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Preface

Goals and audience

In spite of the presumptuous title, my goals for this book are modest. I wrote
it as

e the manual I wish I had in graduate school, and

e a primer for our graduate course in Population and Community Ecology at

Miami University!

It is my hope that readers can enjoy the ecological content and ignore the
R code, if they care to. Toward this end, I tried to make the code easy to ignore,
by either putting boxes around it, or simply concentrating code in some sections
and keeping it out of other sections.

It is also my hope that ecologists interested in learning R will have a rich yet
gentle introduction to this amazing programming language. Toward that end, I
have included some useful functions in an R package called primer. Like nearly
all R packages, it is available through the R projects repositories, the CRAN
mirrors. See the Appendix for an introduction to the R language.

I have a hard time learning something on my own, unless I can do something
with the material. Learning ecology is no different, and I find that my students
and I learn theory best when we write down formulae, manipulate them, and
explore consequences of rearrangement. This typically starts with copying down,
verbatim, an expression in a book or paper. Therefore, I encourage readers to
take pencil to paper, and fingers to keyboard, and copy expressions they see
in this book. After that, make sure that what I have done is correct by trying
some of the same rearrangements and manipulations I have done. In addition,
try things that aren’t in the book — have fun.

A pedagogical suggestion
For centuries, musicians and composers have learned their craft in part by
copying by hand to works of others. Physical embodiment of the musical notes

! Miami University is located in the Miami River valley in Oxford, Ohio, USA; the
region is home to the Myaamia tribe that dwelled here prior to European occupa-
tion.
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and their sequences helped them learn composition. I have it on great authority
that most theoreticians (and other mathematicians) do the same thing — they
start by copying down mathematical expressions. This physical process helps get
the content under their skin and through their skull. I encourage you to do the
same. Whether otherwise indicated or not, let the first assigned problem at the
end of each chapter be to copy down, with a pencil and paper, the mathematical
expression presented in that chapter. In my own self-guided learning, I have
often taken this simple activity for granted and have discounted its value — to
my own detriment. I am not surprised how often students also take this activity
for granted, and similarly suffer the consequences. Seeing the logic of something
is not always enough — sometimes we have to actually recreate the logic for
ourselves.

Comparison to other texts

It may be useful to compare this book to others of a similar ilk. This book bears
its closest similarities to two other wonderful primers: Gotelli’s A Primer of
Ecology, and Roughgarden’s Primer of Theoretical Ecology. I am more familiar
with these books than any other introductory texts, and I am greatly indebted
to these authors for their contributions to my education and the discipline as a
whole.

My book, geared toward graduate students, includes more advanced material
than Gotelli’s primer, but most of the ecological topics are similar. I attempt
to start in the same place (e.g., “What is geometric growth?”), but I develop
many of the ideas much further. Unlike Gotelli, I do not cover life tables at all,
but rather, I devote an entire chapter to demographic matriz models. I include a
chapter on community structure and diversity, including multivariate distances,
species-abundance distributions, species-area relations, and island biogeography,
as well as diversity partitioning. My book also includes code to implement most
of the ideas, whereas Gotelli’s primer does not.

This book also differs from Roughgarden’s primer, in that I use the Open
Source R programming language, rather than Matlab®), and I do not cover
physiology or evolution. My philosphical approach is similar, however, as I tend
to “talk” to the reader, and we fall down the rabbit hole together?.

Aside from Gotelli and Roughgarden’s books, this book bears similarity in
content to several other wonderful introductions to mathematical ecology or
biology. I could have cited repeatedly (and in some places did so) the following;:
Ellner and Guckenheimer (2006), Gurney and Nisbet (1998), Kingsland (1985),
MacArthur (1972), Magurran (2004), May (2001), Morin (1999), Otto and Day
(2006), and Vandermeer and Goldberg (2007). Still others exist, but I have not
yet had the good fortune to dig too deeply into them.
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2 From Alice’s Adventures in Wonderland (1865), L. Carroll (C. L. Dodgson).
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Simple Density-independent Growth
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Fig. 1.1: Song Sparrow (Melospiza melodia) counts in Darrtown, OH, USA. From
Sauer, J. R., J. E. Hines, and J. Fallon. 2005. The North American Breeding Bird
Survey, Results and Analysis 1966-2004. Version 2005.2. USGS Patuxent Wildlife
Research Center, Laurel, MD.

Between 1966 and 1971, Song Sparrow (Melospiza melodia) abundance in
Darrtown, OH, USA, seemed to increase very quickly, seemingly unimpeded
by any particular factor (Fig. 1.1a). In an effort to manage this population, we
may want to predict its future population size. We may also want to describe its
growth rate and population size in terms of mechanisms that could influence its
growth rate. We may want to compare its growth and relevant mechanisms to
those of other Song Sparrow populations or even to other passerine populations.
These goals, prediction, explanation, and generalization, are frequently the goals
toward which we strive in modeling anything, including populations, communi-
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ties, and ecosystems. In this book, we start with simple models of populations
and slowly add complexity to both the form of the model, and the analysis of
its behavior. As we move along, we also practice applying these models to real
populations.

What is a model, and why are they important in ecology? First, a model is
an abstraction of reality. A road map, for instance, that you might use to find
your way from Mumbai to Silvasaa is a model of the road network that allows
you to predict which roads will get you to Silvasaa. As such, it ezcludes far more
information about western India than it includes. Partly as a result of excluding
this information, it is eminently useful for planning a trip. Models in ecology are
similar. Ecological systems are potentially vastly more complex than just about
any other system one can imagine for the simple reason that ecosystems are
composed of vast numbers of genetically distinct individuals, each of which is
composed of at least one cell (e.g., a bacterium), and all of these individuals may
interact, at least indirectly. Ecological models are designed to capture particular
key features of these potentially complex systems. The goal is to capture a key
feature that is particularly interesting and useful.

In this book, we begin with the phenomenon called density-independent
growth. We consider it at the beginning of the book for a few reasons. First, the
fundamental process of reproduction (e.g., making seeds or babies) results in
a geometric series'. For instance, one cell divides to make two, those two cells
each divide to make four, and so on, where reproduction for each cell results
in two cells, regardless of how many other cells are in the population — that
is what we mean by density-independent. This myopically observed event of
reproduction, whether one cell into two, or one plant producing many seeds, is
the genesis of a geometric series. Therefore, most models of populations include
this fundamental process of geometric increase. Second, populations can grow in
a density-independent fashion when resources are plentiful. Third, it behooves
us to start with this simple model because most, more complex population
models include this process.

1.1 A Very Specific Definition

Density-independence in a real population is perhaps best defined quite specif-
ically and operationally as a lack of a statistical relation between the density of
a population, and its per capita growth rate. The power to detect a significant
relation depends, in part, on those factors which govern power in statistical re-
lations between any two continuous variables: the number of observations, and
the range of the predictor variable. Therefore, our conclusion, that a particular
population exhibits density-independent growth, may be trivial if our sample
size is small (i.e., few generations sampled), or if we sampled the population
over a very narrow range of densities. Nonetheless, it behooves us to come back

I A mathematical series is typically a list of numbers that follow a rule, and that you
sum together.
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to this definition if, or when, we get caught up in the biology of a particular
organism.

We could examine directly the relation between the growth rate and popu-
lation size of our Song Sparrow population (Fig. 1.1b). We see that there is no
apparent relation between the growth rate and the density of the population?.
That is what we mean by “density-independent growth.”

1.2 A Simple Example

Let’s pretend you own a small piece of property and on that property is a pond.
Way back in June 2000, as a present for Mother’s Day, you were given a water
lily (Nymphaea odorata), and you promptly planted it, with it’s single leaf or
frond, in the shallows of your pond. The summer passes, and your lily blossoms,
producing a beautiful white flower. The following June (2001) you notice that
the lily grew back, and that there were three leaves, not just one. Perhaps you
cannot discern whether the three leaves are separate plants. Regardless, the
pond now seems to contain three times the amount of lily pad that it had last
year.

The following June (2002) you are pleased to find that instead of three
leaves, you now have nine. In June 2003, you have 27 leaves, and in 2004 you
have 81 leaves (Fig. 1.3). How do we describe this pattern of growth? How do
we predict the size of the population in the future? Can we take lessons learned
from our water lily and apply it to white-tailed deer in suburbia, or to bacteria
in the kitchen sink?

We rely on theory to understand and describe the growth of our water lily in
such a way as to apply it to other populations. The role of theory, and theoretical
ecology, is basically three-fold. We might like theory to allow us to describe the
pattern in sufficient detail (1) to provide a mechanistic explanation for how the
lily grew as fast or as slowly as it did, (2) allow us to make predictions about
the population size in the future, and (3) allow us to generalize among other
lily populations or other species. These goals typically compete with each other,
so real models are mathematical descriptions that result from tradeoffs among
these goals which depend precisely on our particular needs [109].

1.3 Exploring Population Growth

So, how fast are the lilies of the example growing? Between years 1 and 2, it
increased by 2 fronds; between years 2 and 3, it increased by 6. In subsequent
years it increased by 18, and 54 fronds. The number changes each year (Fig.
1.3), so how do we predict the future, or even explain the present? Can we find
a general rule that works for any year?

2 Consider that if area is fixed, “count” or population size differs from density by a
fixed multiplier
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Fig. 1.2: Hypothetical water lily population size through time.

Simple Graphing of Population Size (Fig. 1.3)

Here we create two vectors: population size, N, and years. Using c() allows us to
create an arbitrary vector, and the colon, :, provides a sequence of consecutive
integers.

>N <-c(1, 3, 9, 27, 81)
> year <- 2001:2005
> plot(year, N)

The lily population (Fig. 1.3) increases by a different amount each year.
What about proportions — does it increase by a different proportion each year?
Let’s divide each year’s population size by the previous year’s size, that is,
perform N, /N, for all ¢, where ¢ is any particular point in time, and ¢+ 1 is the
next point in time. For N, that amounts to 3/1, 9/3, .... What do we notice?

Vectorized math

Here we divide each element of one vector (the second through fifth element of N)
by each element of another vector (the first through fourth elements of N).

> rates = N[2:5]/N[1:4]
> rates

[11 3333

Lo, and behold! all of these proportions are the same: 3. Every year, the
lilies increase by the same proportion — they triple in abundance, increasing
by 200%. That is the general rule that is specific to our population. It is general
because it appears to apply to each year, and could potentially describe other
populations; it is not, for instance, based on the photosynthetic rate in lily pads.
It is specific because it describes a specific rate of increase for our water lily
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population. We can represent this as
Naoo2 = 3 X Nagor

where Ny is the size of the population in 2002. If we rearrange this, dividing
both sides by Nago1, we get
Naooz

=3
Nooor

where 2 is our rate of increase.
Generalizing this principle, we can state

Niy1 = 3N;
Nt+1 =3
N,

1.3.1 Projecting population into the future

The above equations let us describe the rate of change population size N from
one year to the next, but how do we predict the size 10 or 20 years hence? Let’s
start with one year and go from there.

Nooo2 = 3Nago1
Naoo3 = 3N2002 = 3 (BN2o01)
Nooos = 3N2003 = 3 (BN2go2) = 3 (3 (2N2001))

So, ... what is the general rule that is emerging for predicting water lily NV, some
years hence? Recall that 3 x 3 x3 =33 or a X a X a = a’, so more generally, we
like to state

N; = A'Ny (1.1)

where ¢ is the number of time units (years in our example), Ny is the size of
our population at the beginning, A is the per capita rate of increase over the
specified time interval and N, is the predicted size of the population after ¢ time
units.

Note that lambda, A, is the finite rate of increase. It is the per capita rate
of growth of a population if the population is growing geometrically. We discuss
some of the finer points of A in Chapter 2. We can also define a related term,
the discrete growth factor, ry, where A = (1 + ry).

Note that “time” is not in calendar years but rather in years since the initial
time period. It is also the number of time steps. Imagine that someone sampled
a population for five years, 1963-1967, then we have four time steps, and ¢ = 4.
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Projecting population size
Here we calculate population sizes for 10 time points beyond the initial. First we
assign values for Ny, 4, and time.

> NO <- 1
> lambda <- 2
> time <- 0:10

Next we calculate N, directly using our general formula.

> Nt <- NO * lambda"time
> Nt

[1] 1 2 4 8 16 32 64 128 256 512 1024

1.3.2 Effects of initial population size

Let’s explore the effects of initial population size. First, if we just examine
equation 1.1, we will note that N, = Ny xstuff. Therefore, if one population starts
out twice as big as another, then it will always be twice as big, given geometric
growth (Fig. 1.3a). We see that small initial differences diverge wildly over time
(Fig. 1.3a), because “twice as big” just looks a lot bigger as the magnitude
increases.

Effects of Initial Population Size

We first set up several different initial values, provide a fixed A, and set times from
zero to 4.

> NO <- c(10, 20, 30)
> lambda <- 2
> time <- 0:4

We calculate population sizes at once using sapply to apply a function
(n*lambda“time) to each element of the first argument (each element of NO).

> Nt.s <- sapply(NO, function(n) n * lambda time)
> Nt.s

[,11 [,21 [,3]
[1,] 10 20 30
[2,] 20 40 60
[3,] 40 80 120
[4,1] 80 160 240
[5,] 160 320 480

The result is a matrix, and we see Ny in the first row, and each population is in its
own column. Note that population 2 is always twice as big as population 1.

