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http://www.wordle.net/ (using journal articles – removing journal titles) 
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4.  Optimal design for nonlinear experiments  
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1.  Overview  

Environmental toxicology = study of toxicants expressed in any 
environment and at any level of biological organization (from 

molecular to ecosystem level) 

As a special case, aquatic toxicology experiments are conducted to 
evaluate the potential impact of chemicals in receiving waters, 

marine systems, and other ecosystems. 

Who cares about environmental toxicology? 

o Manufacturers of fertilizers and pesticides 
o Consumer products (e.g. laundry detergents) 
o Pharmaceutical industry (e.g. endocrine active compounds) 
o Oil production companies (e.g. spills, Deepwater Horizon) 
o We do. 
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2.  Potency Estimation 

• Start of my collaborations on environmental / eco / aquatic 
toxicology problems. 

• Question:  How are regulatory limits set for exposure limits?  
Here the issue was targets for whole effluent toxicity testing. 

• Observation:  many advocated the use of NOEC/LOEC (so-
called “hypothesis testing” approaches in the literature) 

• Statisticians had argued for regression based alternatives (e.g. 
BMD as suggested by Crump 1984 although goes back to Bliss 
in the 1930s for LC estimation) 

• Colleague wonders about sensitivity to detect differences in 
common protocols and if better alternative exists. 
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Process:   

o Conduct D-R experiment 
o e.g.:   
 response (number of young produced in 3 broods) 
 dose (effluent conc. Or toxicant level) 
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o Fit model  
o e.g.: 
 Poisson regression 
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o Invert fitted D-R relationship  

 
Concentration (dose) associated with a specific level of inhibition 
relative to control results, are often estimated 
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Test system: 
Freshwater quality test based on young produced by Ceriodaphnia dubia: 

 
http://denr.sd.gov/des/sw/wet.aspx 
Test is typically run for seven days or less. Measures whether the discharge effects the 
reproduction of the Ceriodaphnia. Chronic test also measures if the effluent would be 
lethal to aquatic life (from same web site). 

  

http://denr.sd.gov/des/sw/wet.aspx
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Frequentist approach [Bailer and Oris (1993, 1997)] 

| ~ ( )
independent

ij i iY Poissonµ µ
                                     

.                       

Resulting in a potency estimate RIp:   C s.t. 

 

Notes: 
1)  m = 2 often works 
2)  “p” often 0.25 or 0.50  
2)  CI based on parametric bootstrap 

2
0 1 2log( ) ... m

i i i m ic c cµ β β β β= + + + +

0(1 )RIp pµ µ= −
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Bayesian approach [Zhang, Bailer, Oris (2012)] 

Parameters:  θ = (β0, β1, β2)   

Data:  Y= (Y01, . . . , Y0n[0], …, Yg1, … Ygn[g]) 

( ) ( | )( | )
( )

f f Yf Y
f Y

θ θθ =  

where f(Y | θ) is the Poisson likelihood from above 

f(θ) is the prior distribution for the parameters 

f(Y)is a normalizing constant 
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Priors: 
0 2~ ( , )i i iNβ β σ

   
2 ~ (0.001,0.001)i Inv Gammaσ −  

 

Comment:   

Historical information can be used to modify the priors or as part a 
hierarchical specification of an analysis. 
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Bayesian models 
Prior distribution 

for  β0 

  

Parameters used in the prior  
distribution 

 β0
0 σ2 

Informative prior N(β0
0,σ2) 3.4 0.001 

Flat prior, centered at 0 N(β0
0,σ2) 0 σ2~Inv-Gamma(0.001,0.001) 

Flat prior, centered at 
ln(20) 

N(β0
0,σ2) ln(20) σ2~Inv-Gamma(0.001,0.001) 

Flat prior, centered at 
ln(30) 

N(β0
0,σ2) ln(30) σ2~Inv-Gamma(0.001,0.001) 
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Methods 

RI25 (true value: 0.86) 

 

Frequentist 
Method 

Bayesian Methods 

With flat priors for 𝛽1and 𝛽2 and different priors for 𝛽0 

Flat prior, 
centered at 

0 

Flat prior, 
centered at 

ln(20) 

Flat prior, 
centered at 

ln(30) 

Informative 

prior 

Avg. Point Est. 0.85 0.82 0.82 0.82 0.82 

Root MSE 0.09 0.08 0.08 0.07 0.06 

Observed Coverage 
of nominal 95% 

interval 

73.30% 94.50% 94.70% 95.70% 96.30% 
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3.  Step-Stress Test [or is there a better way to test for differences] 
• used where the water velocity is increased incrementally over 

time until the fish can no longer maintain position in a chamber 
 

• time until fatigue measured recorded 
 

• critical swimming speed calculated (Ucrit) [ a measure related 
to the water velocity at the time of failure]  
 

