The correlation coefficient (r) and the p-values displayed in the

figure indicate themerits of fit. In general, the closer r is to 1, the
more perfectly are the data correlated. The p-value represents the
likelihood of the null hypothesis (that there is no correlation
between the data sets) being true. Thus, a low p-value indicates
probability of the null hypothesis being false.

We observed that videos that had VPPG HR values close to
those estimated by the gold standard had two features: the
tracked ROI location for these videos had low variance [see
for example, data shown in Fig. 2(b)]; and these video streams
also had low VPPG HR variance for the sliding window analy-
ses. Conversely, videos that had high ROI variances and high
VPPG HR variances had VPPG HR values that were dissimilar
from the gold-standard HR values.

C. Confidence Levels of Derived VPPG HR Values
Each of the 27 available videos were sorted into four mutually
exclusive groups by thresholding variances observed in the ROI
location and the VPPG HR, in increasing levels of confidence
of the derived VPPG HR values. The first group contained vid-
eos where both the ROI and HR variances were larger than the
respective threshold limits. The second group consisted of vid-
eos where the ROI variance was greater than the ROI threshold
value and the VPPGHR variance was lower than the VPPGHR
threshold. The third group videos included videos with ROI
variance lower than the ROI threshold value while the VPPG
HR variance was greater than the VPPG HR threshold value.
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Fig. 6. Correlations between the gold-standard HR values (y axis)
and the VPPG HR values (x axis) for all videos in the dataset. The
dashed black line shows the line of correlation while the solid blue
line shows the line y � x.

Table 1. Human Participants, Video Recording Conditions, and HR Values Obtained Using Different Methods under a
Variety of Conditions

Subject ID
Motion

Condition True HR Lock-In HR FFT Peak HR
Error (%)
(Lock-In)

Error (%)
(FFT Peak) σROI Group ID

P1a Still 90� 5.0 87.7� 6.3 95.6� 26.7 2.6 6.2 16 4
Watch 84� 3.1 80.7� 3.0 83.3� 10.9 3.9 0.8 12 4
Talk 90� 5.1 82.5� 19.3 93.9� 28.4 8.3 4.3 5 3

P2a Still 70� 1.7 71.1� 4.0 71.1� 27.4 1.6 1.6 5 4
Watch 72� 3.8 71.9� 3.9 71.9� 31.6 0.1 0.1 122 2
Talk 80� 3.6 76.3� 18.5 128.1� 14.1 4.6 60.1 176 1

P3a Still 92� 1.5 93.0� 1.5 93.0� 1.5 1.0 1.0 7 4
Watch 90� 2.5 90.4� 3.7 90.4� 2.0 0.4 0.4 19 4
Talk 101� 2.7 100.0� 15.7 101.8� 6.3 1.0 0.8 9 3

P4a Still 66� 2.7 65.8� 2.1 119.3� 24.2 0.3 80.8 4 4
Watch 68� 3.4 66.7� 5.7 119.3� 25.2 1.9 75.4 11 4
Talk 86� 6.9 77.2� 9.3 119.3� 21.9 10.2 38.7 2 4

P5b Talk (pre) 94� 2.4 86.3� 15.1 102.5� 20.3 8.2 9.0 66 1
Talk (post) 98� 5.7 91.2� 15.1 119.3� 15.2 6.9 21.7 44 1
Still (pre) 98� 1.2 99.2� 16.0 119.3� 10.2 1.2 21.7 205 1
Still (post) 112� 2.3 98.3� 14.1 119.3� 8.6 12.2 6.5 205 1

P6a Talk 110� 4.1 65.8� 20.0 135.2� 32.8 40.2 22.9 92 1
P7a Talk 91� 11.0 61.5� 6.7 119.3� 21.2 32.4 31.1 85 2
P8a Talk 101� 3.4 84.3� 43.4 157.1� 26.4 16.5 55.5 47 1
P9a Talk 83� 4.5 56.2� 7.3 119.3� 30.0 32.3 43.7 34 2
P10a Talk 107� 5.7 81.6� 24.0 160.7� 26.0 23.7 50.2 28 1
P11a Talk 104� 3.0 86.9� 11.8 137.8� 27.6 16.4 32.5 33 1
P12a Talk 80� 3.3 79.9� 6.0 90.4� 22.2 0.1 13.0 25 2
P13a Talk 96� 2.6 60.6� 9.9 119.3� 19.6 36.9 24.3 23 2
P14a Talk 88� 7.2 65.0� 12.5 77.3� 25.8 26.1 12.2 117 1
P15a Talk 107� 1.7 59.7� 29.0 123.8� 34.3 44.2 15.7 162 1
P16a Talk 115� 18.2 64.1� 10.7 119.3� 5.6 44.3 3.7 274 1