If we change the y-axis scale to logarithms, however, we see that the lines are
parallel! Logarithms are a little weird, but they allow us to look at, and think
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about, many processes where rates are involved, or where we are especially
interested in the relative magnitudes of variables. Consider the old rule we get
when we take the logarithm of both sides of an equation, where the right hand
side is a ratio.

y= (1.2)

SR

logy = log(g)zloga—logb (1.3)

Thus, when we change everything into logarithms, ratios (like 1) become dif-
ferences, which result in straight lines in graphs (Fig. 1.3b). On a linear scale,
populations that are changing at the same rates can look very different (Fig.
1.3a), whereas on a logarithmic scale, the populations will have parallel trajec-
tories (Fig. 1.3b).

Graphing a Matriz (Figs. 1.3a, 1.3b)

We can use matplot to plot a matrix vs. a single vector on the X-axis. By default it
labels the points according to the number of the column

> matplot(time, Nt.s, pch = 1:3)

We can also plot it with a log scale on the y-axis.

> matplot(time, Nt.s, log = "y", pch = 1:3)
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Fig. 1.3: Effects of variation in initial N on population size, through time. Different
symbols indicate different populations.

Note that changing the initial population size changes the intercept. It also
changes the slope in linear space, but not in log-linear space. It changes the
absolute rate of increase (N, — Ny ), but not the relative rate of increase (N,/Ny).
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1.3.3 Effects of different per capita growth rates

Perhaps the most important single thing we can say about A is that when 4 < 1,
the population shrinks, and when A > 1 the population grows. If we examine eq
1.1, N; = A'Ny, we will note that 1 is exponentiated, that is, raised to a power>.
It will always be true that when A > 1 and ¢ > 1, A* > A. It will also be true that
when A <l and 7> 1, A <A (Fig. 1.4).

Thus we see the basis of a very simple but important truism. When A > 1,
the population grows, and when A < 1 the population shrinks (Fig. 1.4). When

A =1, the population size does not change, because 1’ = 1 for all ¢.

Effects of Different A (Fig. 1.4)

Here we demonstrate the effects on growth of 4 > 1 and 4 < 1. We set Ny = 100, and
time, and then pick three different A.

> NO <- 100

> time <- 0:3

> lambdas <- ¢(0.5, 1, 1.5)

We use sapply again to apply the geometric growth function to each A. This time,

x stands for each A, which our function then uses to calculate population size. We
then plot it, and add a reference line and a little text.

> N.all <- sapply(lambdas, function(x) NO * x time)

> matplot(time, N.all, xlab = "Years", ylab = "N", pch = 1:3)
> abline(h = NO, 1ty = 3)

> text (0.5, 250, expression(lambda > 1), cex = 1.2)

> text (0.5, 20, expression(lambda < 1), cex = 1.2)

The reference line is a horizontal line with the line type dotted. Our text simply

indicates the regions of positive and negative growth.

We note that we have graphed discrete population growth. If we are counting
bodies, and the population reproduces once per year, then the population will
jump following all the births (or emergence from eggs). Further, it is probably
always the case that following a bout of synchronous reproduction, we observe
chronic ongoing mortality, with the result of population decline between spikes
of reproduction. Nonetheless, unless we collect the data, we can’t really say
much about what goes on in between census periods.

1.3.4 Average growth rate

In any real data set, such as from a real population of Nymphaea, Ny /N; will
vary from year to year. Let’s examine this with a new data set in which annual
growth rate varies from year to year.

3 What happens to y* as x increases, if y > 1 — does y* increase? What happens if
y < 1 — does y* decrease? The answer to both these questions is yes.



1.3 Exploring Population Growth 11

+
o
g |
(%)
= A>1
+
o
g |
[aY)
z
. +
8 Je N A A
R o
A<t o °
o

\ \ \ \ \ \ \
00 05 10 15 20 25 30

Years

Fig. 1.4: Effects of variation in A on population size through time. The dotted line
indicates no change (N, = Ny, A =1). Numbers (1, 2, 3) indicate populations resulting
from A = (0.5, 1.0, 1.5), respectively. Any A greater than 1 results in positive geometric
growth; any A < 1 results in negative geometric growth, or population decline.

Since growth rate varies from year to year, we may want to calculate average
annual growth rate over several years. As we see below, however, the arithmetic
averages are not really appropriate.

Consider that N,.i/N, may be a random variable which we will call R*. That
is, this ratio from any one particular year could take on a wide variety of values,
from close to zero, up to some (unknown) large number. Let’s pick two out of
a hat, where R = 0.5, 1.5. The arithmetic average of these is 1.0, so this might
seem to predict that, on average, the population does not change. Let’s project
the population for two years using each R once.

Ny =100

Ny = Ny (0.5) =50

N, =N (1.5) =175
We started with 100 individuals, but the population shrank! Why did that
happen? It happens because, in essence, we multiply the A together, where
N; = NOR| R;. In this case, then, what is a sensible “average”?

How do we calculate an average for things that we multiply together? We
would like a value for R which would provide the solution to

R =RR,...R, (1.4)

where ¢ is the number of time steps and R; is the observed finite rate of increase
from year 1 to year 2. The bar over R indicates a mean.

4 Some authors use R for very specific purposes, much as one might use A; here we
just use it for a convenient letter to represent observed per capita change.
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All we have to do is solve for R.

(R)" = RiRs...R)" (1.5)
R=(R\R,...R)" (1.6)
(1.7)

We take the #-th root of the product of all the R. This is called the geometric
average. Another way of writing this would be to use the product symbol, /7,

as in t e
R= (ﬂ Ri] (1.8)

If we examine the Song Sparrow data (Fig. 1.5), we see that projections based
on the geometric average R are less than when based on the arithmetic average;
this is always the case.

o _| ’
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Fig. 1.5: Song Sparrow population sizes, and projections based on arithmetic and
geometric mean R.
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Comparing arithmetic and geometric averages (Fig. 1.5)
First we select the number of observed R (¢t = 5); this will require that we use six
years of Song Sparrow data.

>t<-5
> SS6 <- sparrows[1:(t + 1), ]

Next we calculate A for each generation, from ¢ to r+ 1, and calculate the arithmetic
and geometric means.

> SSgr <- SS6$Count[2:(t + 1)]/SS6$Count[1:t]
> lam.A <- sum(SSgr)/t
> lam.G <- prod(SSgr)~(1/t)

Now we can plot the data, and the projections based on the two averages (Fig. 1.5).

NO <- SS6$Count[1]

plot(0:t, SS6$Count, ylab = "Projected Population Size")
lines(0:t, NO * lam.A~(0:t), 1ty = 2)

lines(0:t, NO * lam.G"(0:t), 1ty = 1)

legend (0, 70, c("Arithmetic Ave.", "Geometric Ave."),
title = "Projections Based On:",
1ty = 2:1, bty = "n", xjust = 0)

+ + VvV VvVvyVvy

1.4 Continuous Exponential Growth

Although many, many organisms are modeled well with discrete growth models
(e.g., insects, plants, seasonally reproducing large mammals), many populations
are poorly represented by discrete growth models. These populations (e.g., bac-
teria, humans) are often modeled as continuously growing populations. Such
models take advantage of simple calculus, the mathematics of rates.

Whereas geometric growth is proportional change in a population over a
specified finite time interval, exponential growth is proportional instantaneous
change over, well, an instant.

Imagine a population of Escherichia coli started by inoculating fresh Luria-
Bertania medium with a stab of E. coli culture. We start at time zero with about
1000 cells or CFUs (colony forming units), and wind up the next day with 10'°
cells. If we used (incorrectly) a discrete growth model, we could calculate Ny, /N,
and use this as an estimate for A, where 2 = 10'9/10% = 107 cells per cell per
day. We know, however, that this is a pretty coarse level of understanding about
the dynamics of this system. Each cell cycle is largely asynchronous with the
others, and so many cells are dividing each second. We could simply define our
time scale closer to the average generation time of a cell, for example 1 = 2
cellscell ™' 0.5h™!, but the resulting discrete steps in population growth would
still be a poor representation of what is going on. Rather, we see population size
changing very smoothly from hour to hour, minute to minute. Can we come up
with a better description? Of course.
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1.4.1 Motivating continuous exponential growth

If we assume that our E. coli cells are dividing asynchronously, then many cells
are dividing each fraction of a second — we would like to make that fraction of
a second an infinitely small time step. Unfortunately, that would mean that we
have an infinitely large number of time steps between r = 0 and ¢ = 1day, and
we couldn’t solve anything.

A long time ago, a very smart person® realized that geometric growth de-
pends on how often you think a step of increase occurs. Imagine you think a
population increases at an annual growth rate A = 1.5. This represents a 50%
increase or

Ny =No(1+0.5)

so the discrete growth increment is ry = 0.5. You could reason that twice-annual
reproduction would result in half of the annual r;. You could then do growth
over two time steps, and so we would then raise A2, because the population is
taking two, albeit smaller, time steps. Thus we would have

Ny = No(1+0.5/2)* = Ny (1 +0.25)%

What if we kept increasing the number of time steps, and decreasing the growth
increment? We could represent this as

NI:N0(1+r—d)
n

(%)
N() n

Our question then becomes, what is the value of (1 + %)n as n goes to infinity?
In mathematics, we might state that we would like the solution to

lim (1 + Q)". (1.9)

n—oo n

To begin with, we simply try larger and larger values of n, graph eq. 1.9 vs. n,
and look for a limit (Fig. 1.6).

5 Jacob Bernoulli (1654-1705)
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Numerical approzimation of e

Here we use brute force to try to get an approximate solution to eq. 1.9. We’ll let n be
the number of divisions within one year. This implies that the finite rate of increase
during each of these fractional time steps is r,;/n. Let the A =2 and therefore r, = 1.
Note that because Ny = 1, we could ignore it, but let’s keep it in for completeness.

>n <- 0:100; NO <- 1; rd <- 1
Next, we calculate (1 + %)n for ever larger values of n.
> N1 <- NO * (1 + rd/n)"n

Last, we plot the ratio and add some fancy math text to the plot (see ?plotmath for
details on mathematical typesetting in R).

> plot(n, N1/NO, type = "1")
> text (50, 2, "For mn = 100,")
> text (50, 1.6, bquote((1 + frac("r"["d"], "n")) "n" ==

+ . (round (N1[101]/NO, 3))))
|Te}
& -
o
A Forn =100,
2 l
z rd
n
o | (1+F) =2.705
o |

0 20 40 60 80 100

Fig. 1.6: The limit to subdividing reproduction into smaller steps. We can compare
this numerical approximation to the true value, e! = 2.718.

Thus, when reproduction occurs continuously, the population can begin to
add to itself right away. Indeed, if a population grew in a discrete annual step
Niy1 = N (1 + ry), the same ry, divided up into many small increments, would
result in a much larger increase.
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It turns out that the increase has a simple mathematical expression, and we
call it the exponential, e. As you probably recall, e is one of the magic numbers
in mathematics that keeps popping up everywhere. In this context, we find that

r n
lim (1 + -) = (1.10)
n—oo n

where e is the exponential.

This means that when a population grows geometrically, with infinitely small
time steps, we say the population grows exponentially, and we represent that
as,

N, = Nye". (1.11)

We call r the instantaneous per capita growth rate, or the intrinsic rate of
increase.

Projection of population size with continuous exponential growth is thus no
more difficult than with discrete growth (Fig. 1.7).

Projecting a continuous population

We select five different values for r: two negative, zero, and two positive. We let ¢
include the integers from 1 to 100. We then use sapply to apply our function of
continuous exponential growth to each r, across all time steps. This results in a
matrix where each row is the population size at each time ¢, and each column uses
a different r.

> r <- ¢(-0.03, -0.02, 0, 0.02, 0.03)
> NO <- 2; t <- 1:100
> cont.mat <- sapply(r, function(ri) NO * exp(ri * t))

Next we create side-by-side plots, using both arithmetic and logarithmic scales, and
add a legend.

> layout (matrix(1:2, nrow = 1))

> matplot(t, cont.mat, type = "1", ylab = "N", col = 1)

> legend("topleft", paste(rev(r)), lty = 5:1, col = 1, bty = "n",
+ title = "r")

> matplot(t, cont.mat, type = "1", ylab = "N", log = "y", col = 1)

1.4.2 Deriving the time derivative

We can also differentiate eq. 1.11 with respect to time to get the differential
equation for instantaneous population growth rate. Recall that the chain rule
tells us that the derivative of a product of two terms is the sum of the products
of the derivative of one times the other original term.

4 xry= Xy, Py
dr T odr dr

Therefore to begin to differentiate eq. 1.11, with respect to ¢, we have,
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Fig. 1.7: Projecting continuous populations with different r.
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Recall also that the derivative of a constant is zero, and the derivative of @' is
Ina(a), resulting in,

d

aNoe” =0-(¢")Y +1Ine - () - Ny

Given that Ine = 1, and that Noe"” = N for any time ¢, this reduces to eq. 1.12.
The time derivative, or differential equation, for exponential growth is

dN
— =7N. 1.12
=" (1.12)

1.4.3 Doubling (and tripling) time

For heuristic purposes, it is frequently nice to express differences in growth
rates in terms of something more tangible than a dimensionless number like r.
It is relatively concrete to say population X increases by about 10% each year
(1 = 1.10), but another way to describe the rate of change of a population is
to state the amount of time associated with a dramatic but comprehensible
change. The doubling time of a population is the time required for a population
to double in size. Shorter doubling times therefore mean more rapid growth.
We could determine doubling time graphically. If we examine population 3
in Fig. 1.4, we see that it takes about one and half years for the population size
to change from N = 100 to N = 200. Not surprisingly, we can do better than
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that. By doubling, we mean that N, = 2Ny. To get the time at which this occurs,
we solve eq. (1.11) for ¢,

2N() = N()e‘rt (113)
2=¢" (1.14)
In(2) = rtln(e) (1.15)
e
=— (1.16)

Thus, eq. 1.16 gives us the time required for a population to double, given a
particular r. We could also get any arbitrary multiple m of any arbitrary initial
No.

