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Objectives: We propose the use of morphological optical biomarkers for rapid detection of human head
and neck squamous cell carcinoma (HNSCC) by leveraging the underlying tissue characteristics in aero-
digestive tracts.
Materials and Methods: Diffuse reflectance spectra were obtained from malignant and contra-lateral nor-
mal tissues of 57 patients undergoing panendoscopy and biopsy. Oxygen saturation, total hemoglobin
concentration, and the reduced scattering coefficient were extracted. Differences in malignant and nor-
mal tissues were examined based on two different groupings: anatomical site and morphological tissue
type.
Results and Conclusions: Measurements were acquired from 252 sites, of which 51 were pathologically
classified as SCC. Optical biomarkers exhibited statistical differences between malignant and normal
samples. Contrast was enhanced when parsing tissues by morphological classification rather than ana-
tomical subtype for unpaired comparisons. Corresponding linear discriminant models using multiple
optical biomarkers showed improved predictive ability when accounting for morphological classification,
particularly in node-positive lesions. The false-positive rate was retrospectively found to decrease by
34.2% in morphologically- vs. anatomically-derived predictive models. In glottic tissue, the surgeon
exhibited a false-positive rate of 45.7% while the device showed a lower false-positive rate of 12.4%. Addi-
tionally, comparisons of optical parameters were made to further understand the physiology of tumor
staging and potential causes of high surgeon false-positive rates. Optical spectroscopy is a user-friendly,
non-invasive tool capable of providing quantitative information to discriminate malignant from normal
head and neck tissues. Predictive models demonstrated promising results for real-time diagnostics. Fur-
thermore, the strategy described appears to be well suited to reduce the clinical false-positive rate.

Published by Elsevier Ltd.
Introduction

In 2012, there were 52,610 new cases of mucosal head and neck
cancers (HNC) in the United States [1]. These cancers develop
through a spectrum of changes that can be pathologically identi-
fied as progressing from hyperplasia to dysplasia to carcinoma
in situ, and finally, to invasive carcinoma [2–4]. Once carcinoma
is identified, treatment currently involves modalities of surgery,
radiation, and chemotherapy [3]. Early detection of new and locally
recurrent cancers is clinically important to reduce not only cancer
related mortality, but also treatment associated morbidity, as it
impacts multiple organ functions including respiration, olfaction,
hearing, eating, swallowing, and speaking [5].

The gold standard for diagnosing cancer is dependent on path-
ological examination. Thus, currently all patients with clinically
suspicious lesions undergo surgical biopsies. Although these
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lesions are identified during an initial clinical exam, obtaining a
specimen via biopsy for analysis can be uncomfortable for patients.
This may further include the use of labor, facility, and monetary
resources that are expended on patients, some of whom may ulti-
mately have no malignancy. It would be of benefit to clinicians and
patients if it were possible to have an ‘‘adjunct’’ technique that
could suitably identify those patients that would benefit from fur-
ther surgical biopsy from those that likely only need follow-up
clinical observations. For those patients identified as having a
low likelihood of cancer, this would prevent unnecessary proce-
dures, pain, and better utilize limited resources. The clinical value
of this tool would depend on it providing rapid, non-invasive feed-
back could be obtained during the patient’s visit. This would be
facilitated by a portable unit such that it can be used in ambulatory
settings, and quantitative such that data obtained is consistent
across operators and patients.

Several techniques show potential in non-invasive cancer diag-
noses. Fluorescence endoscopy relies on contrast agents for stain-
ing and imaging cell nuclei [6,7]. Time-domain Optical coherence
tomography (OCT) system requires a Michelson interferometer to
sample lesions in z-direction [8]. Frequency-domain OCT system
improve the image acquisition time, where information in the z-
direction is sampled in the spatial frequency domain [9]. Reflec-
tance confocal microscopy utilizes a pinhole to reject the out-of-
focus light [10,11]. Hence, the cellular structures could be imaged
in nontransparent tissues. Although these techniques show high
potential in cancer diagnoses [6,12,13], the systems is expensive
or requiring extra procedures. Moreover, these techniques provide
only the morphological information but not the physiological
information.