• analysis of continuous response common (e.g. t-tests, anova…) 
(Kolok 1999) 

 
• doesn’t take into account structure of time-to-event data … 

possible loss of statistical power?  
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Goals: 
• COMPARE groups with respect to survival observed in a step-

stress study (with covariates also possible) 
• Employ a parametric survival analysis approach to step-stress 

data 
• Contrast method with continuous response alternatives 
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Notation: 
• n = number of fish on test 
• τ0 = 0 [time start] 
• R1 = stress in the first interval, water velocity 
• τj=fixed time when stress/water velocity is increased to Rj+1,  
• j = 1, …, k-1 [stress assumed constant within interval] 
• τk = ∞ [i.e. failure times are observed] 
• Ij = [τj-1, τj) represent the jth interval or step, j = 1, …, k 
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Specification and conduct of the study 

• number of steps (k) 

• spacing of times (τ0, …,τk) 

• water velocity at each step (Rj) 

• Each fish starts swimming at τ0 = 0 and failure time t is 
recorded 
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Analysis goal 

• model distribution of the failure times 

• compare different groups w.r.t. failure time distributions 

• quantify covariates influence on the failure time distribution. 

• all failures observed (common in tox. testing apps; however, 
not serious problem if censoring occurs)  
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Statistical Model: 
• piecewise constant hazard function in each interval 
• h(t)= λj        t ∈Ij, λj > 0, j = 1, … k  

 

  

 
Refs:   
Greven S., Bailer A.J., Kupper L.L., Muller K.E. and Craft, J.L.(2004)   
Craft J.L. and Bailer A.J. (2005) 
 
Test for a treatment effect - H0: αj = 0 ∀ j = 1, …, k  
(identical hazard/survival)  
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Example: 
• Fish were swum at 15 cm/s for 90 minutes  
• flow rate increased every 20 minutes by 5 cm/s until fatigue.  
• Control (n=14;  mean = 118.3, median = 114.7, s = 23.4) 
• Treatment (n=15; mean = 129.8, median = 117.3, s = 32.6) 
• Combining adjoining intervals b/c small ni - [0, 110), [110, 

150) and [150, ∞) min. - water velocities of 15-20 cm/s, 25-30 
cm/s and 35-40 cm/s, respectively.  

 Comments: 
• If the time interval lengths are chosen too short in relation to the 

water velocity and the attendant hazard rates, there may be no 
observed failures in some of the intervals 

• Design issue?  specify interval lengths that are roughly inversely 
related to water velocity. This may serve as a surrogate for 
specifying interval lengths that are inversely related to the hazard of 
failure in each interval?  
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Context for design investigation 

• Testing for ecological impacts of toxins can occur in lab / field  

• methyl tert-butyl ether (MTBE) is an oxygenate used in 
reformulated gasoline [decrease CO emission with fossil fuels]. 
 

• Fluoranthene in exhaust of internal combustion engines 

• Water craft such as two-cycle jet skis release 20-30% of fuel is 
in exhaust unburned.  
 

• Implication:  unburned fuel entering aquatic systems 

Q:  does this exposure impact organisms in aquatic systems? 

Q:  mix of fluoranthene+MTBE worse than fluoranthene alone? 
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Test system:  Fathead minnow larvae 

 
(image from www.eeusa.com/?cat=2) 

Endpoints modeled:  fluoranthene body residue (FL vs. 
FL+MTBE) and survival 

Experiment: 
 Time-course for body residue + survival-time study 
 
Model: 
 Toxicokinetic model involving uptake and elimination (more to 
come) + survival (factorial treatment structure with FL & MTBE) 

http://www.eeusa.com/?cat=2
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Result? [Cho, Bailer and Oris 2003 Environ. Sci. Technol. 
37:1306-1310] 

• Higher FL body residue when MTBE present 
• Lower survival with co-exposure [MTBE enhances photo-

induced toxicity of FL] 

 

Spin-off question … are we sampling at the best possible times … 

• Statistical design concepts provide direction for the spacing 
and allocation of experimental organisms for optimal 
estimation of system characteristics  
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• 4. Optimal design for nonlinear expts. 

• Details: experiment with 72 h of contaminant exposure 
followed by 72 h with no contaminant exposure.   
 

• Internal concentration of toxin in the organism ↑ during 
exposure and ↓ after exposure ends.   