Creating a function for doubling time

We can create a function for this formula, and then evaluate it for different values of
m and r. For m = 2, we refer to this as “doubling time.” When we define the function
and include arguments r and m, we also set a default value for m=2. This way, we
do not always have to type a value for m; be default the function will return the
doubling time.

> m.time <- function(r, m = 2) {
+ log(m)/r
+ }

Now we create a vector of r, and then use m.time to generate a vector of doubling
times.

>rs <- c(0, 1, 2)
> m.time(rs)

[1] Inf 0.6931 0.3466

Note that R tells us that when r = 0, it takes an infinite (Inf) amount of time to
double. This is what we get when we try to divide by zero!

1.4.4 Relating A and r

If we assume constant exponential and geometric growth, we can calculate r
from data as easily as A. Note that, so rearranging, we see that

N; = Noe In (N;) = In(Np) + rt.

In other words, r is the slope of the linear relation between In(N;) and time
(Fig. 1.7), and In (Np) is the y-intercept. If the data make sense to fit a straight
regression line to log-transformed data, the slope of that line would be r.

It also is plain that,

A=¢ (1.17)
Ind=r (1.18)
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Summarizing some of what we know about how A and r relate to population
growth:

No Change A=1,r=0
Population Growth A>1,r>0
Population Decline A1<1,r<0

Remember — A is for populations with discrete generations, and r is for
continuously reproducing populations.

Units

What are the units for A and r? As A is a ratio of two population sizes, the
units could be individuals/individual, thus rendering A dimensionless. Similarly,
we can view A as the net number of individuals produced by individuals in
the population such that the units are net new individuals per individual per
time step, or indsind™' r~!. The intrinsic rate of increase, r, is also in units of
indsind™" ¢!

Converting between time units

A nice feature of r as opposed to A is that r can be used to scale eas-
ily among time units. Thus, » = 0.1indsind™' year™! becomes r = 0.1/365 =
0.00027 indsind~' day™!. You cannot do this with A. If you would like to scale A
from one time unit to another, first convert it to r using logarithms, make the
conversion, then convert back to A.

1.5 Comments on Simple Density-independent Growth
Models

It almost goes without saying that if we are considering density-independent
growth models to be representative of real populations, we might feel as though
we are making a very long list of unrealistic assumptions. These might include
no immigration or emigration, no population structure (i.e. all individuals are
identical), and you can probably come up with many others [58]. However, I
would argue vociferously that we are making only one assumption:

N increases by a constant per capita rate over the time interval(s) of
interest.

Think about that. I am not saying that competition is not occurring, or that
no death is occurring, or that all individuals are reproductively viable, or there
is no abiotic disturbance, or that there is no population genetic structure. I am
just saying that for the time period of interest, all things balance out, or are
of no substantive consequence, and the population chugs along at a particular
pace.
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If the per capita rate is constant, then there can be no statistical relation
between the size of the population and its per capita growth rate. In the absence
of such a relation, we say that the growth rate is density-independent.

Other ecologists will disagree with my sentiments regarding an absence of
assumptions. That’s OK — still others may agree with these sentiments. Take
it upon yourself to acquire multiple perspectives and evaluate them yourself.

Both A and r obviously depend on birth rates and death rates. For instance,
we could view geometric growth as

Nis1 = N; + BN, - DN, (1.19)

where B is the number of births per individual and D is the probability of an
individual dying during the specified time interval. Lambda, in this case, is
1+ (B — D) and r; = B—D. This form would be nice if we had data on births and
deaths, because, after all, one goal of Science is to explain complex phenomena
(e.g., 1) in terms of their determinants (e.g., B and D). Similarly, we can state
r = b—d where b and d are per capita instanteous rates. Such an advance in
understanding the determinants would be great.

Perhaps now is a good time to think about all the assumptions others might
tell us we are making when we present the above formulation. Are all individuals
in the population equally likely to produce progeny and/or die? Will birth and
death rates vary over time or as the size of the population changes more? How
will resource supply rate influence these rates? Is there really no immigration
or emigration? These are very interesting questions.

Simple density-independent growth provides, in some sense, a null hypothe-
sis for the dynamic behavior of a population. Malthus warned us that organisms
produce more progeny than merely replacement value, and population growth is
an exponential (or geometric) process [125]. The question then becomes “What
causes population growth to differ from a constant rate of change?” That, in a
nutshell, is what the rest of the book is about.

1.6 Modeling with Data: Simulated Dynamics

The main purpose of this section® is to begin to understand the mechanics of
simulation. The preceding sections (the bulk of the chapter) emphasized under-
standing the deterministic underpinnings of simple forms of density independent
growth: geometric and exponential growth. This section explores the simulation
of density independent growth.

When we model populations, perhaps to predict the size of a population
in the future, we can take a variety of approaches. One type of approach em-
phasizes deterministic prediction, using, for instance, R. Another approach is to
simulate population dynamics and we take this up in this next section.

To project population growth into the future should include some quantifi-
cation of the uncertainty with our guess. Simulation is one way we can project

¢ This section emphasizes work in R.
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populations and quantify the uncertainty. The way one often does that is to use
the original data and sample it randomly to calculate model parameters. In this
fashion, the simulations are random, but based on our best available knowldge,
i.e., the real data. The re-use of observed data occurs in many guises, and it is
known generally as bootstrapping or resampling.

1.6.1 Data-based approaches

In using our data to predict population sizes, let us think about three levels of
biological organization and mechanism: population counts, changes in popula-
tion counts, and individual birth and death probabilities. First, our count data
alone provide a sample of a very large number of different possible counts. If we
assume that there will be no trend over time, then a simple description of our
observed counts (e.g., mean and confidence intervals) provide all we need. We
can say “Song Sparrow counts in the Breeding Bird Survey in Darrtown, OH,
are about 51.”

Second, we could use the observed changes in population counts R, = Ny /N,
as our data. We would then draw an R; at random from among the many
observed values, and project the population one year forward. We then repeat
this into the future, say, for ten years. Each simulation of a ten year period will
result in a different ten year trajectory because we draw R; at random from
among the observed R,. However, if we do many such simulations, we will have
a distribution of outcomes that we can describe with simple statistics (e.g.,
median, mean, quantiles).

Third, we might be able to estimate the individual probabilities of births and
deaths in the entire Darrtown population, and use those probabilities and birth
rates to simulate the entire population into the future. In such an individual-
based simulation, we would simulate the fates of individuals, keeping track of
all individual births and deaths.

There are myriad others approaches, but these give you a taste of what
might be possible. In this section we focus on the second of these alternatives,
in which we use observed R, to simulate the dynamics of Song Sparrow counts.

Here we investigate Song Sparrow (Melospize melodia) dynamics using data
from the annual U.S. Breeding Bird Survey (http://www.mbr-pwrc.usgs.gov/
bbs/). Below we will

1. look at and collecting the data (annual R’s),
simulate one projection,

scale up to multiple simulations,

simplify simulations and perform 1000’s, and
analyze the output.

Gt D

1.6.2 Looking at and collecting the data

Let’s start by looking at the data. Looking at the data is always a good idea
— it is a principle of working with data. We first load the data from the PET
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R package, and look at the names of the data frame. We then choose to attach
the data frame, because it makes the code easier to read”.

> names (sparrows)
[1] "Year" "Count"

> attach(sparrows)

"ObserverNumber"

Now we plot these counts through time (Fig. 1.8).

> plot(Count ~ Year, type = "b")
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Fig. 1.8: Observations of Song Sparrows in
pwrc.usgs.gov/bbs/).

Darrtown, OH (http://www.mbr-

We see that Song Sparrow counts® at this site (the DARRTOWN transect, OH,
USA) fluctuated a fair bit between 1966 and 2003. They never were completely
absent and never exceeded ~ 120 individuals.

Next we calculate annual R, = N,y1/N;, that is, the observed growth rate for
each year #°.

> obs.R <- Count[-1]/Count[-length(Count)]

Thus our data are the observed R,, not the counts per se. These R form the
basis of everything else we do. Because they are so important, let’s plot these
as well. Let’s also indicate R = 1 with a horizontal dotted line as a visual cue

7 1 typically do not use attach but rather choose to always define explicitly the parent
data frame I am using. It helps me reduce silly mistakes.

8 Recall that these are samples or observations of sparrows. These are not population
sizes. Therefore, we will be simulating sparrows counts, not sparrow population
sizes.

 The use of “~” in the index tells Rto exclude that element (e.g., -1 means “exclude
the first element of the vector”).
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for zero population growth. Note that we exclude the last year because each R;
is associated with N, rather than N,.

> plot(obs.R ~ Year[-length(Count)])
> abline(h = 1, 1ty = 3)

One thing that emerges in our graphic data display (Fig. 1.8) is we have an
unusually high growth rate in the early 1990’s, with the rest of the data clustered
around 0.5—1.5. We may want to remember that.

1.6.3 One simulation

Now that we have our randomly drawn Rs, we are ready to simulate dynamics. A
key assumption we will make is that these R are representative of R in the future,
and that each is equally likely to occur. We then resample these observed R with
replacement for each year of the simulation. This random draw of observed
R’s then determines one random realization of a possible population trajectory.
Let’s begin.

First, we decide how many years we want to simulate growth.

> years <- 50

This will result in 51 population sizes, because we have the starting year, year
0, and the last year.

Next we draw 50 R at random with replacement. This is just like having all
35 observed R written down on slips of paper and dropped into a paper bag.
We then draw one slip of paper out of the bag, write the number down, and
put the slip of paper back in the bag, and then repeat this 49 more times. This
is resampling with replacement'®. The R function sample will do this. Because
this is a pseudorandom!! process, we use set.seed to make your process the
same as mine, i.e., repeatable.

> set.seed(3)
> sim.Rs <- sample(x = obs.R, size = years, replace = TRUE)

Now that we have these 50 R, all we have to do is use them to determine
the population size through time. For this, we need to use what programmers
call a for-loop (see B.6 for further details). In brief, a for-loop repeatedly loops
through a particular process, with one loop for each value of some indicator
variable. Here we calculate each sparrow count in the next year, Ny, using the
count in the current year N, and the randomly drawn R for each year t.

10 We could resample without replacemnt. In that case, we would be assuming that all
of these R, are important and will occur at some point, but we just don’t know when
— they constitute the entire universe of possiblities. Sampling with replacement,
as we do above, assumes that the observed R, are all equally likely, but none is
particularly important — they are just a sample of what is possible, and they
might be observed again, or they might not.

A pseudorandom process is the best computers can do — it is a complex determin-
istic process that generates results that are indistinguishable from random.
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We begin by creating an empty output vector that is the right length to

hold our projection, which will be the number of Rs plus one'?.

> output <- numeric(years + 1)

We want to start the projection with the sparrow count we had in the last year
(the “maximum,” or biggest, year) of our census data.

> output[1] <- Count[Year == max(Year)]

Now the fun really starts to take off, as we finally use the for-loop. For each
year t, we multiply N; by the randomly selected R, to get N;;; and put it into
the f + 1 element of output.

> for (t in 1:years) output[t + 1] <- {
+ output[t] * sim.Rs[t]
+}

Let’s graph the result.
> plot(0:years, output, type = "1")

It appears to work (Fig. 1.9a) — at least it did something! Let’s review what
we have done. We

e had a bird count each year for 36 years. From this we calculated 35 R (for
all years except the very last).

e decided how many years we wanted to project the population (50y).

e drew at random and with replacement the observed R — one R for each year
we want to project.

e got ready to do a simulation with a for-loop — we created an empty vector
and put in an initial value (the last year’s real data).

e performed each year’s calculation, and put it into the vector we made.

So what does Fig. 1.9a represent? It represents one possible outcome of
a trajectory, if we assume that R has an equal probability of being any of the
observed R;. This particular trajectory is very unlikely, because it would require
one particular sequence of Rs. However, our simulation assumes that it is no
less likely than any other particular trajectory.

As only one realization of a set of randomly selected R, Fig. 1.9a tells us
very little. What we need to do now is to replicate this process a very large
number of times, and examine the distribution of outcomes, including moments
of the distribution such as the mean, median, and confidence interval of eventual
outcomes.

1.6.4 Multiple simulations

Now we create a way to perform the above simulation several times. There are
a couple tricks we use to do this. We still want to start small so we can figure
out the steps as we go. Here is what we would do next.

12 Remember that we always have one more population count than we do R,.
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e We start by specifying that we want to do 10 simulations, where one simu-
lation is what we did above.

e We will need to use 50 x 10 = 500 randomly drawn Rs and store those in a
matrix.

e To do the ten separate, independent simulations, we will use sapply, to “ap-
ply” our simulations ten times. We have to use a for-loop for each population
simulation, because each N, depends on the previous N,_;. We use sapply
and related functions for when we want to do more than one independent
operation.

Here we specify 10 simulations, create a matrix of the 10 x 50 randomly
drawn R.

> sims = 10
> sim.RM <- matrix(sample(obs.R, sims * years, replace = TRUE),
+ nrow = years, ncol = sims)

Next we get ready to do the simulations. First, to hold each projection tem-
porarily, we will reuse output as many times as required. We then apply our
for-loop projection as many times as desired, for each value of 1:sims.