Diffuse reflectance spectroscopy (DRS) can provide information
about tissue composition including physiological, metabolic and
structural properties [14]. DRS has been used to show that malig-
nant and normal tissues of the head and neck can be differentiated
when analyzed using a variety of different techniques [15–32]. Our
team has developed a quantitative DRS technique that incorporates
a portable fiber-based spectrometer and a robust inverse Monte
Carlo (MC) algorithm capable of extracting tissue optical properties
[33,34]. The inverse model can rapidly compute total hemoglobin
concentration (THb), hemoglobin oxygen saturation (SO2), and
mean reduced tissue scattering coefficient (l0s), which reflects the
cellularity of the tissue within the probed volume. The feasibility
of using DRS in patients undergoing panendoscopy has been dem-
onstrated [16].

Although the majority of HNC are squamous cell carcinomas
(>90%), signals collected from DRS might be sensitive to both SCC
and the underlying tissues (the tissue below the epithelial cancer)
since DRS usually lacks of optical sectioning ability. Current
description of head and neck squamous cell carcinomas (HNSCC)
is often based on anatomical boundaries (i.e. oropharynx, oral cav-
ity, pharynx, larynx) [35]. Therefore, contrast detected by DRS
between the tumor and normal tissues might be diminished when
mixing samples with different surrounding tissue types. Other
groups have tried to eliminate the effects of collecting light from
beneath the epithelium when trying to diagnose epithelial cancers.
Perelman et al. employed a physical model for the diffusive back-
ground originated from the stroma [36]. After removing the back-
ground, density and size distribution of the nuclei can be
computed, though this method is time-consuming. Nieman et al.
combined an angled illumination-collection strategy with the
polarization illumination technique for reducing the optical back-
ground signals from the stromal layer [37]. Nevertheless, an angled
illumination-collection probe with polarization sensitivity tech-
nique is hard to fabricate. We simply propose that by grouping
the samples with similar tissue types, contrast between the SCC
and normal tissues could be enhanced.
In this manuscript, the diagnostic accuracy between the ana-
tomical and tissue-specific grouping strategies using the optical
biomarkers obtained via the quantitative DRS technique was inves-
tigated for the HNSCC detection during staging panendoscopy. In
addition, a comparison was made among the optical biomarkers
of normal, node-positive, and node-negative malignant tissues.
Finally, optical biomarkers of the malignant, pathologically con-
firmed normal, and clinically observed normal tissue samples were
compared.
Materials and methods

Clinical study design

This study was approved by the Duke University School of Med-
icine Institutional Review Board (Pro00021026) and was open to
all patients who were scheduled for panendoscopy and biopsy
for suspected HNC at the Duke University Hospital during 2010–
2012. Patients with suspicious lesions were approached and con-
sented to undergo a non-invasive evaluation of sites to be biopsied
using the optical probe. All patients were included in the study
with no further sub-selection. Tissue biopsies were only obtained
from the site suspected of disease and all measurements from nor-
mal appearing unaffected tissues were assumed to be normal. No
biopsies were taken from normal appearing unaffected tissues.
Several surgeons specialized in head and neck surgery participated
in this study taking biopsies. The locations of distant normal tissue
measurements were supervised by the same surgeon (W.L.) who
participated in a previously published study at the Durham Veter-
ans Administration Hospital [16] in which 25 normal tissues were
biopsied and submitted for histopathology. In this study, the sur-
geon demonstrated 100% accuracy in correctly identifying clini-
cally-appearing distant normal sites as histologically normal.

In each consented patient, the optical probe was placed on the
surface of at least two tissue sites (‘‘tumor’’ and ‘‘normal appearing
unaffected tissue’’). Five diffuse reflectance scans were obtained at
each site and data was recorded. To co-localize the optical scans
and clinical biopsies, the suspicious sites were biopsied immedi-
ately after the optical measurements were completed with the
attending physician visually marking the spot of optical measure-
ments for biopsy (which was approximately 2–5 mm in diameter).

