Questions

3. a) Longer λ

b) Smaller amplitude

Higher frequency

Shorter period

4. $v_1 = v_2$, $f_1 = 2f_2$

$v = \lambda f \rightarrow \lambda = \frac{v}{f}$

$\lambda_1 = \frac{v_1}{f_1} = \frac{v_2}{2f_2} = \frac{1}{2} \frac{v_2}{f_2} = \frac{1}{2} \lambda_2$

$\lambda_1 = \frac{1}{2} \lambda_2$

5. Transverse wave

Pt. A string moving down

Pt. B string moving up

Pt. C string not moving yet

10. The more dense the medium, the slower the wave.
Q5

11.

\[t = 1 \text{ sec} \]

\[t = 2 \text{ sec} \]

\[t = 1 \text{ sec} \]

\[t = 2 \text{ sec} \]

Resultant flat
13.

\[Q_s \]

13.

\[t = 2 \text{ sec} \]

\[t = 3 \text{ sec} \]

\[t = 5 \text{ sec} \]

14.

5 antinodes (peaks)
6 nodes (midlines)

19.

Rogue wave of 50 ft is too high. If 2 waves added constructively, the highest it would be is \(15 + 25 = 40 \) ft.
Problems

1. 4.5 pushes in 1.5 minutes
 \[f = \frac{\text{pushes}}{\text{second}} = \frac{4.5 \text{ pushes}}{90 \text{ seconds}} = \frac{1}{2} \text{ push/sec} \]
 \[f = \frac{1}{2} \text{ Hz} \]

2. \(f = 0.33 \text{ Hz} \) \(t = 15 \text{ sec} \) \# waves = ?
 \[f = \frac{\# \text{ waves}}{\text{second}} \]
 Total \# waves = \(f \times t = 0.33 \text{ Hz} \times 15 \text{ sec} \)
 \[\approx 5 \text{ waves} \]

3. \(\lambda = 9 \text{ ft} \) \(f = 0.33 \text{ Hz} \)
 \[v = \lambda f = 9 \text{ ft} \times (0.33 \text{ Hz}) = 3 \text{ ft/sec} \]

4. \(v = 12 \text{ m/sec} \) \(T = 3 \text{ sec} \) \(\lambda = ? \)
 \[\lambda = \frac{v}{f} \]
 \[T = \frac{1}{f} \]
 \[\therefore \lambda = 2T = 12 \text{ m/sec} \times 3 \text{ sec} \]
 \[\lambda = 36 \text{ m} \]
 Cannot tell what the amplitude is.

5. (b)

 a) With 2 nodes, have \(\frac{1}{2} \lambda \).
 3 nodes, have \(1 \lambda \).
 5 nodes, have \(2 \lambda \).

 b) Any integer number of \(\frac{1}{2} \lambda \)
 c) Any integer number of \(\frac{1}{2} \lambda \)
 can be found in this case.