

Phy 101 Motion Problems

1. Balloon Fight! You want to drop a water balloon on a friend who is out jogging at 1.6 m/s. If the residence hall is 30 meters high, how far away from the target spot should your friend be when you drop the balloon?

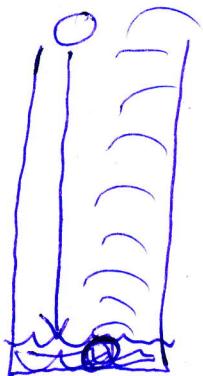
Find t from vertical drop time.

$$k d_x = v_x t \rightarrow$$

$$d = 30 - 2m = 28m$$

$$d = \frac{1}{2} a t^2$$

$$28m = \frac{1}{2} (9.8 \text{ m/s}^2) t^2$$


$$t^2 = \frac{2(28m)}{9.8 \text{ m/s}^2} = 5.7 \text{ sec}^2$$

$$\boxed{t = 2.39 \text{ sec}}$$

$$d_x = v_x t = 1.6 \text{ m/s} (2.39 \text{ sec}) = \boxed{3.82 \text{ m} = d_x}$$

2. Your kid Brother drops a coin into a wishing well. After 2.078 seconds, you and he hear the "plopping" sound as the coin hits the water. How deep is the well?

The speed of sound is 344 m/s at 20°C.

$$d_{\text{down}} = \frac{1}{2} a t_{\text{down}}^2 \text{ where } a = 9.8 \text{ m/s}^2$$

$$d_{\text{up}} = v_{\text{sound}} t_{\text{up}}$$

$$T_{\text{total}} = t_{\text{down}} + t_{\text{up}} = 2.078 \text{ sec.}$$

$$d_{\text{down}} = d_{\text{up}}$$

$$\frac{1}{2} a t_{\text{down}}^2 = v_{\text{sound}} t_{\text{up}}$$

Subst.

$$T_{\text{tot}} - t_{\text{down}} = t_{\text{up}}$$

$$\frac{1}{2} a t_{\text{down}}^2 = v_{\text{sound}} (T_{\text{tot}} - t_{\text{down}})$$

$$0 = \frac{1}{2} a t_{\text{down}}^2 + v_{\text{sound}} t_{\text{down}} - v_{\text{sound}} T_{\text{tot}} \leftarrow \text{quadratic}$$

$$t_{\text{down}} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$a = 4.9, b = 344, c = 714.832$$

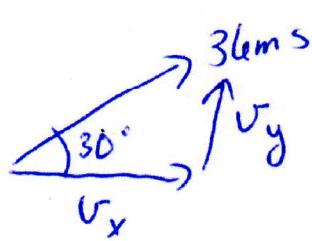
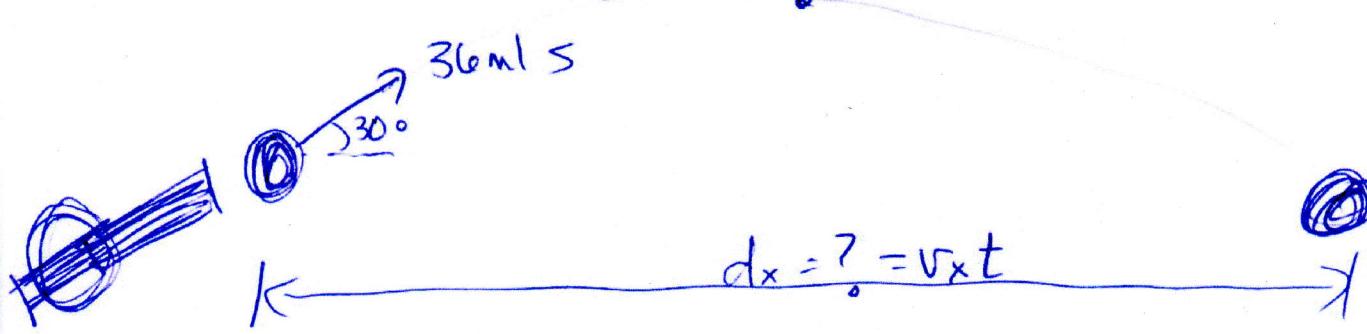
2.) (cont)

$$t_{down} = \frac{-344 \pm \sqrt{(344)^2 + 4(4.9)(71832)}}{2(4.9)}$$

$$= \frac{-344 \pm 363.795}{9.8}$$

$$\boxed{t_{down} = 2.02 \text{ sec.}}$$

* have to choose positive value for real, physical answer - time is positive.



$$\begin{aligned} \therefore d_{down} &= \frac{1}{2} at^2 \\ &= \frac{1}{2} (9.8 \text{ m/s}^2) (2.02 \text{ sec})^2 \\ &= 20 \text{ m} \end{aligned}$$

$$t_{up} = T_{tot} - t_{down} = 2.078 - 2.02 = 0.058 \text{ sec} = t_{up}$$

$$\begin{aligned} d_{up} &= v_{sound} t_{up} \\ &= 344 \text{ m/s} (0.058 \text{ sec}) \\ &= 20 \text{ m} \end{aligned}$$

Well depth (to water level) = 20 m

3. Cannon Balls Away! Galileo is testing cannons by holding a cannon shooting contest. If the cannon you have is shot at a 30 degree angle with a velocity of 36 m/s, how far away could the target be located from the cannon and you still be able to hit it?

Find v_y & v_x

$$v_y = v \sin \theta = 36 \text{ m/s} \sin 30 = 18 \text{ m/s}$$

$$v_x = v \cos \theta = 36 \text{ m/s} \cos 30 = 31.2 \text{ m/s}$$

Find time in air from vertical info.