The measurements were obtained from anatomical sites in the
larynx, pharynx, or oral cavity. Four groups were built based on the
structures underneath the epithelium layer and their epithelial
variations. The first group consisted of measurements from the
glottis. Specialized structures existed such as vocal cord in the lar-
ynx area. The true and false vocal cords are covered with stratified
squamous epithelium and the ciliated pseudostratified columnar
epithelium respectively [38]. The supporting ligament and muscle,
vocalis muscle, also makes the underlying of the vocal cord differ-
ent from the other structures in head and neck. The second lym-
phoid group was formed by combining measurements from the
oropharynx, tonsil and base of the tongue due to the rich lymphatic
drainage in the region [39]. The third muscle group consisted of
measurements from tongues which consisted of majorly with stri-
ated muscle fibers. The tongue epithelium, which is modified into
filiform papillae and fungiform papilla, is also distinct from other
epitheliums in head and neck. The last group combined measure-
ments from all remaining sites into a mucosal group.
Optical spectroscopy instrumentation

A portable fiber optic instrument (Fig. 1) was used to measure
tissue diffuse reflectance spectra. Light from a 40 W halogen lamp
(HL2000HP; Ocean Optics, Dunedin, FL), was coupled to an optical



Figure 1. A picture of the portable system which consists of a laptop, USB
spectrometer, halogen light source, heat filter and a bendable gooseneck probe
containing the two optical fibers. The system is computer controlled.

850 F. Hu et al. / Oral Oncology 50 (2014) 848–856
fiber (400 lm diameter) for illumination. Another fiber (400 lm
diameter) was placed 475 lm away from the source fiber and cou-
pled the diffuse reflectance from tissue into a spectrometer
(USB4000, Ocean Optics, Dunedin, FL). Tissue reflectance measure-
ments were normalized to a 99% reflectance standard measure-
ment (Labsphere, Inc.) obtained each day. Tissue sensing depths
were determined using forward MC simulation [40] and were
found to be 1.1 mm and 1.6 mm at 480 nm and 600 nm, respec-
tively, for the median absorption and scattering coefficients
derived from the previous study [16].

Extraction of tissue biomarkers from optical reflectance data

Diffuse reflectance spectra (480–650 nm) were collected and
analyzed using an inverse MC model to obtain the scattering and
absorption coefficients [33]. THb (lM), SO2 (%) and l0s (1/cm) were
extracted from the absorption and scattering coefficients [16].

Statistical analysis

Tissue samples were divided into malignant and normal groups,
based on histopathological diagnosis of biopsied tissues and clini-
cal impression of the non-biopsied normal tissues. The histopa-
thological slides were read and analyzed by several pathologists
from Duke Universality Medical Center Pathological laboratory.
The pathologists and surgeons were blinded to the DRS results.
Mean contributions per tissue/site for all extracted optical bio-
markers were compared between groups using the Wilcox rank-
sum test to determine if there were statistically significant differ-
ences (p < 0.05) between the two groups. Linear-discriminant
models were used to classify the tissue as malignant or normal,
by using all or a subset of (all pair-wise combinations of THb,
SO2, and l0s) the three optical biomarkers. This was carried out
for tissues grouped by the anatomical sites classification (larynx,
pharynx, oral) and for tissues grouped by the tissue-specific classi-
fication (lymphoid, glottis, mucosal and muscle). The sensitivity
(Se), specificity (Sp), positive predict value (PPV) and negative pre-
dict value (NPV) were determined by comparing the model predic-
tion to the pathological diagnosis. The discriminant algorithm was
validated using a leave-one-out cross-validation technique. In
addition, the optical biomarkers of the normal, the lymph-node-
positive, and the lymph-node-negative samples were compared
with the Wilcox rank-sum test. Finally, differences between the
optical biomarkers of the normal, pathologically-confirmed normal
and the clinical observed normal samples were also evaluated with
the Wilcox rank-sum test. All data processing and statistical data
analysis was performed using MATLAB (MathWorks Inc., Natick
MA).
Results

Ninety-nine biopsies co-localized with optical probe measure-
ments were obtained from the 57 enrolled patients. Fifty-one of
the 99 biopsies were diagnosed as SCC. These 51 SCC samples were
obtained from 37 of the enrolled patients. Forty of the 99 biopsies
were pathologically classified as negative for SCC (30 pathologi-
cally-confirmed normal tissue, 10 inflammation with no atypia).
No specific information regarding other pathology such as lichen
planus, ulceration were specifically given in the pathology report.
Eight of the 99 biopsies were pathologically classified as dysplastic,
and these were excluded from this study due to the small sample
size. Another 158 optical probe measurements were measured at
distant normal epithelium from all 57 patients. These 158 sites
were not biopsied and were considered to be normal based on clin-
ical appearance and distance from the tumor.