> output[1] <- Count[Year == max(Year)]
> outmat <- sapply(1l:sims, function(i) {

+ for (t in 1:years) output[t + 1] <- output[t] * sim.RM[t,
+ i]

+ output

+ 1

Now let’s peek at the results (Fig. 1.9b). This is fun, but also makes sure we
are not making a heinous mistake in our code. Note we use log scale to help us
see the small populations.

> matplot(0:years, outmat, type = "1", log = "y")

What does it mean that the simulation has an approximately even distribu-
tion of final population sizes on the log scale (Fig. 1.9b)? If we plotted it on a
linear scale, what would it look like?!3

Rerunning this simulation, with new R each time, will show different dy-
namics every time, and that is the point of simulations. Simulations are a way
to make a few key assumptions, and then leave the rest to chance. In that sense
it is a null model of population dynamics.

13 Plotting it on the log scale reveals that the relative change is independent of pop-
ulation size; this is true because the rate of change is geometric. If we plotted it on
a linear scale, we would see that many trajectories result in small counts, and only
a few get really big. That is, the median size is pretty small, but a few populations
get huge.
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Fig. 1.9: Simulated population dynamics with R drawn randomly from observed Song
Sparrow counts.

1.6.5 Many simulations, with a function

Let’s turn our simulation into a user-defined function'* that simplifies our lives.
We also add another assumption: individuals are irreducible. Therefore, let us
use round(,0) to round to zero decimal places, i.e., the nearest integer!®.

Our user defined function, PopSim, simply wraps the previous steps up in a
single function'®. The output is a matrix, like the one we plotted above.

> PopSim <- function(Rs, NO, years = 50, sims = 10) {

sim.RM = matrix(sample(Rs, size = sims * years, replace = TRUE),
nrow = years, ncol = sims)

output <- numeric(years + 1)

output[1] <- NO

outmat <- sapply(1:sims, function(i) {
for (t in 1:years) output[t + 1] <- round(output[t] *

sim.RM[t, i], 0)

output

»

return (outmat)

+ o+ F + + F o+ o+ o+ o+ o+

}

If you like, try to figure out what each step of the simulation is doing. Consider
it one of the end-of-chapter problems. Rely on on the code above to help you
decipher the function.

14 For user-defined functions, see sec. B.4.1.

15 We could use also use floor to round down to the lowest integer, or ceiling to
round up.

16 This process, of working through the steps one at a time, and then wrapping up
the steps into a function, is a useful work flow.
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Now we have the pleasure of using this population simulator to examine a
number of things, including the sizes of the populations after 50 years. I first
simulate 1000 populations!?, and use system.time to tell me how long it takes
on my computer.

> system.time (output <- PopSim(Rs = obs.R, NO = 43, sims = 1000))

user system elapsed
0.331 0.004 0.335

This tells me that it took less than half a second to complete 1000 simulations.
That helps me understand how long 100000 simulations might take. We also
check the dimensions of the output, and they make sense.

> dim(output)
(11 51 1000

We see that we have an object that is the size we think it should be. We shall
assume that everything worked way we think it should.

1.6.6 Analyzing results

We extract the last year of the simulations (last row), and summarize it.

> N.2053 <- output[51, ]
> summary(N.2053, digits = 6)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0 14.0 66.0 1124.6 291.8 332236.0

We see from this summary that the median final population size, among the
1000 simulations, is 66 individuals (median=50% quantile). While at least one
of the populations has become extinct (min. = 0), the maximum is huge (max. =
332236). The quantile function allows us to find a form of empirical confidence
intervals, including, approximately, the central 95% of the observations.'®

> quantile(N.2053, prob = c(0.0275, 0.975))

2.75% 97.5%
0 5967

These quantiles suggest that in 2053, we might observe sparrow counts anywhere
from 0 to 5967, where zero and ~ 6000 are equally likely.

Notice the huge difference between the mean, N = 1125, and the median,
N=66. Try to picture a histogram for which this would be true. It would be
skewed right (long right hand tail), as with the lognormal distribution; this is
common in ecological data.

17 If we were doing this in a serious manner, we might do 10-100 000 times.
18 Note that there are many ways to estimate quantiles (R has nine ways), but they
are approximately similar to percentiles.



28 1 Simple Density-independent Growth

Let’s make a histogram of these data. Exponentially growing populations,
like this one, frequently show a lognormal distribution of abundances. Indeed,
some say the “natural” unit of a population is log(N), rather than N. We will
plot two frequency distributions of the final populations, one on the orignal
scale, one using the logarithms of the final population sizes plus 1 (we use N + 1
so that we can include 0’s — what is log(0)? log(1)?).

> hist(N.2053, main = "N")

> hist(logl0(N.2053 + 1), main = "log(N+1)")

> abline(v = loglO(quantile(N.2053, prob = c(0.0275, 0.975)) +
+ 1), 1ty = 3)

We added some reference lines on the second histogram, showing the 2.5 and
97.5% quantiles (Fig. 1.10). You can see that the logarithms of the population
sizes are much more well-behaved, more symmetrical.
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Fig. 1.10: Exploratory graphs of the distributions of the final simulated population
sizes.

Can we really believe this output? To what can we compare our output?
One thing that occurs to me is to compare it to the lower and upper bounds
that we might contrive from deterministic projections.

To compare the simulation to deterministic projections, we could find the
95% t-distribution based confidence limits for the geometric mean of R. If we
use our rules regarding the geometric mean, we would find that the logarithm
of the geometric mean of R is the arthmetic mean of the logR. So, one thing
we could do is calculate the -based confidence limits'® on log R, backtransform
these to project the population out to 2053 with lower and upper bounds.

Here we take find the logarithms, caculate degrees of freedom and the rele-
vant quantiles for the ¢ distribution.

19 Remember: the z-distribution needs the degrees of freedom, and a 95% confidence
region goes from the 2.5% and the 97.5% percentiles.



1.6 Modeling with Data: Simulated Dynamics 29

> logOR <- log(obs.R)
> n <- length(logOR)
> t.quantiles <- qt(c(0.025, 0.975), df = n - 1)

Next we calculate the standard error of the mean, and the 95% confidence limits
for logR.

> se <- sqrt(var(logOR)/n)
> CLs95 <- mean(logOR) + t.quantiles * se

We backtransform to get R, and get a vector of length 2.

> R.1limits <- exp(CLs95)
> R.1limits

[1] 0.8968 1.1302

What do we see immediately about these values? One is less than 0, and one is
greater than 0. This means that for the lower limit, the population will shrink
(geometrically), while for the upper limit, the population will increase (geomet-
rically). Let’s go ahead and make the 50y projection.

> N.Final.95 <- Count[Year == max(Year)] * R.1limits~50
> round(N.Final.95)

[1] 0 19528

Here we see that the lower bound for the deterministic projection is the same
(extinction) as the simulation, while the upper bound is much greater than
that for the simulation. Why would that be? Perhaps we should examine the
assumptions of our deteministic approach.

We started by assuming that the log R could be approximated with the ¢
distribution, one of the most pervasive distributions in statistics and life. Let’s
check that assumption. We will compare the logR to the theoretical values for
a t distribution. We scale 1ogOR to make the comparison more clear.

> qqplot(qt(ppoints(n), df = n - 1), scale(logOR))
> qqline(scale(logOR))

How do we interpret these results? If the distribution of an observed variable
is consistent with a particular theoretical distribution, the ordered quantiles of
data will be a linear (straight line) function of the theoretical quantiles of the
theoretical distribution. Deviations from that straight line illustrate how the
data deviate. Here we see that the data have three outliers that are much more
extreme (greater and smaller) than expected in the t-distribution, and more
data are cluster around the center of the distribution than we would expect.
We should ask whether those extreme values are mistakes in data collection or
recording or whether they are every bit as accurate as all the other measure-
ments.

Compare our two different confidence limits. These provide two different
answers to our original question, “what might be the Song Sparrow count at
this site in 20537” Both of these assume a similar underlying model, density
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scale(logOR)

gt(ppoints(n), df =n - 1)

Fig. 1.11: Quantile-quantile plot used to compare logR to a t-distribution. Scaling
logOR in this case means that we subtracted the mean and divided by the standard
deviation. A histogram performs a similar service but is generally less discriminating
and informative.

independent growth, but give different answers. Of which approach are we more
confident? Why? What assumptions does each make?

We can be quite sure that our assumption regarding the z-distribution of our
R is unsupported — our data have outliers, relative to a t-distribution. What
would this do? It would increase the variance of our presumed distribution, and
lead to wider confidence intervals, even though most of the data conform to
a narrower distribution. Our simulation procedure, on the other hand, rarely
samples those extreme points and, by chance, samples observed R that fall much
closer to the median. This can occasionally be a problem in simulations based
on too little data — the data themselves do not contain enough variability.
Imagine the absurdity of a data-based simulation that relies on one observation
— it would be very precise (but wrong)!

Our conclusions are based on a model of discrete density-independent pop-
ulation growth — what assumptions are we making? are they valid? Are our
unrealistic assumptions perhaps nonetheless a good approximation of reality?
We will revisit these data later in the book (Chapter 3) to examine one of these
assumptions. We do not need to answer these questions now, but it is essential,
and fun, to speculate.
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1.7 Summary

In this chapter, we have explored the meaning of density-independent popu-
lation growth. It is a statistically demonstrable phenomenon, wherein the per
captia growth rate exhibits no relation with population density. It is a useful
starting point for conceptualizing population growth. We have derived discrete
geometric and continuous exponential growth and seen how they are related.
We have caculated doubling times. We have discussed the assumptions that
different people might make regarding these growth models. Last, we have used
simulation to explore prediction and inference in a density-independent context.

Problems

1.1. Geometric growth Analyze the following data, relying on selected snip-
pets of previous code.

(a) In the years 1996 through 2005, lily population sizes are N = 150, 100, 125,
200, 225, 150, 100, 175, 100, 150. Make a graph of population size versus time.
(b) Calculate R for each year; graph R vs. time.

(¢c) Calculate arithmetic and geometric average growth rates of this population.
(d) Based on the appropriate average growth rate, what would be the expected
population size in 20257 What would the estimated population size be if you
used the inappropriate mean? Do not use simulation for this.

(d*) Given these data, develop simulations as above with the user-defined func-
tion, PopSim. Describe the distribution of projected population sizes for 2010.

1.2. Doubling Time

(a) Derive the formula for doubling time in a population with contiunous ex-
ponential growth.

(b) What is the formula for tripling time?

(c) If we are modeling humans or E. coli, would a model of geometric, or expo-
nential growth be better? Why?

(d) If an E. coli population grew from 1000 cells to 2 x 10° cells in 6 h, what
would its intrinsic rate of increase be? Its doubling time?

1.3. Human Population Growth

(a) There were about 630 million people on the planet in 1700, and 6.3 billion
in 2003 [33]. What was the intrinsic rate of increase, r?

(b) Graph the model of human population size population size from 1700 to
2020.

(¢) Add points on the graph indicating the population doublings from 1700
onward.

(d*) What will prevent humans from outweighing the planet by the end of
this century? What controls human population growth? Do these controls vary
spatially across the planet? See Cohen [33] to get going.

1.4. R functions
Find the R functions in Chapter 1. Demonstrate their uses.
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Fig. 4.1: A frequency distribution of the number of plant species (y-axis) that oc-
cupy different numbers of grassland remnants (x-axis). Note the U-shaped (bimodal)
distribution of the number of sites occupied. Other years were similar [35]

Over relatively large spatial scales, it is not unusual to have many species
that seem to occur everywhere, and even more species that seem to be found
in only one or a few locations. For example, Scott Collins and Susan Glenn [35]
showed that in grasslands, each separated by up to 4 km, there were more species
occupying only one site (Fig. 4.1, left-most bar) than two or more sites, and
also that there are more species occupying all the sites than most intermediate
numbers of sites (Fig. 4.1, right-most bar), resulting in a U-shaped frequency
distribution. Illke Hanski [70] coined the rare and common species “satellite”
and “core” species, respectively, and proposed an explanation. Part of the an-
swer seems to come from the effects of immigration and emigration in a spatial
context. In this chapter we explore mathematical representations of individuals
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and populations that exist in space, and we investigate the consequences for
populations and collections of populations.

4.1 Source-sink Dynamics

In Chapters 1-3, we considered closed populations. In contrast, one could
imagine a population governed by births plus immigration, and deaths plus
emigration (a BIDE model). Ron Pulliam [172] proposed a simple model that
includes all four components of BIDE which provides a foundation for thinking
about connected subpopulations. We refer to the dynamics of these as source-
sink dynamics. Examples of such linked populations might include many dif-
ferent types of species. For instance, a source-sink model could describe linked
populations of a single species might occupy habitat patches of different quality,
where organisms might disperse from patch to patch.

Habitat 1 Habitat 2

li2 = €21

Fig. 4.2: The simplest source-sink model.

The concept

The general idea of source-sink populations begins with the idea that spatially
separated subpopulations occupy distinct patches, and each exhibit their own
intrinisic dynamics due to births and deaths; that is, we could characterize a A
for each subpopulation. In addition, individuals move from one patch to another;
that is, they immigrate and emigrate from one patch (or subpopulation) to
another. Therefore, the number of individuals we observe in a particular patch is
due, not only to the A in that population, but also to the amount of immigration,
i, and emigration, e.

Subpopulations with more births than deaths, 4 > 1, and with more emi-
gration than immigration, e > i, are referred to as source populations. Subpop-
ulations with fewer births than deaths, A < 1, and with more immigration than
emigration, i > e, are referred to as sink populations.