 
• Some sampling times fixed a priori - 0h=start, 72h =cessation 

of exposure, and 144h=end of study.  
 

• Resources available to support the selection of 10 additional 
sampling times.  
 

• So, “design” = particular set of 10 unique sampling times 
(besides) 3 fixed times.  
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Assume: 
- sampling on the hour is desired (e.g., for logistical reasons such 

as scheduling technicians) → 145 possible sampling times (from 
0h through 144h);  

- three of times (0, 72, and 144h) are designated by the 
practitioners, and ten are to be selected from the remaining times.  
  
“design” = particular set of 10 unique sampling times (besides 
the three fixed times) - # possible designs = chose 10 elements 
from a set of 142 elements = 6.6 x 1014. 
 
Goal (restated): develop strategies to determine which among the 
664 trillion possible designs should be preferred, according to 
some combination of fixed criteria. 
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Mean internal concentration at time x  
[reflects the uptake and elimination of the toxin] 

[ ])exp(})0,72max{exp(),;( 22
2

1
21 xxx ⋅−−−⋅−= θθ

θ
θθθµ ,  (1) 
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D-optimality criterion 
Select design points from the integers to maximize the function (of 
inform. Matrix)   
* D-optimality criterion, where D = det M(x1,…x13) 
[Common design criterion (Atkinson and Donev 1992)] 

[ ] [ ]∑=
∈Sx

T
xFJxFJ )ˆ;()ˆ;(: θθM θθ  

)θθ ˆ;(xFJ  = Jacobian (partial derivatives) of the mean response 
function w.r.t. the parameters, θˆ  given a priori 
estimate of θ   

S  = experimental design (i.e., a set of sampling points chosen for 
the experiment). 
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*  Choose S so that  XSS ⊆⊆0  

X = the finite design space of all possible sampling points  

0S  = a set of required design points  

*  Optimal design is an example of a nonlinear knapsack 
problems (Bretthauer and Shetty 2002): maximize 









∑=
∈Sx

xSf Mϕ)(  over all sets S  subject to XSS ⊆⊆0  and 

βγ ≤∑=
∈Sx

xSc )( . 

xγ  = cost for sampling point x, and β  denotes the total available 
budget. D-optimality criterion: use ∑==

∈Sx
xSDSf Mdet)()( . 



31 
 

Equal costs ( xγ  =1 for all Xx ∈ ): 

knapsack constraint 
βγ ≤∑

∈Sx
x  

becomes a cardinality constraint of form kS ≤  in this case 
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Greedy Method (cardinality-constrained form) 
1. Initialize 0: SS = . 

2. While kS <  do the following: 

a. Choose any SXt \∈  for which ( )}{tSf ∪  is maximized; 

b. Replace S  by }{tS ∪ . 

 
 
backslash symbol ‘\’ = subset exclusion, so that  

BA \  = {all members of set A that are not members of set B} 
 
* Step 2a above:  

t is selected from points not already in the design S 
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Iterative Replacement Method (cardinality-constrained form) 
1. Choose an initial subset S  satisfying kS =  and XSS ⊆⊆0 . 

2. Take SS =: and 0\: SST = . 

3. While T  is nonempty, do the following: 
a.  Choose Tt ∈ and replace T by }{\ tT ; 

b. Choose any SXr \∈  for which ( )}){\(}{ tSrf ∪  is 
maximized; 

c.  If ( ) )(}){\(}{ SftSrf >∪  , then  

replace S  by }){\(}{ tSr ∪ . 

4. If SS = , then stop; otherwise, go to step 2. 
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Step 1:   initial subset S might naturally be found using greedy 
method. 

Step 2: temporary set T consists of all non-required members of 
current set S.  

Step 3:  checks each member of T in its search for a fruitful 
exchange of design points.  

Step 3c:   requirement of strict increase + finiteness of the search 
space X, guarantees that iterative replacement method 
eventually terminates.   

Step 4:  stops algorithm if step 3 has failed to improve set S. 
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Notes: 
* experimental design literature, cardinality-constrained greedy 

method is known as “sequential search” (Dykstra 1971)  
 
* cardinality-constrained iterative replacement is known as 

“modified Fedorov” method (Cook and Nachtsheim 1980) 
 
* combination of cardinality-constrained greedy and iterative 

replacement methods provides a two-phase procedure shown to 
be among the most competitive for a wide variety of linear 
models (Atkinson and Donev 1992) [adopted by the SAS 
Institute for the OptEx procedure of the SAS/QC module] 

  



36 
 

Wright and Bailer (2006) [Biometrics 62: 886-892] used the 
procedure in the context of the fluoranthene experiment under the 
assumption of uniform sampling costs.  
  