Fig. 2 shows the representative normalized reflectance scans of
malignant and nonmalignant tissues for the 3 anatomical sites and
the 4 morphological categories. All SCC-positive tissues were fur-
ther separated into 4 groups by their tumor size and lymph node
status according to the TMN staging information. A breakdown
by anatomical site, morphological categories, tumor stage and
lymph node status for all measurements in this study is shown
in Table 1.

Contrast between SCC and normal samples is significantly enhanced
when grouped by tissue morphology

Fig. 3 shows SO2, THb and l0s as boxplots when the samples
were grouped together by anatomical sites or by morphologi-
cally-similar sites for pathologically-confirmed SCC and normal
sites. When the samples were grouped by their anatomical loca-
tions, the SO2 of the malignant tissues was significantly lower than
that in normal tissues in the larynx and the pharynx (p < 0.01 for
both). The l0s of the malignant tissues was significantly lower than
that in the normal tissues in the pharynx (p = 0.03) and in the oral
cavity (p < 0.01). When the samples were grouped by morphologi-
cally-similar tissue types, SO2 showed statistically significant dif-
ferences between SCC and normal tissues for all four tissue
groups (glottis p < 0.01; lymphoid p < 0.01; muscle p = 0.03; and
mucosal p < 0.01). Further, statistical differences in l0s were also
observed between SCC and normal tissues of lymphoid and muco-
sal origin (p = 0.02 and p < 0.01, respectively) but not in the glottis.
The l0s of the SCC tissues is nearly significantly lower than the l0s of
the normal tissues (p = 0.058) in the muscle group. In summary,
contrast between SCC and normal tissue is significantly enhanced
when parsing tissues by morphological rather than by anatomical
subtypes.

Linear discriminant model has better predictive power with the
morphological tissue grouping

The sensitivity, specificity, PPV and NPV were computed by
comparing predictions from the discriminant model to those
obtained from pathology and are listed for each set of optical vari-
ables used (Table 2). The numbers of false negative (FN) and false
positive (FP) samples are also provided. The FNs were separated
into node-positive SCC and node-negative SCC for Tis/T1/T2 stage
and T3/T4 stage. The FPs were separated into pathologically nor-



Figure 2. Representative normalized reflectance scans for the 3 anatomical sites (A) and the 4 morphological categories (B).

Table 1
Breakdown of anatomical site, sub-site and morphologically similar tissue types for all measurements. All tumor sites were confirmed by histopathological confirmation of
biopsies. 37 patients had pathologically-confirmed SCC. The number of patients included in each sample type was indicated in the parentheses.

Pathology confirmed SCC Normal

Tis/T1/T2a T3/T4 Total Pathology confirmed Clinical observation Total

Anatomical site Anatomical sub-site Morphological groups N+b N�c N+ N�

Larynx Glottic Glottic 1(1) 11(8) 2(1) 0(0) 14(10) 21(14) 23(18) 47(23)
Supraglottic Mucosal 2(2) 1(1) 2(2) 0(0) 5(5) 0(0) 5(4) 5(4)
Site-total 3(2) 12(8) 4(3) 0(0) 19(13) 21(14) 28(21) 52(25)

Pharynx Oropharynx Lymphoid 2(2) 0(0) 1(1) 0(0) 3(3) 1(1) 7(6) 8(6)
Hypopharynx Mucosal 1(1) 0(0) 0(0) 0(0) 1(1) 3(2) 1(1) 4(3)
Base of Tongue Lymphoid 5(5) 3(3) 2(2) 0(0) 10(10) 11(7) 15(14) 26(15)
Tonsil Lymphoid 3(3) 1(1) 1(1) 1(1) 6(6) 0(0) 5(4) 5(4)
Site-total 11(11) 4(4) 4(3) 1(1) 20(19) 15(8) 28(22) 43(23)