When we think about what might cause variation in A, we typically refer
to the quality of patches or habitats. Quality might be inferred from A, or it
might actually be the subject of investigation and independent of 1 — typically
we think of high quality habitat as having 4 > 1 and poor quality habitat as
having 4 < 1.
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The equations

Pulliam envisioned two linked bird populations where one could track adult
reproduction, and adult and juvenile survival and estimate A, per capita growth
rate separately for each population. For the first population, the number of birds
in patch 1 at time # + 1, ny41, is the result of adult survival P4, reproduction
B1, and survival of the juveniles P;. Thus,

i1 = Pang + PyBiny, = Ainy. (4.1)

Here Biny, is production of juveniles, and P, is the survival of those juveniles
to time ¢ + 1. Pulliam described the second poopulation in the same fashion as

41 = Pang + PyBon = Aany. (4.2)

Pulliam then assumed, for simplicity’s sake, that the two populations vary
only in fecundity (B), which created differences in 4; and A,. He called popu-
lation 1 the source population (1; > 1) and population 2 the sink population
(A2 < 1). He also assumed that birds in excess of the number of territories in
the source population emigrated from the source habitat to the sink habitat.
Therefore, the source population held a constant density (all territories filled),
but the size of the population in the sink depended on both its own growth rate
A; < 1 and also the number of immigrants.

A result

One of his main theoretical findings was that population density can be a mis-
leading indicator of habitat quality (Fig. 4.3). If we assume that excess individ-
uals in the source migrate to the sink, then as habitat quality and reproduction
increase in the source population, the source population comprises an ever de-
creasing proportion of the total population! That is, as A, gets larger, ny/(n +n;)
gets smaller. Thus, density can be a very misleading predictor of long-term pop-
ulation viability, if the source population is both productive and exhibits a high
degree of emigration.

A model

We can use a matrix model to investigate source-sink populations [12]. Let us
mix up typical demographic notation (e.g., Chapter 2) with that of Pulliam
[172], so that we can recognize Pulliam’s quantities in a demographic matrix
model setting. Further, let us assume a pre-breeding census, in which we count
adults. The population dynamics would thus be governed by A

A

_ [ Par+ Pnps M, ) (4.3)

My, Py + Ppps

where the upper left element (row 1, column 1) reflects the within-patch
growth characteristics for patch 1. The lower right quadrant (row 2, and column
2) reflects the within-patch growth characteristics of patch 2.
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We then assume, for simplicity, that migration, M, is exclusively from the

source to the sink (M > 0, My, = 0). We further assume that 2; > 1 but all
excess individuals migrate to patch 2, so Mp; = 4; —1 > 0. Then A simplifies to

A:(/hl_l/?z) (4.4)

The spatial demographic Pulliam-like model

We first assign A for the source and sink populations, and create a matrix.

> L1 <- 2; L2 <- 0.4
> A <- matrix(c(1, 0, L1 - 1, L2), nrow = 2, byrow = TRUE)

We can then use eigenanalysis, as we did in Chapter 2 for stage structured popula-
tions. The dominant eigenvalue will provide the long term asymptotic total popula-
tion growth. We can calculate the stable “stage” distribution, which in this case is
the distribution of individuals between the two habitats.

> eigen(4)

$values
[1] 1.0 0.4

$vectors

[,11 [,2]
[1,] 0.5145 0
[2,] 0.8575 1

From the dominant eigenvalue, we see Pulliam’s working assumption that the total
population growth is set at 1 = 1. We also see from the dominant eigenvector that
the sink population actually contains more individuals than the source population
(0.51/(0.5140.86) < 0.5).

We could graph these results as well, for a range of A;. Here we let p1 be the
proportion of the population in the source.

> L1s <- seq(1, 3, by = 0.01)
> pl1 <- sapply(L1ls, function(11) {

* A2, 1] <- 11 - 1

+ eigen(A)$vectors[1, 1]/sum(eigen(A)$vectors[, 1]1)
+ 3

> plot(Lls, p1, type = "1", ylab = "Source Population",
+ xlab = expression(lambdal[1]))

4.2 Two Types of Metapopulations

Our logistic model (Chapter 3) is all well and good, but it has no concept
of space built into it. In many, and perhaps most circumstances in ecology,
space has the potential to influence the dynamics of populations and ecosystem
fluxes [101,102,116]. The logistic equation represents a closed population, with
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Source Population
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Fig. 4.3: The declining relative abundance in the high quality habitat in a source-sink
model. The proportion of the total population (n;/(n; + n)) in the source population
may decline with increasing habitat quality and growth rate A4, habitat.

no clear accounting for emigration or immigration. In particular cases, however,
consideration of space may be essential. What will we learn if we start consid-
ering space, such that sites are open to receive immigrants and lose emigrants?

First we consider ideas associated with different types of “collections;” we
then consider a mathematical framework for these ideas.

A single spatially structured population

One conceptual framework that we will consider below is that of a single closed
population, where individuals occupy sites in an implicitly spatial context (Fig.
4.4). Consider a population in space, where a site is the space occupied by
one individual. One example might be grasses and weeds in a field. In such a
population, for an individual within our population to successfully reproduce
and add progeny to the population, the individual must first actually occupy a
site. For progeny to establish, however, a propagule must arrive at a site that
is unoccupied. Thus the more sites that are already occupied, the less chance
there is that a propagule lands on an unoccupied site. Sites only open up at
some constant per capita rate as individuals die at a per capita death rate.

A metapopulation

The other conceptual framework that we consider here is that of metapopu-
lations. A metapopulation is a population of populations, or a collection of
populations (Fig. 4.4). Modeling metapopulations emerged from work in pest
management when Levins [110] wanted to represent the dynamics of the propor-
tion of fields infested by a pest. He assumed that a field was either occupied by
the pest, or not. The same models used to represent a population of individuals
that occupy sites (above) can also be used to represent populations that occupy
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(a) A closed collection (b) An open collection

Fig. 4.4: Collections of sites. (a) Sites may be recolonized via internal propagule pro-
duction and dispersal only, or (b) sites may receive immigrants from an outside source
that is not influenced by the collection. Each site (A-F) may be a spot of ground
potentially occupied by a single plant, or it may be an oceanic island potentially oc-
cupied by a butterfly population. Sites may also be colonized via both internal and
external sources.

sites, with conceptually similar ecological interpretation. In this case, each site
is a location that either contains a population or not. In this framework, we
keep track of the proportion of all populations that remain extant, that is, the
proportion of sites that are occupied. As with a single population (above), the
metapopulation is closed, in the sense that there exists a finite number of sites
which may exchange migrants.

Whether we consider a single spatial population, or single metapopulation,
we can envision a collection of sites connected by dispersal. Each site may be
a small spot of ground that is occupied by a plant, or it may be an oceanic
island that is occupied by a population. All we know about a single site is that
it is occupied or unoccupied. If the site is occupied by an individual, we know
nothing of how big that individual is; if the site is occupied by a population,
we know nothing about how many indiviuals are present. The models we derive
below keep track of the proportion of sites that are occupied. These are known
loosely as metapopulation models. Although some details can differ, whether we
are modeling a collection of spatially discrete individuals in single population
or a collection of spatially discrete populations, these two cases share the idea
that there are a collection of sites connected by migration, and each is subject
to extinction.

The most relevant underlying biology concerns colonization and extinction
in our collection of sites (Fig. 4.4). In this chapter, we will assume that all sites
experience equal rates; when we make this assumption, we greatly simplify
everything, and we can generalize across all sites. All of the models we con-
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sider are simple elaborations of what determines colonization and extinction.
Another useful concept to consider is whether the collection of sites receives
propagules from the outside, from some external source that is not influenced
by the collection of sites (Fig. 4.4).

4.3 Related Models

Here we derive a single mathematical framework to describe our two types of
models. In all cases, we will consider how total rates of colonization, C, and
extinction, E, influence the the rate of change of p, the proportion of sites that
are occupied, 4

p
i C-E. (4.5)
We will consider below, in a somewhat orderly fashion, several permutations of

how we represent colonization and extinction of sites (e.g., [62,63]).

4.3.1 The classic Levins model

Levins [110] proposed what has come to be known as the classic metapopulation
model,

f(li_lz =c¢p(l—p)—ep. (4.6)

This equation describes the dynamics of the proportion, p, of a set of fields
invaded by a pest (Fig. 4.5a). The pest colonizes different fields at a total rate
governed by the rate of propagule production, ¢;, and also on the proportion of
patches that contain the pest, p. Thus, propagules are being scattered around
the landscape at rate ¢;p. The rate at which p changes, however, is also related
to the proportion of fields that are unoccupied, (1 — p), and therefore available
to become occupied and increase p. Therefore the total rate of colonization is
cip(1=p). The pest has a constant local extinction rate e, so the total extinction
rate in the landscape is ep.

The parameters ¢; and e are very similar to r of continuous logistic growth,
insofar as they are dimensionless instantaneous rates. However, they are some-
times thought of as probabilities. The parameter ¢; is approximately the pro-
portion of open sites colonized per unit time. For instance, if we created or
found 100 open sites, we could come back in a year and see how many became
occupied over that time interval of one year, and that proportion would be a
function of ¢;. The parameter e is often thought of as the probability that a site
becomes unoccupied per unit time. If we found 100 occupied sites in one year,
we could revisit them a year later and see how many became unoccupied over
that time interval of one year.

We use the subscript i to remind us that the colonization is coming from
within the sites that we are studying (i.e. internal colonization). With internal
colonization, we are modeling a closed spatial population of sites, whether “site”
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refers to an entire field (as above), or a small patch of ground occupied by an
individual plant [202].

The Levins metapopulation model (Fig. 4.5a)

A function for a differential equation requires arguments for time, a vector of the
state variables (here we have one state variable, p), and a vector of parameters.

> levins <- function(t, y, parms) {

+ p < yl1]

+ with(as.list(parms), {

+ dp <-ci *p* (1 -p)-ex*p
+ return(list(dp))

+ »

+ }

By using with, we can specify the parameters by their names, as long as parms
includes names. The function returns a list that contains a value for the derivative,
evaluated at each time point, for each state variable (here merely dp/dr). We then
use levins in the numerical integration function ode in the deSolve package.

> library(deSolve)

> prms <- c(ci = 0.15, e = 0.05); Initial.p <- 0.01

> out.L <- data.frame(ode(y = Initial.p, times = 1:100, func = levins,
+ parms = prms))

We then plot the result (Fig. 4.5a).

> plot(out.L[, 2] ~ out.L[, 1], type = "1", ylim = c(0, 1),
+ ylab = "p", xlab = "time")

Can we use this model to predict the eventual equilibrium? Sure — we just
set eq. 4.6 to zero and solve for p. This model achieves and equilibrium at,

0=cip—cip’—ep
R LY
Ci Ci
When we do this, we see that p* > 0 as long as ¢; > e (e.g., Fig. 4.5a). When is
p* =1, so that all the sites are filled? In principle, all sites cannot be occupied
simultaneously unless e = 0!

4.3.2 Propagule rain

From where else might propagules come? If a site is not closed off from the rest
of the world, propagules could come from outside the collection of sites that we
are actually monitoring.

For now, let us assume that our collection of sites is continually showered
by propagules from an external source. If only those propagules are important,
then we could represent the dynamics as,

dp

3 = Ce(=p)=ep (4.7)
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Fig. 4.5: Three metapopulation models, using similar parameters (c; = 0.15, ¢, = 0.15,
e =0.05).

where ¢, specifies rate of colonization coming from the external source. Gotelli
[63] refers to this model as a metapopulation model with “propagule rain” or the
“island—mainland” model. He calls it this because it describes a constant influx
of propagules which does not depend on the proportion, p, of sites occupied for
propagule production. Extinction here is mediated only by the proportion of
sites occupied, and has a constant per site rate.

The propagule rain metapopulation model (Fig. 4.5b)

A function for a differential equation requires arguments for time, a vector of the
state variables (here we have one state variable, p), and a vector of parameters.

> gotelli <- function(t, y, parms) {
+ p <= yl1]

+ with(as.list(parms), {

+ dp <-ce * (1 -p) —e *p
+ return(list(dp))

+ »

+ }

The function returns a list that contains a value for the derivative, evaluated at each
time point, for each state variable (here merely dp/dr.

We can solve for this model’s equilibrium by setting eq. 4.7 equal to zero.

O0=c.—c.p—ep (4.8)
* Ce

= ) 4.9
P cote (4.9)

Of course, we might also think that both internal and external sources are
important, in which case we might want to include both sources in our model,
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P epreod-p—ep (4.10)

dr -
(4.11)

As we have seen before, however, adding more parameters is not something we
take lightly. Increasing the number of parameters by, in this case, 50% could
require a lot more effort to estimate.

4.3.3 The rescue effect and the core-satellite model

Thus far, we have ignored what happens between census periods. Imagine that
we sample site “A” each year on 1 January. It is possible that between 2 Jan-
uary and 31 December the population at site A becomes extinct and then is
subsequently recolonized, or “rescued” from extinction. When we sample on 1
January in the next year, we have no way of knowing what has happened in the
intervening time period. We would not realize that the population had become
extinct and recolonization had occurred.
We can, however, model total extinction rate E with this rescue effect,

E=-ep(l-p). (4.12)

Note that as p — 1, the total extinction rate approaches zero. Total extinc-
tion rate declines because as the proportion of sites occupied increases, it be-
comes increasingly likely that dispersing propagules will land on all sites. When
propagules happen to land on sites that are on the verge of extinction, they can
“rescue” that site from extinction.

