When reading James Kasting’s *How to Find a Habitable Planet*, readers are forced to consider the true complexities behind answering the question of whether or not we are alone in the universe. While the number of stars and galaxies that exist in the universe truly is mind-bending, Kasting provides a moderately vast array of detail and information regarding what is truly necessary for a planet to be considered a good candidate for the existence of life. While many may believe that Carl Sagan was correct in predicting that life must be abundant with such a vast number of stars and systems in existence, Kasting enables readers to delve deeper into such predictions with some schooling in the requirements for a habitable planet. Upon completion, readers may be rejuvenated with the mystery of whether or not our planet is unique with life or is one of millions in a seemingly unending world of space and time.

Kasting is indeed diverse in his approach to outlining the critical knowledge necessary to finding planets in the universe, bringing a fresh style to the table by citing scientific methods and facts that may have been absent in our previous reading by Mary Roach. While some may find his method of writing a bit too complex in scientific detail to follow, I did not have too much trouble understanding the key points he was attempting to make. While surely readers may never fully understand the implications of oxygen on cyanobacteria or transit spectroscopy (unless perhaps they have a Ph. D in physics), Kasting arms readers with many general concepts of what a search for extraterrestrial planets really entails. I actually found his methods to be quite interesting, and while they are indeed technically demanding, readers should have no problem finding at least some areas of interest in the wide array of detail provided. Perhaps the polar opposite to Mary Roach’s book, Kasting’s framework for planet hunting avoids human emotion and focuses on the scientific groundwork that must be paved for a planet to have any chance of being home to life.

Once readers get past the stringent technical requirements, they may find Kasting’s work to be of quaint interest. While not fully understanding every model and detail, I found his overall approach to the subject to bring additional excitement to the concepts laid out in class. Could we bypass intense planet-searching requirements such as gravitational microlensing by confirming life on the red planet, or would such a discovery simply lend hand to even deeper mystery in the search for extraterrestrial planets? I believe that Kasting brings credit to the work done by today’s astronomers by at least showing the complexities that are involved in modern planet hunting. While the book exemplifies the difficulties involved in a finding a habitable planet, there is indeed some room left for hope. Perhaps Kasting has laid out the necessary tools for hunting such a rare beast, and the universe is the jungle in which tomorrow’s astronomers will search for their trophies. Replacing bows and arrows with modern weapons like the Drake Equation, today’s planet hunters have met their match. With 500 planets found and the number growing exponentially, *How to Find a Habitable Planet* refreshes doubters with a glass of cold reasoning that may hold steady as we continue to search for life in the unknown.