Oral cavity Tongue Muscle 3(1) 4(3) 0(0) 0(0) 7(4) 3(2) 34(29) 37(29)
Floor of Mouth Mucosal 0(0) 0(0) 1(1) 0(0) 1(1) 0(0) 23(22) 23(22)
Alveolus Mucosal 0(0) 0(0) 0(0) 2(1) 2(1) 0(0) 2(2) 2(2)
Palate Mucosal 0(0) 0(0) 0(0) 0(0) 0(0) 1(1) 21(19) 22(19)
Cheek Mucosal 0(0) 1(1) 0(0) 0(0) 1(1) 0(0) 22(22) 22(22)
RMTd Mucosal 0(0) 1(1) 0(0) 0(0) 1(1) 0(0) 0(0) 0(0)
Site-total 3(1) 6(5) 1(1) 2(1) 12(8) 4(3) 102(34) 106(34)

Total 17(14) 22(17) 9(6) 3(2) 51(37) 40(25) 158(56) 198(57)

a Tis: carcinoma in situ.
b N+: node-positive SCC.
c N�: node-negative SCC.
d RMT: retromolar trigone.
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mal and clinically normal groups. Overall, for every pair of optical
variables selected, there were improvements in the sensitivity,
specificity, PPV, and NPV when discriminant models were built
based on morphological groupings, relative to a model that was
built based on the anatomical location. The total number of FN
samples was lowest when using all three optical biomarkers for
classification. Importantly, the total number of FNs and FPs derived
from the morphologically-grouped algorithm was less than the
total number of FNs and FPs derived from anatomically-grouped
algorithm. Further, the algorithm based on morphological group-
ings was particularly more effective in identifying node-positive
vs. node-negative disease.



Table 2
Diagnostic accuracy based on linear-discriminant models using two or more measured optical biomarkers for sites grouped by anatomical sites or by tissue types (shaded cells).
The sensitivity, specificity, positive predictive value and negative predictive value values are reported for leave-one-out cross-validation. The standard error of the diagnostic
accuracies were computed and provided in the parentheses. The numbers in the site column in parenthesis represents the number of node positive SCC, node-negative SCC,
pathologically-confirmed normal, clinically-observed normal samples in each group. See Table 1 for tissue groupings used. The numbers of false negatives and false positives are
also shown. The FN was further broken down into N+ and N� groups. The FP was broken down into pathological confirmed normal or clinical observed normal groups. The
collective Se, Sp, PPVs and NPVs when all subgroups are combined are also shown. This table suggests that while the same optical biomarkers were used to build the discriminant
model, the models generally perform better when the samples were grouped by tissue type (shaded) than by anatomical site (non-shaded). Moreover, the discriminant models
with three optical biomarkers generally classify the samples better than those with only two optical biomarkers. The number in parenthesis indicates the standard error of the
corresponding diagnostic accuracy.

FN FP 

Tis/T1/T2 T3/T4 Total aPath. bClin. Total 

Biomarker   
Pairs Site Se. Sp. PPV. NPV. N+ N- N+ N- 

SO2&THb Larynx  
(7/12/24/28) 63%(11.1%) 94%(3.4%) 80%(10.3%) 88%(4.7%) 1 4 2 0 7 2 1 3 

Pharynx  
(15/5/15/28) 65%(10.6%) 86%(5.3%) 68%(10.7%) 84%(5.5%) 4 1 1 1 7 4 2 6 

Oral Cavity  
(4/8/4/102) 50%(14.4%) 73%(4.3%) 17%(6.4%) 93%(2.8%) 1 4 0 1 6 1 28 29 

Total 61%(6.8%) 81%(2.8%) 45%(6.0%) 89%(2.3%) 6 9 3 2 20 7 31 38 

Glottic  
(3/11/24/23) 57%(13.2%) 94%(3.8%) 73%(13.4%) 88%(4.7%) 1 4 1 0 6 2 1 3 

Lymphoid 
 (14/5/12/27) 68%(10.6%) 87%(5.4%) 72%(10.6%) 85%(5.6%) 3 1 1 1 6 3 2 5 