Brown and Kodric-Brown [17] found that enhanced opportunity for immi-
gration seemed to reduce extinction rates in arthropod communities on this-
tles. They coined this effect of immigration on extinction as the “rescue effect.”
MacArthur and Wilson [121] also discussed this idea in the context of island
biogeography. We can even vary the strength of this effect by adding yet another
parameter g, such that the total extinction rate is ep (1 — gp) (see [62]).

Assuming only internal propagule supply and the simple rescue effect results
in what is referred to as the the core-satellite model,

d
d—’; =c;p(1=p)—ep(l=p) (4.13)

This model was made famous by Illka Hanski [70]. It is referred to as the core-
satellite model, for reasons we explore later.
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The core-satellite metapopulation model

A function for a differential equation requires arguments for time, a vector of the
state variables (here we have one state variable, p), and a vector of parameters.

> hanski <- function(t, y, parms) {

p <- yl1]

with(as.list(parms), {
dp <-ci *p* (1 -p)-e*p=x*(1-p)
return(list(dp))

»

+ o+ + + o+ 4+

}

The function returns a list that contains a value for the derivative, evaluated at each
time point, for each state variable (here merely dp/dt).

Graphing propagule rain and core-satellite models (Fig. 4.5b)

First, we integrate the models using the same parameters as for the Levins model,
and collect the results.

> prms <- c(ci <- 0.15, ce <- 0.15, e = 0.05)

> out.IMH <- data.frame(ode(y = Initial.p, times = 1:100,

+ func = gotelli, parms = prms))

> out.IMH[["pH"]] <- ode(y = Initial.p, times = 1:100, func = hanski,
+ parms = prms) [, 2]

We then plot the rsult (Fig. 4.5a).

> matplot(out.IMH[, 1], out.IMH[, 2:3], type = "1", col = 1,
+ ylab = "p", xlab = "time")

> legend("topleft", c("Hanski", "Propagule Rain"), 1ty = 2:1,
+ bty = ”11")

Core-satellite equilibria

What is the equilibrium for the Hanski model (eq. 4.13)7 We can rearrange this
to further simplify solving for p*.

5 - @—aprl-p (4.14)

This shows us that for any value of p between zero and one, the sign of the
growth rate (positive or negative) is determined by ¢; and e. If ¢; > e, the rate
of increase will always be positive, and because occupancy cannot exceed 1.0,
the metapopulation will go to full occupancy (p* = 1), and stay there. This
equilibrium will be a stable attractor or stable equilibrium. What happens if
for some reason the metapopulation becomes globally extinct, such that p = 0,
even though ¢; > e? If p = 0, then like logistic growth, the metapopulation
stops changing and cannot increase. However, the slightest perturbation away
from p = 0 will lead to a positive growth rate, and increase toward the stable
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attractor, p* = 1. In this case, we refer to p* = 0 as an unstable equilibrium and
a repellor.

If ¢; < e, the rate of increase will always be negative, and because occupancy
cannot be less than 0, the metapopulation will become extinct (p* = 0), and stay
there. Thus p* = 0 would be a stable equilibrium or attractor. What is predicted
to happen if, for some odd reason this population achieved full occupancy, p = 1,
even though ¢; < e? In that case, (1 — p) = 0, and the rate of change goes to
zero, and the population is predicted to stay there, even though extinction is
greater than colonization. How weird is that? Is this fatal flaw in the model, or
an interesting prediction resulting from a thorough examination of the model?
How relevant is it? How could we evaluate how relevant it is? We will discuss
this a little more below, when we discuss the effects of habitat destruction.

What happens when ¢; = e? In that case, ¢c;—e = 0, and the population stops
changing. What is the value of p when it stops changing? It seems as though it
could be any value of p, because if ¢;—e = 0, the rate change goes to zero. What
will happen if the population gets perturbed — will it return to its previous
value? Let’s return to question in a bit.

To analyze stability in logistic growth, we examined the slope of the partial
derivative at the equilibrium, and we can do that here. We find that the partial
derivative of eq. 4.13 with respect to p is

g—i:c—Zcp—e+2ep (4.15)
where p is the time derivative (eq. 4.13). A little puzzling and rearranging will
show Py

£ = (c;—e)(1-2p) (4.16)
and make things simpler. Recall our rules with regard to stability (Chapter 3).
If the partial derivative (the slope of the time derivative) is negative at an equi-
librium, it means the the growth rate approaches zero following a perturbation,
meaning that it is stable. If the partial derivative is positive, it means that the
change accelerates away from zero following the perturbation, meaning that the
equilibrium is unstable. So, we find the following guidelines:

e C,>e
— p=1,0p/dp <0, stable equilibrium.
— p=0,dp/dp > 0, unstable equilibrium.
e ¢c;<e
— p=1,0p/dp > 0, unstable equilibrium.
— p=0,0p/dp < 0, stable equilibrium.

What if ¢; = e? In that case, both the time derivative (dp/df) and the partial
derivative (dp/dp) are zero for all values of p. Therefore, if the population
gets displaced from any arbitrary point, it will remain unchanged, not recover,
and will stay displaced. We call this odd state of affairs a neutral equilibrium.
We revisit neutral equilibrium when we discuss interspecific competition and
predation.
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We can also explore the stability of one of these equilibria by plotting the
mettapopulation growth rate as a function of p (Fig. 4.6). When we set ¢; > e,
and examine the slope of that line at p* = 1, we see the slope is negative,
indicating a stable equilibrium.

An equilibrium for the core-satellite metapopulation model (Fig. 4.6)

We first create an expression for the growth itself, dp/df. We then plot it, while we
evaluate it, on the fly.

> dpdtCS <- expression((ci - e) * p * (1 - p))
> ci <- 0.15; e <- 0.05; p <- seq(0, 1, length = 50)

> plot(p, eval(dpdtCS), type = "1", ylab = "dp/dt")

Levins vs. Hanski

Why would we use Levins’ model instead of Hanski’s core-satellite model? To
explore this possibility, let’s see how the Hanski model might change gradu-
ally into the Levins model. First we define the Hanski model with an extra
parameter, a,

d
d—l; =cip(1-p)—ep(l—ap). (4.17)

Under Hanski’s model, a = 1 and under Levins’ model a = 0. If we solve for the

equilibrium, we see that
pr= (4.18)

c—ae

so that we can derive either result for the two models. In the context of logistic
growth, where K = Hp*, this result, eq. 4.18, implies that for the Hanski model,
K fills all available habitat, whereas the Levins model implies that K fills only
a fraction of the total available habitat. That fraction results from the dynamic
balance between c¢; and e.

4.4 Parallels with Logistic Growth

It may have already occurred to you that the closed spatial population described
here sounds a lot like simple logistic growth. A closed contiguous population,
spatial or not, reproduces in proportion to its density, and is limited by its own
density. Here we will make the connection a little more clear. It turns out that a
simple rearrangement of eq. 4.6 will provide the explicit connection between lo-
gistic growth and the spatial population model with internal colonization [181].

Imagine for a moment that you are an avid birder following a population
of Song Sparrows in Darrtown, OH, USA (Fig. 3.1a). If Song Sparrows are
limited by the number of territories, and males are competing for territories,
then you could think about male Song Sparrows as “filling up” some proportion,
p, of the available habitat. You have already described this population with
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Fig. 4.6: Metapopulation growth rate as a function of p, in the core-satellite model
(¢ =0.15, e = 0.05). When we plot population growth rate for the core-satellite model,
for arbitrary parameter values where c¢; > e, we see that growth rate falls to zero at
full occupancy (i.e., at p* = 1). We also see that the slope is negative, indicating that
this equilibrium is stable.

the logistic growth model (dN/dt = rN(1 — aN)). Lately, however, you have
been thinking about how territories, spatially arranged in the landscape, may
limit this population. You therefore decide that you would like to use Levins’
spatially-implicit metapopulation model instead (eq. 4.6). How will you do it?
You do it by rescaling logistic growth.

Let us start by defining our logistic model variables in other terms. First we
define N as

N = pH

where N is the number of males defending territories, H is the total number of
possible territories, and p is the proportion of possible territories occupied at
any one time. At equilibrium, N* = K = p*H, so @ = 1/(p*H). Recall that for
the Levins model, p* = (¢; — €)/c;, so therefore,

Ci

@= (ci—e)H’

We now have N, @, and K in terms of p, H, ¢; and e, so what about r? Recall
that for logistic growth, the per capita growth rate goes to r as N — 0 (Chapter
3). For the Levins metapopulation model, the per patch growth rate is

1dp

—— =c¢(1-p)—e 4.19

EXT i(1-p) (4.19)
As p — 0 this expression simplifies to ¢; — e, which is equivalent to r. Summa-
rizing, then, we have,
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r=ci—e (4.20)
N = pH (4.21)
e=1-L __ @ (4.22)
K p*H H(c—-e)
(4.23)
Substituting into logistic growth (N = rN(1 — aN)), we now have

d(pH) Ci
— =(¢; — H|l- ——H 4.24
P (e -orp ( — p) (1.24)
= (c;—e)pH - z’ — Zcisz (4.25)
=H(cip(l-p)—ep) (4.26)

which is almost the Levins model. If we note that H is a constant, we realize
that we can divide both sides by H, ending up with the Levins model eq. 4.6.

4.5 Habitat Destruction

Other researchers have investigated effects of habitat loss on metapopulation
dynamics [88, 146, 202]. Taking inspiration from the work of Lande [95, 96],
Karieva and Wennergren [88] modeled the effect of habitat destruction, D, on
overall immigration probability. They incorporated this into Levins’ model as

d

& =apl-D=p)-ep (4.27)
where D is the amount of habitat destroyed, expressed as a fraction of the
original total available habitat.

Habitat destruction model

To turn eq. 4.27 into a function we can use with ode, we have,

> lande <- function(t, y, parms) {

+ p <= yl1]

+ with(as.list(parms), {

+ dp <-ci *p * (1 -D-p) -e*p
+ return(list(dp))

+ »

+ }

Habitat destruction, D, may vary between 0 (= Levins model) to complete
habitat loss 1.0; obviously the most interesting results will come for intermediate
values of D (Fig. 4.7).
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Fig. 4.7: Metapopulation dynamics, combining the Levins model and habitat destruc-
tion (¢; = 0.15, e = 0.05).

Tllustrating the effects of habitat destruction (Fig. 4.7)

We can plot the dynamics for three levels of destruction, including none. We first
set all the parameters, and time.

> library(deSolve)

> prmsD <- c(ci = 0.15, e = 0.05, D = 0)
> Ds <- ¢(0, 0.2, 0.5)

> Initial.p <- 0.01

> t <- 1:200

We then create an empty matrix of the right size to hold our results, and then
integate the ODE.

> ps <- sapply(Ds, function(d) {

+ prmsD["D"] <- d

+ ode(y = Initial.p, times = t, func = lande, parms = prmsD)[,
+ 2]

+ P

Last, we plot it and add some useful labels.

> matplot(t, ps, type = "1", ylab = "p", xlab = "time")
> text(c(200, 200, 200), ps[200, ], paste("D = ", Ds, sep = ""),
+ adj = c(1, 0))

What is the equilibrium under this model? Setting eq. 4.27 to zero, we can
then solve for p.

O=c;—ciD-cip—e (4.28)
i —ciD -
p*:—c ¢ e:l—E—D (4.29)
Ci Ci
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Thus we see that habitat destruction has a simple direct effect on the metapop-
ulation.

A core-satellite habitat loss scenario

Let us return now to that odd, but logical, possibility in the core-satellite model
where ¢; < e and p = 1. Recall that in this case, p = 1 is an unstable equilibrium
(p = 0 is the stable equilibrium for ¢; < e). We discuss this in part for greater
ecological understanding, but also to illustrate why theory is sometimes useful
— because it helps us explore the logical consequences of our assumptions, even
when, at first blush, it seems to make little sense.

Imagine that at one time, a metapopulation is regulated by the mechanisms
in the core-satellite model, including the rescue effect, and ¢; > e. We therefore
pretend that, the metapopulation occupies virtually every habitable site (let
p =0.999). Now imagine that the environment changes, causing ¢; < e. Perhaps
human urbanization reduces colonization rates, or climate change enhances ex-
tinction rates. All of a sudden, our metapopulation is poised on an unstable
equilibrium. What will happen and how might it differ with and without the
rescue effect?

When ¢; > e, we see that p* = 1 is the stable attractor (Fig. 4.8). However,
when ¢; < e, we see the inevitable march toward extinction predicted by the
Hanski model (core-satellite) (Fig. 4.8). Last, when we compare it to the Levins
model, we realize something somewhat more interesting. While the Levins model
predicts very rapid decline, the Hanski model predicts a much more gradual
decline toward extinction. Both models predict extinction, but the rescue effect
delays the appearance of that extinction. It appears that the rescue effect (which
is the difference between the two models) may act a bit like the “extinction debt”
[202] wherein deterministic extinction is merely delayed, but not postponed
indefinitely. Perhaps populations influenced by the rescue effect might be prone
to unexpected collapse, if the only stable equilibria are 1 and 0. Thus simple
theory can provide interesting insight, resulting in very different predictions for
superficial similar processes.
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The unexpected collapse of core populations

Here we plot the dynamics of metapopulations starting at or near equilbrium. The
first two use the Hanski model, while the third uses Levins. The second and third
use ¢; < e.