Mean error = 14.0% Mean error = 23.5%
aGold-standard HR obtained using finger pulse oximeter.
bGold-standard HR obtained using EKG.
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The fourth group of videos had the ROI variance and VPPGHR
variance lower than their respective thresholds. For our analysis
here, we selected an ROI variance threshold of 20 pixels and a
VPPG HR variance threshold of 10 BPM. The ROI variance
was computed by calculating the fraction of area occupied by
the smallest square required to enclose the participant’s face
to the total area of the image and then multiplying this fraction
with the length of the face-bounding square. The variance in the
HR was selected by setting a tolerance level of �5 BPM (for a
total variance of 10 BPM).

Figure 7 shows the correlations between the gold-standard
HR and the VPPG derived HR for these four groups [Fig. 7(a):
Group1; Fig. 7(b): Group2; Fig. 7(c): Group3; and Fig. 7(d):
Group4]. As in Figs. 5 and 6, the VPPG time signals were
derived using the Xu algorithm [6], bandpass filtered, and
HR values extracted using the lock-in method. Videos that
were selected into Group4 showed very high positive correla-
tions with the gold-standard values. The VPPGHR in groups 1
and 2 were clearly not well correlated to the gold-standard val-
ues. Since there were only two videos that fell into Group 3,
there were no correlation coefficients computed for this group.
As in Fig. 6, dashed black lines show the line of regression,
while the solid blue line shows the y � x line. Table 1 also lists
the grouping for each video stream.

D. VPPG HR with Different Algorithms
We next compared the impact of using different algorithms to
construct the VPPG time signal for extracting the HR data. We
only focused on testing three different algorithms described
above, on the video streams from Group 4 [high-confidence
group shown in Fig. 7(d)]. All algorithms used a sliding
window length of 30 s for analysis across 120 s of each video
stream, and the derived temporal VPPG data was bandpass fil-
tered and then analyzed using the lock-in method. Figure 8
shows the results of these analyses as Bland–Altman plots.

Figure 8(a) shows data for the Hue channel, Fig. 8(b) for
the Green channel, and Fig. 8(c) for the Xu algorithm. It is
evident that our lock-in technique worked best for the Xu ra-
tiometric algorithm [6]. The Green channel VPPG HR was
closer to the gold-standard measured values than the VPPG
HR from the Hue channel. Mean error in the derived HR from
the Green channel was 5.3 BPM across all subjects, while it was
11 BPM when derived from the Hue channel. Additionally, the
correlation between the VPPG HR and the gold standards was
significant for the Green channel (with correlation coefficient
r � 0.6, data not shown) and the Xu algorithm. Correlations
were absent for the VPPG HR derived from the Hue channel
and the gold standard.

E. VPPG HR with Varying Sliding Window Sizes
Lastly, we compare the impact of using different sliding win-
dow lengths on the derived VPPG HR. We processed these
data using the Xu algorithm [6] to create the VPPG time signal,
which was bandpass filtered and analyzed using the lock-in
technique to extract the VPPG HR. We investigated sliding
window lengths of 10 s, 20 s (in addition to the 30 s length
used earlier) across the full video duration of 120 s. Figure 9
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and the VPPG HR values (x axis) grouped using tolerance of variance
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Fig. 8. Bland–Altman plots comparing different algorithms to pro-
duce a VPPG time signal for the high-confidence group videos. VPPG
HR in (a) was constructed using the Hue channel, while (b) used the
Green channel and (c) used the Xu algorithm. All units are shown in
BPM.
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shows the results of these analyses as correlation plots compar-
ing the median gold-standard HR values against the VPPG HR
values. Figures 9(a) and 9(b) show these data for the 10 s and
20 s window lengths, respectively.

It is apparent from these data [relative to Fig. 7(d)] that the
30 s sliding window yielded substantially better results than both
the 20 s and 10 s window. Additionally, the variance in derived
VPPGHRwere also dependent on the length of the sliding win-
dows used. We infer that our technique for extracting VPPG
HR was accurate only when at least 30 s of video data (sampled
at 30 fps) was used to construct the VPPG time signal.