Muscle 
 (3/4/3/34) 71%(17.1%) 68%(7.7%) 29%(11.1%) 93%(5.0%) 1 1 0 0 2 0 12 12 

Mucosal 
 (6/5/4/74) 73%(13.4%) 90%(3.4%) 50%(12.5%) 96%(2.3%) 0 2 0 1 3 2 6 8 

Total 67%(6.6%) 86%(2.5%) 55%(6.3%) 91%(2.1%) 5 8 2 2 17 7 21 28 

SO2&µs’ 
Larynx  

(7/12/24/28) 63%(11.1%) 94%(3.4%) 80%(10.3%) 88%(4.7%) 1 4 2 0 7 2 1 3 

Pharynx  
(15/5/15/28) 75%(9.7%) 86%(5.4%) 71%(9.9%) 88%(5.0%) 2 1 1 1 5 5 1 6 

Oral Cavity  
(4/8/4/102) 67%(13.6%) 74%(4.3%) 22%(6.9%) 95%(2.4%) 1 2 0 1 4 2 26 28 

Total 69%(6.5%) 82%(2.8%) 49%(5.9%) 91%(2.2%) 4 7 3 2 16 9 28 37 

Glottic  
(3/11/24/23) 57%(13.2%) 94%(3.8%) 73%(13.4%) 88%(4.9%) 1 4 1 0 6 2 1 3 

Lymphoid  
(14/5/12/27) 74%(10.1%) 87%(5.4%) 74%(10.1%) 87%(5.4%) 2 1 1 1 5 4 1 5 

Muscle  
(3/4/3/34) 71%(17.1%) 73%(7.3%) 33%(12.1%) 93%(4.7%) 1 1 0 0 2 0 10 10 

Mucosal  
(6/5/4/74) 73%(13.4%) 92%(3.0%) 57%(13.2%) 96%(2.3%) 0 2 0 1 3 3 3 6 

Total 69%(6.5%) 88%(2.6%) 59%(6.5%) 92%(2.0%) 4 8 2 2 16 9 15 24 

SO2&THb&µ
s

Larynx  
(7/12/24/28) 63%(11.6%) 94%(3.4%) 80%(10.3%) 88%(4.7%) 1 4 2 0 7 2 1 3 

Pharynx  
(15/5/15/28) 80%(8.9%) 86%(5.3%) 73%(9.5%) 90%(4.6%) 1 1 1 1 4 5 1 6 

Oral Cavity  
(4/8/4/102) 67%(13.6%) 73%(4.3%) 22%(6.8%) 95%(2.4%) 1 2 0 1 4 2 27 29 

Total 71%(6.4%) 81%(2.8%) 49%(5.8%) 92%(2.1%) 3 7 3 2 15 9 29 38 

Glottic  
(3/11/24/23) 57%(13.2%) 94%(3.8%) 73%(13.4%) 88%(4.9%) 1 4 1 0 6 2 1 3 

Lymphoid  
(14/5/12/27) 79%(9.4%) 90%(4.9%) 79%(9.4%) 90%(4.9%) 1 1 1 1 4 3 1 4 

Muscle  
(3/4/3/34) 71%(17.1%) 73%(7.3%) 33%(12.2%) 93%(4.7%) 1 1 0 0 2 0 10 10 

Mucosal  
(6/5/4/74) 73%(13.4%) 90%(3.4%) 50%(12.5%) 96%(2.3%) 0 2 0 1 3 3 5 8 

Total 71%(6.4%) 88%(2.4%) 59%(6.3%) 92%(2.0%) 3 8 2 2 15 8 17 25 

a Path.: pathological confirmed normal sample.
b Clin.: clinical observed normal samples.
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Figure 3. Range and median values of extracted biomarkers for normal and SCC for different anatomic and tissue classifications. Numbers in parentheses indicate sample
numbers. Significant p-values are reported from unpaired Wilcoxon rank sum tests. Contrast between SCC and normal tissues is enhanced when parsing tissues by
morphological rather than by anatomical subtypes (*p < 0.05, **p < 0.01) (N: normal).
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Tissue scattering and hemoglobin oxygenation saturation are lower at
the primary tumor with node positive disease