> C1 <- ode(y = 0.999, times = t, func = hanski, parms = c(ci = 0.2,
+ e = 0.01))

> C2 <- ode(y = 0.999, times = t, func = hanski, parms = c(ci
+ e = 0.25))

> L2 <- ode(y = 0.95, times = t, func = levins, parms = c(ci = 0.2,
+ e = 0.25))

0.2,

Next, we plot these and add a legend.

> matplot(t, cbind(C1[, 2], c2[, 2], L2[, 2]), type = "1",
+ ylab = "p", xlab = "Time", col = 1)

> legend("right", c("c > e", "c < e", "c < e (Levins)"), 1ty
+ bty = ”11")
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Fig. 4.8: Metapopulation dynamics, starting from near equilibrium for ¢; = 0.20 and e =
0.01. If the environment changes, causing extinction rate to increase until it is greater
than colonization rate, we may observe greatly delayed, but inevitable, extinction (e.g.,
¢; = 0.20,e = 0.25).

4.6 Core-Satellite Simulations

Here! we explore a simple question that Hanski posed long ago: what would
communities look like if all of the populations in the community could be de-

! This section relies extensively on code
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scribed by their independent own core-satellite model? To answer this question,
he created communities as collections of independent (non-interacting) popu-
lations that behave according to his metapopulation model with internal colo-
nization and the rescue effect [70]. He found that such simulated communities
predict that many species will be in almost all sites (“core species”), and even
more species will exist at very few sites (“satellite species”). This seems to be
a relatively common phenomenon [35], and an observation we described at the
beginning of the chapter (Fig. 4.1).

Hanksi’s goal was to simulate simultaneously a substantive number of
species, to create a community. Each species is assumed to be governed by
internal propagule production only, and the rescue effect. Further, he assumed
that the long term average density independent growth rate (r = ¢; — e) was
zero. That is, the populations were not systematically increasing or decreasing.
However, he allowed for stochastic year-to-year variation in probabilities ¢; and
e.

In these simulations here, we will select the mean for each parameter, c;
and e, and the proportion, ¢ (“phi”) by which they are allowed to vary. The
realized values of ¢;, and e, at any one point in time are random draws from
a uniform distribution within the ranges i + ¢i and e + ge. (This requires that
we do numerical integration at each integer time step since there is no obvious
analytical solution to an equation in which the parameters vary through time.
This will keep these parameters constant for an entire year, and yet also allow
years to vary.)

We start by using the args() function to find out what arguments (i.e.
options) are available in the simulation function, MetaSim.

> args(MetaSim)

function (Time = 50, NSims =
e = 0.25, phi = 0.75, pO
NULL

1, method = "hanski", ci = 0.25,
= 0.5, D =0.5)

What options (or arguments) can you vary in MetSim? The ‘method’ may
equal CoreSatellite, Levins, IslandMainland, or HabitatDestruction. The
default is CoreSatellite; if an argument has a value to begin with (e.g.
method=’CoreSatellite’), then it will use that value unless you replace it.

Let’s start with an initial run of 10 simulations (produces dynamics for 10
populations) to reproduce Hanski’s core-satellite pattern by using the rescue
effect with equal i and e.

> out.CS.10 <- MetaSim(method = "hanski", NSims = 10)
> matplot(out.CS.108t, out.CS.10$Ns, type = "1", xlab = "Time",
+ ylab = "Occupancy", sub = out.CS.10$method)

These dynamics (Fig. 4.9) appear to be completely random. A random walk
is a dynamic that is a random increase or decrease at each time step. Such a
process is not entirely random because the abundance at time  is related to the
abundance at time #—1, so observations in random walks are correlated through
time; they are temporally autocorrelated.
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Fig. 4.9: Core-satellite species dynamics with stochasticity (i = & = 0.2).

Does a single metapopulation growth rate appear related to p, the metapop-
ulation size? What would a deterministic dynamic look like if ¢; > e? It would
increase rapidly at first, and then slow down as it approached 1.0. Can you
detect that slow-down here? Similarly, as a metapopulation declines toward
extinction, its progression toward p = 0 slows down. As a result, we tend to
accumulate a lot of common and rare species, for which p is close to one or
zZero.

Now we will do more simulations (50 species), and run them for longer (500
time intervals vs. 50). Doing many more simulations will take a little longer, so
be patient?.

> system.time(out.CS.Lots <- MetaSim(method = "hanski'", NSims = 50,
+ Time = 1000))

user system elapsed
48.524  0.072 48.603

time series, although this may not tell you much. Alternatively, we can plot a
histogram of the 50 species’ final abundances, at ¢ = 500.

> hist(out.CS.Lots$Ns[501, ], breaks = 10, main = NULL,

+ xlab = expression("Occupancy (" * italic("p") * ")"),
+ ylab = "Number of Species',
+ sub = paste(out.CS.Lots$method, " Model", sep = ""))

2 system.time merely times the process, in secs.
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Fig. 4.10: The species-abundance distribution resulting from dynamics for 50 inde-
pendent metapopulations with internal colonization. (a) includes the rescue effect
(Hanski’s model), and note that most species are either common (p > 0.8) or rare
(p <0.2). Levins model (b) does not include the rescue effect, and there are very few
core species (p > 0.8).

Our simulations (Fig. 4.10) should be consistent with the core-satellite hypoth-
esis — are they? In Hanski’s model, we see that most metapopulations are
either core species (p > 0.8) or satellite species (p < 0.2) (Fig. 4.10a). This is
not to imply that there should be hard rules about what constitutes a core and
satellite species, but rather merely shows we have a plethora of both common
and uncommon species.

What does the Levins model predict? Let’s run the simulations and find out.

> system.time(out.L.Lots <- MetaSim(NSims = 50, Time = 500,
+ method = "levins"))

user system elapsed
23.280 0.027 23.308

Now we plot a histogram of the 50 species’ final abundances, at t = 500.

> hist(out.L.Lots$Ns[501, ], breaks = 10, xlab = expression("Occupancy ("
+ italic("p") * ")"), ylab = "Number of Species", main = NULL,
+ sub = paste(out.L.Lots$method, " Model", sep = ""))

In contrast to the core-satellite model, the Levins model predicts that many
fewer species are common (Fig. 4.10b). Thus these two population models
make contrasting predictions regarding the structure of communities (i.e. rela-
tive species abundances), and provide testable alternatives [35].
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4.7 Summary

In this chapter, we have introduced space as an important component of popu-
lation dynamics. We provided a source-sink framework for linked populations,
where population size depends on both intrinsic capacities of a habitat patch,
and on immigration and emigration rates. We described (i) a population of
individuals within a site, and (ii) a population of populations within a region
in the “metapopulation” framework. We showed similarities and differences be-
tween related metapoopulation models, and between related metapopulation
and logistic models. We investigated the response of metapopulations to habi-
tat destruction. Last, we have shown how different population dynamics lead
to different community structure.

Problems

4.1. Equilibria

Derive expressions and calculate equilibria for the following metapopulation
models, with ¢; = 0.05, e = 0.01. Show your work — start with the differential
equations, set to zero, and solve p*; then substitute in values for ¢;, e.

(a) Levins model.

(b) Propagule rain model (gotelli).

(c) Propagule rain model that also includes both external and internal propagule
production and dispersal.

(d) Hanski model.

(e) Lande (habitat destruction) model (with D=0.1).

4.2. Habitat destruction

Compare different levels of habitat destruction.

(a) Use the habitat destruction model (1ande) to compare 9 levels of destruction
(ds <- seq(0,.8, by=.1)), using ¢; = 0.1, e = 0.01. Plot of graph of the
dynamics through time, and calculate the equilibria directly.

(b) Write an ODE function for a habitat destruction model with rescue effect.
Let the “rescue” have an additional parameter, a, such that extinction rate is
ep(l —ap).

(c) Let D = 0.5, ¢; = 0.1, e = 0.02, and vary a over five levels (including
a =0, 1) to investigate the effects of “relative rescue effect” on the equilibria
and dynamics of a metapopulation.
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Fig. 10.1: Empirical rank—abundance distributions of successional plant communities
(old-fields) within the temperate deciduous forest biome of North America. “Year”
indicates the time since abandonment from agriculture. Data from the Buell-Small
succession study (http://www.ecostudies.org/bss/)

It seems easy, or at least tractable, to compare the abundance of a single
species in two samples. In this chapter, we introduce concepts that ecologists
use to compare entire communities in two samples. We focus on two quantities:
species composition, and diversity. We also discuss several issues related to this,
including species—abundance distributions, ecological neutral theory, diversity
partitioning, and species—area relations. Several packages in R include functions
for dealing specifically with these topics. Please see the “Environmetrics” link
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within the “Task Views” link at any CRAN website for downloading Rpackages.
Perhaps the most comprehensive (including both diversity and composition) is
the vegan package, but many others include important features as well.

10.1 Species Composition

Species composition is merely the set of species in a site or a sample. Typically
this includes some measure of abundance at each site, but it may also simply be
a list of species at each site, where “abundance” is either presence or absence.
Imagine we have four sites (A-D) from which we collect density data on two
species, Saliz whompii and Frazinus virga. We can enter hypothetical data of
the following abundances.

> dens <- data.frame(Salwho = c(1, 1, 2, 3), Fravir = c(21,
+ 8, 13, 5))

> row.names (dens) <- LETTERS[1:4]

> dens

Salwho Fravir

A 1 21
B 1 8
C 2 13
D 3 5

Next, we plot the abundances of both species; the plotted points then are the
sites (Fig. 10.2).

> plot(dens, type = "n")
> text(dens, row.names (dens))

In Fig. 10.2, we see that the species composition in site A is most different from
the composition of site D. That is, the distance between site A and D is greater
than between any other sites. The next question, then, is how far apart are
any two sites? Clearly, this depends on the scale of the measurement (e.g., the
values on the axes), and also on how we measure distance through multivariate
space.

10.1.1 Measures of abundance

Above we pretended that the abundances were absolute densities (i.e., 1 = one
stem per sample). We could of course represent all the abundances differently.
For instance, we could calculate relative density, where each species in a sample
is represented by the proportion of the sample comprised of that species. For
site A, we divide each species by the sum of all species.

> dens[1, ]/sum(dens[1, ])

Salwho Fravir
A 0.04545 0.9545
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Fig. 10.2: Hypothetical species composition for four sites (A-D).

We see that Saliz makes up about 5% of the sample for Site A, and Frazinus
makes up about 95% of the sample. Once we calculate relative densities for
each species at each site, this eliminates differences in total density at each site
because all sites then total to 1.

We could also calculate relative measures for any type of data, such as
biomass or percent cover.

In most instances, relative density refers to the density of a species relative
to the other species in a sample (above), but it can also be density in a sam-
ple relative to other samples. We would thus make each species total equal 1,
and then its abundance at each site reflects the proportion of a species total
abundance comprised by that site. For instance, we can make all Saliz densities
relative to each other.

> dens[, 1]/sum(dens[, 1])

[1] 0.1429 0.1429 0.2857 0.4286

Here we see that sites A and B both have about 14% of all Saliz stems, and
site D has 43%.

Whether our measures of abundance are absolute or relative, we would like to
know how different samples (or sites) are from each other. Perhaps the simplest
way to describe the difference among the sites is to calculate the distances
between each pair of sites.

10.1.2 Distance

There are many ways to calculate a distance between a pair of sites. One of
the simplest, which we learned in primary school, is Fuclidean distance. With
two species, we have two dimensional space, which is Fig. 10.2. The Euclidean
distance between two sites is merely the length of the vector connecting those
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sites. We calculate this as +/x? +y2, where x and y are the (x,y) distances be-
tween a pair of sites. The x distance between sites B and C is difference in Saliz
abundance between the two sites,

> x <- dens[2, 1] - dens[3, 1]

where dens is the data frame with sites in rows, and species in different columns.
The y distance between sites B and C is difference in Frazinus abundance be-
tween the two sites.

> y <- dens[2, 2] - dens[3, 2]

The Euclidean distance between these is therefore
> sqrt(x"2 + y~2)

[1] 5.099

Distance is as simple as that. We calculate all pairwise Euclidean distances
between sites A—D based on 2 species using built-in functions in R.

> (alldists <- dist(dens))

A B C
B 13.000
C 8.062 5.099
D 16.125 3.606 8.062

We can generalize this to include any number of species, but it becomes increas-
ingly harder to visualize. We can add a third species, Mandragora officinarum,
and recalculate pairwise distances between all sites, but now with three species.

> dens[["Manoff"]] <- c¢(11, 3, 7, 5)
> (spp3 <- dist(dens))

A B C
B 15.264
C 9.000 6.481
D 17.205 4.123 8.307

We can plot species abundances as we did above, and pairs(dens) would give
us all the pairwise plots given three species. However, what we really want for
species is a 3-D plot. Here we load another package! and create a 3-D scatterplot.

> pairs(dens)# not shown

> library(scatterplot3d)

> scl <- scatterplot3d(dens, type='h', pch="",

+ x1im=c(0,5), ylim=c(0, 25), zlim=c(0,15))

> text(scl$xyz.convert (dens), labels=rownames (dens))

In three dimensions, Euclidean distances are calculated the same basic way, but
we add a third species, and the calculation becomes +/x% +y? + z2. Note that
we take the square root (as opposed to the cube root) because we originally
squared each distance. We can generalize this for two sites for R species as

' You can install this package from any R CRAN mirror.
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Of course, it is difficult (impossible?) to visualize arrangements of sites with
more than three axes (i.e., > 3 species), but we can always calculate the distances
between pairs of sites, regardless of how many species we have.