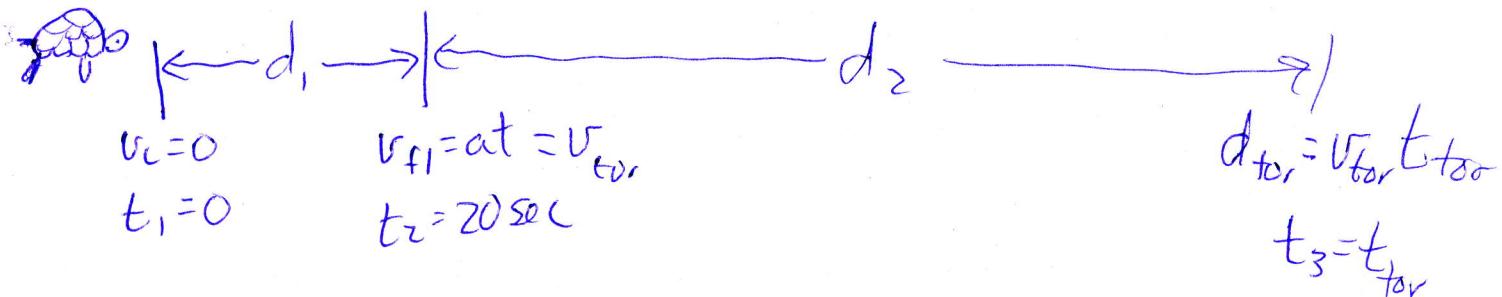
$$v_{fy} - v_{iy} = at$$

$$t = \frac{0 - 18 \text{ m/s}}{-9.8 \text{ m/s}^2} = 1.84 \text{ sec.}$$

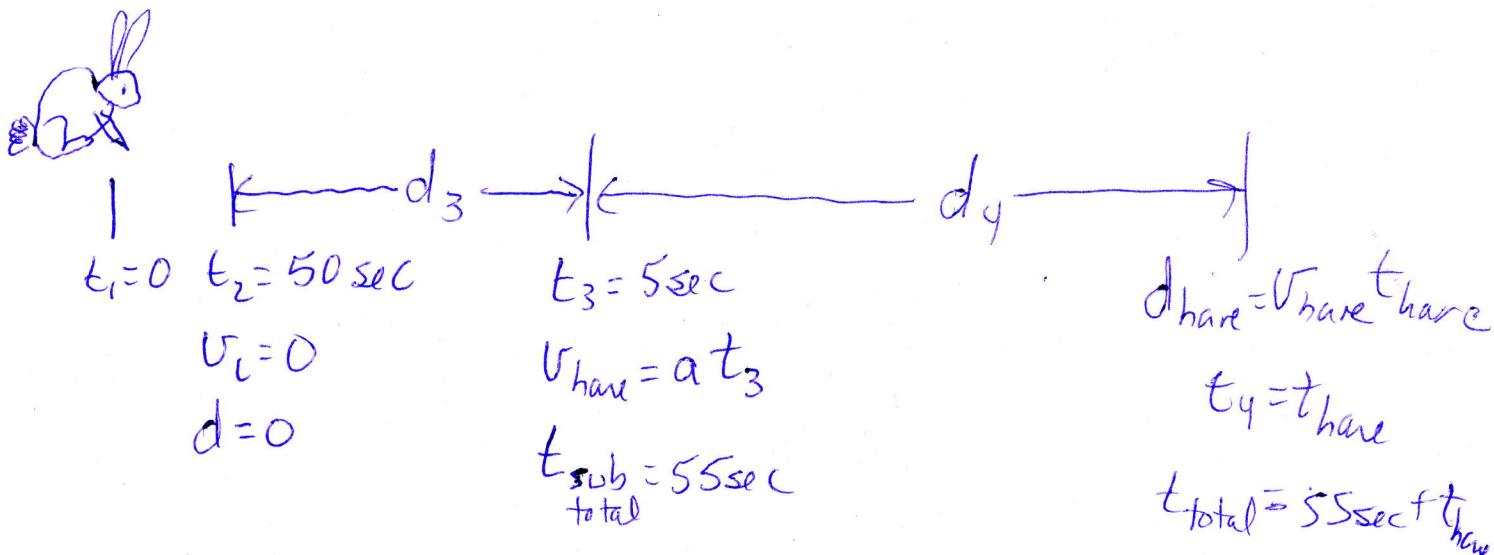
Double time to peak of flight for full time

$$T_{\text{total}} = 3.68 \text{ sec}$$

Total horizontal distance


$$d_x = v_x t_{\text{total}} = 31.2 \text{ m/s} (3.68 \text{ sec})$$

$$d_x = 114.6 \text{ m}$$


4. The tortoise and the hare! The tortoise and the hare are having a race. Hare expects to win easily and so doesn't line up quickly. Tortoise starts off from the start line accelerating at 0.03 m/s^2 for 20 seconds, then continues at that speed for 120 seconds. If Hare finally leaves 50 seconds later and accelerates at 0.5 m/s^2 for 5 seconds, and then continues at that pace, when will he catch up with tortoise? How far will they both have traveled by then?

This is a tricky problem, so simply explain how you would set up the problem to solve for the information requested. Draw diagrams to assist in your explanation.

Tortoise

Hare

Hare passes tortoise 18/ when:

$$1.) d_{\text{TOTAL}} = d_{\text{hare}} = d_{\text{Total}}_{\text{tortoise}}$$

$$2.) t_{\text{TOTAL}} = t_{\text{hare}} = t_{\text{Total}}_{\text{tortoise}}$$

4.) (cont.)

To solve:

a) Set two distances equal & find t_{total} , then d_{total} for each animal

b) Use times for each animal to solve for each total d.

Should be equal!