Fig. 4 shows boxplots of the optical biomarkers for normal sam-
ples, node-positive and node-negative SCC samples. The SO2 of the
normal samples was significantly higher than that of the node-
positive and node-negative SCC groups (p < 0.01 for both). The l0s
of the node-positive SCC samples was nearly significantly lower
than that of normal group (p = 0.055) thus providing additional
contrast when differentiating normal from node-positive SCC sam-
ples. Moreover, the l0s of the node-positive SCC samples was signif-
icantly lower than that of node-negative SCC samples (p < 0.01)
and the l0s of the node-negative SCC samples was significantly
lower than that of the normal samples (p < 0.01).
Optical spectroscopy shows contrast between SCC and pathologically-
confirmed normal tissues

Fig. 5 shows boxplots of the optical parameters for the malig-
nant, pathologically-confirmed normal and clinically-observed
normal tissues. The SO2 of the malignant tissues were significantly
lower than both the pathological normal tissues and the clinical
observed normal tissues. The SO2 of the pathological normal tis-
sues were also significantly lower than the clinically-observed nor-
mal tissues. No statistical significance was observed in the THb
results. The l0s of the clinically-observed normal tissues were
higher than both the pathologically-confirmed normal and the
malignant tissues.
Discussion

Our results show that when using SO2, THb and l0s for building
the discriminant models, the overall PPV and NPV increased from
49% and 92%, respectively, to 59% and 92%, when tissue-specific
classification was used instead of anatomically-based classifica-
tion. Moreover, this change resulted in a 34% decrease in the num-
ber of FP classifications. This supports the hypothesis that a strong
predictive algorithm would need to be tissue-specific, since differ-
ent tissues are expected to have different baseline physiological
and morphological properties. It has been demonstrated that these
differences in morphological and chemical properties affects the
tissue optical properties. For instance, Bashkatov et al. showed that
the absorption and the scattering spectra of human skin, subcuta-
neous adipose, and mucosa exhibit different spectral features [41].
Therefore, mixing different types of tissues could be expected to
diminish contrast between the malignant and normal tissues as
observed here.

Forty-three clinically-appearing malignant tissues were con-
firmed to be histologically benign. While the tissue absorption
and scattering were similar between the 51 malignant and the



Figure 4. Boxplots of SO2 (A), THb (B) and l0s(C) for normal and SCC samples. The
SCC samples were separated into two groups by lymph node status. The significant
p values from Wilcoxon rank sum tests are shown. This figure suggests that head
and neck malignant tissue is generally hypoxic. Moreover, as the tumor progress
from node-negative to node-positive, the tissue scattering generally decreases.
(**p < 0.01) (N: normal).

Figure 5. Boxplots of SO2 (A), THb (B) and l0s(C) for malignant, pathologically-
confirmed normal and clinically-observed normal tissue. The significant p values
computed from the Wilcoxon rank sum tests are shown. (**p < 0.01) This figure
suggests that the contrast between the malignant and pathologically-confirmed
normal was less than the contrast between the malignant and the clinically-
observed normal tissues. (Path.: pathologically-confirmed normal. Clinical: clinical
observed normal).
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43 pathologically-confirmed normal tissues, the SO2 was signifi-
cantly different. The algorithm based on morphological groupings
classified 81% of these samples correctly. In addition, 23 glottic
samples were biopsied and confirmed as pathologically normal.
With the morphologically based algorithm, only 2 pathologically-
confirmed benign samples were classified as malignant. This
implies that the vast majority of these glottic biopsies if obtained
for the concern of cancer may have been avoided. These data illus-
trate the potential utility of using optical spectroscopy for reducing
the number of biopsies and their related patient discomfort/pain
and use of limited resources.

The effect of enhancing contrast when building the linear dis-
criminant model based on tissue type is obvious when comparing
the oral cavity group to its constituent tissue groups (muscle and
mucosal) since they had comparable sample sizes (37% muscle,
63% mucosal). The linear discriminant models have better sensitiv-
ities and PPVs and similar specificities and NPVs regardless of the
optical parameters chosen (Table 2) when using tissue type over
anatomical location. In addition, the SO2 showed no statistical dif-
ferences between the malignant and normal tissues in the oral cav-
ity. On the other hand, both the SO2 of the malignant tissues in
muscle and the mucosal group were significantly lower than the
SO2 of the normal tissues in the corresponding group (Fig. 3).