4. DISCUSSION

VPPG presents an attractive means for nonobtrusively and con-
tinually monitoring heart rates in humans via standard color
video data recorded using commercial cameras. However, as
has been previously discussed, this simplicity in data acquisition
is concomitant with several sources of noise artifacts that need
to be appropriately processed to accurately obtain the HR [17].
Many earlier studies have described a variety of processing tech-
niques to derive clear pulsatile (plethysmographic) signals from
the video data [9,12,30,35,36,41]. Additionally, it is also well
known that VPPG algorithms necessarily need to deal with
finding the correct HR frequency in the presence of high noise
levels [15,16]. Our primary objective was to explore the use of a
physically motivated (lock-in) simple technique that could be
adapted to previously described VPPG algorithms as a “plug-in”
for improving their performance. Furthermore, we also present
a strategy to create a metric reflecting the confidence levels in
the reliability of the extracted VPPG HR, directly from the
recorded video data itself.

We applied our lock-in technique to obtain VPPG-based
HR from 16 human participants across 27 independently
recorded video streams and tested its performance on three pre-
viously published VPPG algorithms. As noted in Table 1, the
lock-in technique mostly yielded HR values that were closer to
the gold-standard values in comparison to those obtained using
the peak power spectrum frequency of the VPPG signal. Of the
three VPPG algorithms tested, the one based on the modified
Beer–Lambert law reported by Xu et al. [6] proved the most
robust. We hypothesize that the ratiometric form of this algo-
rithm effectively eliminated noisy fluctuations in the VPPG sig-
nal and therefore yielded a time trace containing the pulsatile
frequency along with higher harmonics, which made the
lock-in technique function more effectively.

We also described a procedure for assigning a confidence
metric to a video stream, reflecting the likelihood that a
VPPG HR extracted from the video recording accurately rep-
resents the true HR. These confidence intervals were generated
using the variance in the motion-tracked ROI and the VPPG
HR (using a sliding window method) for a given segment of a
video stream. If these two values were lower than threshold
values, the video streams tended to produce accurate results
(relative to the gold-standard measurements). Alternately, if
these threshold criteria were not satisfied, the VPPG derived
HR values were not guaranteed to be accurate.

The idea of exploiting the presence of harmonics of a fun-
damental HR frequency for VPPG analysis is not unique to our

work and has been observed and used previously [4,42,43].
Studies have reported that filtering of the VPPG time-domain
signals by construction of adaptive bandpass or lock-in filters,
designed using harmonics of the fundamental HR frequency,
improved the accuracy of extracted HR signals [42,44–46].
However, the design of these filters first required a robust
estimate of the frequency band of the fundamental HR (which
was usually estimated from the peak of the power spectrum) or
by using a gold-standard measurement. As shown in Fig. 3, the
peak of the power spectrum might not occur at the fundamen-
tal HR frequency, for noisy VPPG signals. The lock-in
technique presented here, on the other hand, attempts to
identify the fundamental pulsatile frequency without any
previous knowledge of the true HR frequency.

Finally, the use of the sliding-window method to extract HR
information across time has also been presented as time frequency
or wavelet-based methods by previous studies. However, to the
best of our knowledge, a technique to establish a confidence in-
terval metric on a per-video basis has not been reported earlier.
The ability to assess the performance of a particular VPPG algo-
rithm on a given video recording adds novelty to this work.

Overall, there still are several factors that must be explored
thoroughly before VPPG can routinely be used to accurately
measure HR in humans. Particularly, it would be ideal to have
VPPG HR estimates to be available in durations far shorter
than 30s, as reported by others [7,47]. However, given the
low frequency of resting HR (the resting heart beats only
slightly more frequently than once per second), a reliable
HR using simplistic VPPG algorithms as utilized in this here
may be difficult to achieve. Further, our analysis of facial re-
gions focused on using the forehead was predicated on earlier
studies that established this region as ideal for VPPG and re-
mains to be explored more thoroughly [40,48]. The potential
of VPPG techniques to routinely provide the HR and if pos-
sible the HR variability in human behavioral studies holds great
promise and potential, but VPPG artifacts such as natural
subject movement including rotations of the face and the
impact of ballistocardiographic signal contamination need to
be comprehensively addressed.
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