Result of optimization, compared with practitioner’s original 
design, was as follows: 

• Optimized design — 
{0h,4h,5h,6h,7h,70h,71h,72h,74h,75h,76h,77h,144h}; 
 

• Practitioner’s design — 
{0h,2h,4h,8h,24h,48h,72h,74h,78h,80h,96h,120h,144h}. 
 

Optimized design: D(S) = 3.81×1011  
Practitioner’s design: D(S) = 1.84×1011  
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Comparing the sampling times in these two designs 

* practitioner correctly chose to select sampling times: 
> near start of study (times before 10h)  
> near time when exposure ceases (times between 70h and 78h).  
 

* Practitioner’s design includes five sampling times deemed 
unimportant by the optimal design, but which may still be 
important for non-statistical reasons. 
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Figure 1. Response function (uptake and elimination of toxin) shown with practitioner’s sampling times (vertical 
dotted lines) and the optimized experimental design (large dots) assuming uniform sampling costs 
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Comparing different number of design points  
[D(*) scaled some differently than other displays but still reflect the actual relative 

magnitudes among designs.] 

  
Table 2: Designs Obtained for Different Numbers of Samples 

  Sampling times appearing in design (h)  
No. 4 5 6 7 8 9 70 71 73 74 75 76 77 )(⋅D  
9  * * *      * * *  41.37 

10  * * *    *  * * *  53.57 
11 * * * *    *  * * *  66.73 
12 * * * *    * * * * *  81.41 
13 * * * *   * *  * * * * 98.17 
14 * * * * *  * *  * * * * 115.58 
15 * * * * *  * * * * * * * 134.39 
16 * * * * * * * * * * * * * 153.54 

NOTE: The times 0, 72, and 144 h were required in the design. 
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Results –  sensitivity analysis - 10000 samples:  
∗ θ1/ θ2 ~ triangular  
∗ θ2~ uniform with extremes set at ±10% best value 

 
   Sampling times appearing in designs(h)  

Profile 4 5 6 7 8 70 71 73 74 75 76 77 Freq. 
1 * * * * *  * * * * *  4982 
2  * * * * * *  * * * * 2559 
3 * * * *  * *  * * * * 2459 
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Simulation Study [Bell, Bailer and Wright (2006) ET&C 25:248-252] 
• θ1=Ku = 3532 and θ2=Ke =0.2358  { uptake/elimination lingo } 
• Case 1:  constant variance / normal  
• Case 2: proportional variance / log-normal  
• nonlinear regression model fit (SEs for Ku estimation) 
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To recap …  
• At this point we have addressed – WHEN, WHERE, and HOW 

LONG  
Next steps ... HOW MUCH  

• Constrain choice of designs to accommodate practical 
considerations.   

• Motivation:  conducting studies on weekdays may be cheaper 
than weekend/evening (overtime pay, etc.) → determine best 
design when sample times are constrained to occur between 8 
a.m. and 5 p.m. on weekdays.  

• Cost of conducting the experiment = f(times when observations 
are sampled and processed)  

• Why? laboratory technicians may be paid at different hourly 
rates depending on the time of day or on the day of the week  
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• Consider relative cost of starting experiment described 
previously at 2 different starting times in week  

Assume: 
• practitioner’s sampling design in both cases.   
• sampling costs vary throughout week as follows (see Figure):  
• 1×p×w =  “base/regular hourly wage” on weekdays (8 a.m.–5 

p.m., Monday through Friday);  
• 2×p×w =  “double-time wage” on the weekend (7 p.m. Friday 

through 6 a.m. Monday);  
• 1.5×p×w = “time-and-a-half wage” at all other times.  
• p=time to collect sample;  w=base wage  
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Figure 2. Cost of one sample obtained at given hour of the week, with 1.00 = “base cost” for samples collected 
during normal business hours, 1.50 = “time-and-a-half” [overnight], and 2.00 [weekends]. 
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Does it matter when you start a study? 

• Case 1: start at 8 a.m. on Monday 
all samples drawn during normal work hrs, except samples 
at 120h & 144h (drawn on weekend =double-time wages)  
 

• Case 2: start at 8 a.m. on Wednesday 
five samples (72h through 96h) are drawn over weekend.  
 

• Total costs incurred:  
15×p×w [Case 1:  Monday start] 

21×p×w [Case 2:  Wednesday start] 
 

 cost of study would be 40% higher if started on Wednesday 
than if started on Monday at same time of day.  
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Optimal design ⊂ combinatorial optimization known as nonlinear 
knapsack problems (Bretthauer and Shetty 2002) 
 
* maximizing total value of items in a knapsack subject to a 
constraint imposed by volume capacity of knapsack.   
 