Optical techniques have been widely used to detect and charac-
terize differences between dysplastic and malignant tissue from
benign tissue, as reviewed previously [35,42,43]. Although capable
of providing high discriminatory power, these approaches rely on
heuristic algorithms for classification, and do not necessarily lever-
age information about the underlying tissue physiology or mor-
phology for tissue classification, as has been demonstrated in this
study. Further, only one of the three groups mentioned above has
previously reported on differences between benign and dysplastic
and/or cancerous lesions based on anatomical sub groups. How-
ever, this was limited to just the oral cavity, which is a very small
subset of the head and neck lesions observed clinically.

Hypoxia is a general characteristic of solid tumors in the head
and neck [44] due to a less-ordered and leaky vascular supply, as
compared with that of normal tissues [45]. In this manuscript,
the oxygenation of the malignant head and neck tissues are shown
to be generally lower than that of normal head and neck tissues in
the unpaired comparisons (Figs. 3–5). This result was also observed
in our previous spectroscopy study of HNCC [16]. In another study,
Terris and Dunphy found that the pO2 of the primary tumor
(22.7 ± 16.0 mm Hg) was lower than that of normal subcutaneous
tissue (57.2 ± 12.8 mm Hg) [46]. This result is concordant with our
findings. In addition to providing contrast for the detection of SCC,
knowledge of tumor SO2 will be invaluable in therapy planning, as
tumor hypoxia renders the tumor resistant to radiation treatment,
which plays an important role in HNC therapy.

Tissue scattering likely reflects the morphology of the HNC. Tis-
sue scattering of the malignant tissues was significantly lower than
that of the clinical observed normal tissues. Moreover, tissue scat-
tering of lymph-node-positive malignant tissues was lower than
both normal tissues and node-negative malignant tissues. This
could be caused by the loss of collagen in the basement membrane
during the invasion of the SCC cells. Breach of the basement
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membrane is considered to be the first step for the HNSCC cells to
become an invasive carcinoma [47,48]. Both urokinase-type plas-
minogen activator and metalloproteinases (MMPs, also known as
collagenases) play important roles allowing SCC cells to degrade
the basement membrane. Activating the urokinase or the collagen-
ases can result in the hydrolysis of collagen [49,47,50], which
serves as an important component in the basement membrane
and one major tissue scatterer as well [51]. Georgakoudi et al.
observed a decrease of tissue scattering during the progression of
dysplasia in esophagus tissue with reflectance spectroscopy [52].
Loss of collagen due to neoplasia can also be seen in wide-field
autofluorescence imaging in oral cavity [53].

Although we failed to achieve 100% sensitivity and specificity,
our technique is low-cost, label-free and portable, and thus has
potential in countries where histopathology services are limited.
If our technique proves reliable and rapid screening, it could
reduce the current burden of trained pathologists. In addition,
the classification outcome may be improved by further refining
the tissue grouping strategy. This strategy could also be applied
to other technologies and organ sites. Moreover, our results show
that the tissue scattering at the primary tumor might be related
to the nodal status. This is important since whether the cancer
has metastasized will significantly change the treatment strategy.
Finally, current histopathology results of the biopsies at the pri-
mary tumor would not reveal the lymph node status.

Our group demonstrates a quantitative optical spectroscopy
technique and tissue grouping strategy capable of enhancing con-
trast between malignant and normal tissues from different regions
of the head and neck. In this preliminary diagnostic study, our data
suggests that a predictive algorithm that combines optical end-
points and that is stratified by tissue type improves accuracy, par-
ticularly in node-positive disease. This is based on accounting for
differences in tissue physiology and morphology within the upper
aerodigestive tract. Further, the strategy described here appears to
be particularly well suited to reduce the clinical false-positive rate,
particularly for glottic tissue, where the surgeon had the highest
false-positive rate, thereby potentially reducing the need for
unnecessary surgical procedures that could significantly impact
patient morbidity.
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