Mathematically, we want to maximize 









∑=
∈Sx

xSf Mϕ)(  over all sets S  

subject to XSS ⊆⊆0  and βγ ≤∑=
∈Sx

xSc )( . 

ϕ  = scalar aggregate of total info ∑
∈Sx

xM (summed over x in S) 

xγ  = cost for sampling point x 
  
β  = total available budget 
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Greedy Method (general form) 
1. Initialize 0: SS = . 

2. While x
SXx

Sc γβ
\

min)(
∈

≥−  do the following: 

a. Choose any SXt \∈  with tSc γβ ≥− )(  that maximizes 

the ratio ( )
t

SftSf
γ

)(}{ −∪ ; 

b. Replace S  by }{tS ∪  
 

*  while-condition in step 2 asks: is there room in budget to 
include any more design points? 

*  inequality in step 2a only considers unused design points that 
are cheap enough to be included 

*  choosing the new design point to maximize the specified ratio 
is essentially a discrete analog of steepest ascent 
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Iterative Replacement Method (general form) 
1. Choose initial subset S  satisfying  

x
SXx

Sc γβ
\

min)(
∈

<−    and    XSS ⊆⊆0 . 

2. Take SS =: and 0\: SST = . 

3. While T  is nonempty, do: 
a. Choose Tt ∈ and replace T  by }{\ tT ; 

b. Use Greedy Method (general form) to maximize )(Rf  
over all XR ⊆ with β≤)(Rc  and RtS ⊆}{\ ; 

c. If )()( SfRf >  , then replace S  by R . 

4. If SS = , then stop; otherwise, go to step 2. 
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Results (with costs considered …) 
 
* Fixed budget = wp ⋅⋅13 . 
 
* Top four starting times that yield the most information: 

1. Tuesday 9 a.m., D(S) = 3.81058×1011; 

2. Tuesday 8 a.m., D(S) = 3.81057×1011; 

3. Friday 9 a.m., D(S) = 3.76002×1011; 

4. Friday 8 a.m., D(S) = 3.746144×1011. 

 



50 
 

Figure 4. Information (D-optimality criterion) for experimental designs optimized to best suit specific starting times, subject to variable sampling 
costs.  Lighter shading indicates starting times giving more information.  Given a starting time during the week, each design was chosen to 
maximize the D-optimality criterion, subject to a budget allowing 13 sampling times during normal business hours (or fewer, if more expensive 
evening or weekend hours are used) and to the requirement that sampling times must include the start, midpoint, and end of study (i.e., 0h, 
72h, and 144h). 
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Figure 5. Optimal designs obtained for each experiment starting time under the same conditions as Figure 4.  Lighter shading = designs with 
more information; the solid horizontal line =design with the highest possible information. 

 

> designs with higher info. values cluster sample times ~ 5h & 72h 
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Relationship between maximum info and # of design points  
[Figure 6. Information & number of design points plotted vs. designated starting time of the experiment.] 
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* information correlates strongly with number of samples  
 
* desirability of samples drawn near 5h and 72h strongly favors 

starting the experiment near beginning of a normal workday 
 
*  number of design points in an information-optimized design 

drops to as few as 8 for expensive starting times.   
 
* sampling times at start and middle of experiment are so valuable 

that we would rather pay a high premium to use a few sampling 
times near 0h and 72h  than to sample more heavily at 
inexpensive times! 
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Trade-off between info & total cost for opt. designs - budgets ranging from 8 to 
15 sampling times (at normal weekday wages).  From any point on frontier, info 
increase only by cost increase, and cost decrease only be decreasing information 

  



55 
 

5.  What’s Next? 
 

*  scheduling of experiments that can overlap in time and 

potentially share (or prohibit sharing of) resources? 

*    sampling of times for design of multi-compartment 

PBPK/PBTK studies? 

* model for hierarchical responses:   

hatching -> survival -> growth 
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In this talk, we considered 3 problems where statistical thinking 
and modeling was used to 

1. define and estimate a better endpoint for setting exposure limits 
+ incorporating prior information in a potency estimation analysis 

2. represent an experimental protocol in order to derive a more 
sensitive test 

3. improve ecotoxicological designs 

 

This work has allowed opportunities to combine ideas from 
regression, design, accelerated life testing to tackle problems that 
are important for evaluating the impact of toxicants.  The chance to 
work closely and learn with scientific collaborators is one of the 
joys of statistical practice.
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Thank you! 

 
 