There are many ways, in addition to Euclidean distances, to calculate dis-
tance. Among the most commonly used in ecology is Bray—Curtis distance,
which goes by other names, including Sgorenson distance.

Dy (10.1)

R
Xai — Xbi

Dpc = Pt = 2| (10.2)
= Xai + Xpi

where R is the number of species in all samples. Bray—Curtis distance is merely
the total difference in species abundances between two sites, divided by the
total abundances at each site. Bray—Curtis distance (and a couple others) tends
to result in more intuitively pleasing distances in which both common and
rare species have relatively similar weights, whereas Euclidean distance depends
more strongly on the most abundant species. This happens because Euclidean
distances are based on squared differences, whereas Bray—Curtis uses absolute
differences. Squaring always amplifies the importance of larger values. Fig. 10.3
compares graphs based on Euclidean and Bray—Curtis distances of the same
raw data.

Displaying multidimensional distances

A simple way to display distances for three or more species is to create a plot in
two dimensions that attempts to arrange all sites so that they are approrimately
the correct distances apart. In general this is impossible to achieve precisely,
but distances can be approximately correct. One technique that tries to create
an optimal (albiet approximate) arrangement is non-metric multidimensional
scaling. Here we add a fourth species (Aconitum lycoctonum) to our data set
before plotting the distances.

> dens$Acolyc <- c(16, 0, 9, 4)

The non-metric multidimensional scaling function is in the vegan package. It
calculates distances for us using the original data. Here we display Euclidean
distances among sites (Fig. 10.3a).

> library(vegan)

> mdsE <- metaMDS(dens, distance = "euc", autotransform = FALSE,
+ trace = 0)

> plot(mdsE, display = "sites", type = "text")

Here we display Bray—Curtis distances among sites (Fig. 10.3b).

> mdsB <- metaMDS(dens, distance = "bray", autotransform = FALSE,
+ trace = 0)
> plot(mdsB, display = "sites", type = "text")
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Fig. 10.3: Nonmetric multidimensional (NMDS) plots showing approximate distances
between sites. These two figures display the same raw data, but Euclidean distances
tend to emphasize differences due to the more abundant species, whereas Bray-Curtis
does not. Because NMDS provides iterative optimizations, it will find slightly different
arrangements each time you run it.

10.1.3 Similarity

Sometimes, we would like to know how similar two communities are. Here we
describe two measures of similarity, percent similarity, and Sgrensen similarity
[124].

Percent similarity may be the simplest of these; it is simply the sum of
the minimum percentages for each species in the community. Here we convert
each species to its relative abundance; that is, its proportional abundance at
each site. To do this, we treat each site (row) separately, and then divide the
abundance of each species by the sum of the abundances at each site.

> (dens.RA <- t(apply(dens, 1, function(sp.abun) sp.abun/sum(sp.abun))))

Salwho Fravir Manoff Acolyc
A 0.02041 0.4286 0.2245 0.3265
B 0.08333 0.6667 0.2500 0.0000
C 0.06452 0.4194 0.2258 0.2903
D 0.17647 0.2941 0.2941 0.2353

Next, to compare two sites, we find the minimum relative abundance for each
species. Comparing sites A and B, we have,

> (mins <- apply(dens.RA[1:2, ], 2, min))

Salwho Fravir Manoff Acolyc
0.02041 0.42857 0.22449 0.00000

Finally, we sum these, and multiply by 100 to get percentages.
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> sum(mins) * 100
[1] 67.35

The second measure of similarity we investigate is Sgrensen’s similarity,

_ac
T A+B

(10.3)

where C is the number of species two sites have in common, and A and B are
the number of species at each site. This is equivalent to dividing the shared
species by the average richness.

To calculate this for sites A and B, we could find the species which have
non-zero abundances both sites.

> (shared <- apply(dems[1:2, ], 2, function(abuns) all(abuns !=
+ 0)))

Salwho Fravir Manoff Acolyc
TRUE TRUE TRUE FALSE

Next we find the richness of each.

> (Rs <- apply(dens([1:2, 1, 1, function(x) sum(x >
+ 0)))

AB
4 3

Finally, we divide the shared species by the summed richnesses and multiply by
2.

> 2 * sum(shared)/sum(Rs)
[1] 0.8571

Sgrensen’s index has also been used in the development of more sophisticated
measures of similarity between sites [144,164].

10.2 Diversity

To my mind, there is no more urgent or interesting goal in ecology and evolution-
ary biology than understanding the determinants of biodiversity. Biodiversity
is many things to many people, but we typically think of it as a measure of
the variety of biological life present, perhaps taking into account the relative
abundances. For ecologists, we most often think of species diversity as some
quantitative measure of the variety or number of different species. This has
direct analogues to the genetic diversity within a population [45,213], and the
connections between species and genetic diversity include both shared patterns
and shared mechanisms. Here we confine ourselves entirely to a discussion of
species diversity, the variety of different species present. Consider this example.
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Table 10.1: Four hypothetical stream invertebrate communities. Data are total num-
bers of individuals collected in ten samples (sums across samples). Diversity indices
(Shannon-Wiener, Simpson’s) explained below.

Species Stream 1 Stream 2 Stream 3 Stream 4
Isoperla 20 50 20 0
Ceratopsyche 20 75 20 0
Ephemerella 20 75 20 0
Chironomus 20 0 140 200
Number of species (R) 4 3 4 1
Shannon-Wiener H 1.39 1.08 0.94 0
Simpson’s S p 0.75 0.66 0.48 0

We have four stream insect communities (Table 10.1). Which has the highest
“biodiversity”?

We note that one stream has only one species — clearly that can’t be the
most “diverse” (still undefined). Two streams have four species — are they the
most diverse? Stream 3 has more bugs in total (200 vs. 80), but stream 1 has a
more equal distribution among the four species.

10.2.1 Measurements of variety

So, how shall we define “diversity” and measure this variety? There are many
mathematical expressions that try to summarize biodiversity [76,92]. The in-
quisitive reader is referred to [124] for a practical and comprehensive text on
measures of species diversity. Without defining it precisely (my pay scale pre-
cludes such a noble task), let us say that diversity indices attempt to quantify

e the probability of encountering different species at random, or,

e the uncertainty or multiplicity of possible community states (i.e., the en-
tropy of community composition), or,

e the variance in species composition, relative to a multivariate centroid.

For instance, a simple count of species (Table 10.1) shows that we have 4, 3, 4,
and 1 species collected from streams 1—4. The larger the number of species, the
less certain we could be about the identity of an individual drawn blindly and
at random from the community.

To generalize this further, imagine that we have a species pool? of R species,
and we have a sample comprised of only one species. In a sample with only
one species, then we know that the possible states that sample can take is
limited to one of only R different possible states — the abundance of one species
is 100% and all others are zero. On the other hand, if we have two species
then the community could take on R (R — 1) different states — the first species
could be any one of R species, and the second species could be any one of the
other species, and all others are zero. Thus increasing diversity means increasing

2 A species pool is the entire, usually hypothetical, set of species from which a sample
is drawn; it may be all of the species known to occur in a region.
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the possible states that the community could take, and thus increasing our
uncertainty about community structure [92]. This increasing lack of information
about the system is a form of entropy, and increasing diversity (i.e., increasing
multiplicity of possible states) is increasing entropy. The jargon and topics of
statistical mechanics, such as entropy, appear (in 2009) to be an increasingly
important part of community ecology [71,171].

Below we list three commonly used diversity indices: species richness,
Shannon-Wiener index, and Simpson’s diversity index.

e Species richness, R, the count of the number of species in a sample or area;
the most widely used measure of biodiversity [82].
e Shannon-Wiener diversity.?

R
H =- Zpln (p) (10.4)
i=1

where R is the number of species in the community, and p; is the relative
abundance of species i.

e Simpson’s diversity. This index is (i) the probability that two individuals
drawn from a community at random will be different species [147], (ii) the
initial slope of the species-individuals curve [98] (e.g., Fig. 10.6), and (iii)
the expected variance of species composition (Fig. 10.5) [97,194].

R
Sp=1->"p} (10.5)
i=1

The summation f:] pf is the probability that two individuals drawn at
random are the same species, and it is known as Simpson’s “dominance.”
Lande found that this Simpon’s index can be more precisely estimated,
or estimated accurately with smaller sample sizes, than either richness or
Shannon-Wiener [97].

These three indices are actually directly related to each other — they com-
prise estimates of entropy, the amount of disorder or the multiplicity of possible
states of a system, that are directly related via a single constant [92]. However,
an important consequence of their differences is that richness depends most
heavily on rare species, Simpson’s depends most heavily on common species,
and Shannon-Wiener stands somewhere between the two (Fig. 10.4).

Relations between number of species, relative abundances, and
diversity

This section relies heavily on code and merely generates Fig. 10.4.

Here we display diversities for communities with different numbers and rela-
tive abundances of species (Fig. 10.4). We first define functions for the diversity
indices.

3 Robert May stated that this index is connected by merely an “ectoplasmic thread”
to information theory [135], but there seems be a bit more connection than that.
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Fig. 10.4: Relations between richness, Shannon-Weiner, and Simpson’s diversities (note
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posed of either equally abundant species (a) or with the most common species equal
to 90% of the community (b).

H <- function(x) {
x <- x[x > 0]

p <- x/sum(x)
-sum(p * log(p))

>
.
"
+
+ }
> 8d <- function(x) {
+ p <- x/sum(x)

+ 1 - sum(p~2)

.

}

Next we create a list of communities with from 1 to 20 equally abundant species,
and calculate H and S p for each community.

Rs <- 2:20

ComsEq <- sapply(Rs, function(R) (1:R)/R)

Hs <- sapply(ComsEq, H)

Sds <- sapply(ComsEq, Sd)

plot(Rs, Hs, type = "1", ylab = "Diversity", ylim = c(0,
3))

lines(Rs, Sds, lty = 2)

+ VV+ VVyVVYyYy

1ty = 1:2, bty = "n")

Now we create a list of communities with from 2 to 25 species, where one
species always comprises 90% of the community, and the remainder are equally
abundant rare species. We then calculate H and Sp for each community.

> Coms90 <- sapply(Rs, function(R) {
+ p <- numeric(R)

legend("right", c(expression(italic("H")), expression(italic("S"["D"]))),
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pl1] <- 0.9
pl[2:R] <- 0.1/(R - 1)

+
+
+ P

+ P

> Hs <- sapply(Coms90, H)

> Sds <- sapply(Coms90, Sd)

> plot(Rs, Hs, type = "1", ylim = c(0, 0.7))
> lines(Rs, Sds, 1ty = 2)

Simpson’s diversity, as a variance of composition

This section relies heavility on code.

Here we show how we would calculate the variance of species composition.
First we create a pretend community of six individuals (rows) and 3 species
(columns). Somewhat oddly, we identify the degree to which each individual is
comprised of each species; in this case, individuals can be only one species.*
Here we let two individuals be each species.

> s1 <- matrix(c(1, 1, 0, 0, 0, 0, 0, 0, 1, 1, O,

+ o, 0, 0, 0, 0, 1, 1), nr = 6)
> colnames(s1) <- c("Sp.A", "Sp.B", "Sp.C")
> s1
Sp.A Sp.B Sp.C
[1,] 1 0 0
, 1 0 0
s 0 1 0
, 0 1 0
, 0 0 1
0 0 1

We can plot these individuals in community space, if we like (Fig. 10.5a).

> library(scatterplot3d)
> 513d <- scatterplot3d(jitter(s1l, 0.3), type = "h",

+ angle = 60, pch = ¢c(1, 1, 2, 2, 3, 3), xlim = c(-0.2,
+ 1.4), ylim = ¢(-0.2, 1.4), zlim = c(-0.2,

+ 1.4))

> 513d$points3d(x = 1/3, y = 1/3, z = 1/3, type = "h",

+ pch = 19, cex = 2)

Next we can calculate a centroid, or multivariate mean — it is merely the vector
of species means.

> (centroidl <- colMeans(s1))

Sp.A Sp.B Sp.C
0.3333 0.3333 0.3333

4 Imagine the case where the columns are traits, or genes. In that case, individuals
could be characterized by affiliation with multiple columns, whether traits or genes.



296 10 Community Composition and Diversity

Given this centroid, we begin to calculate a variance by (i) substracting each
species vector (0s, 1s) from its mean, (ii) squaring each of these deviates, and
(3) summing to get the sum of squares.

> (SS <- sum(sapply(1:3, function(j) (si[, jl -
+ centroid1[j1))"2))

[1] 4

We then divide this sum by the number of individuals that were in the commu-
nity (N)

> S5/6

[1] 0.6667

We find that the calculation given above for Simpson’s diversity returns exactly
the same number. We would calculate the relative abundances, square them,
add them, and subtract that value from 1.

>p<-c(2, 2, 2)/6
> 1 - sum(p~2)

[1] 0.6667

In addition to being the variance of species composition, this number is also the
probability that two individuals drawn at random are different species. As we
mentioned above, there are other motivations than these to derive this and other
measures of species diversity, based on entropy and information theory [92] —
and they are all typically correlated with each other.
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Fig. 10.5: Plotting three examples of species composition. The centroid of each compo-
sition is a solid black dot. The third example (on right) has zero abundances of species
C. Simpson’s diversity is the variance of these points around the centroid. Individual
points are not plotted at precisely 0 or 1 — they are plotted with a bit of jitter or
noise so that they do not overlap entirely.
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10.2.2 Rarefaction and total species richness

Rarefaction is the process of generating the relationship between the number of
species vs. the number of individuals in one or more samples. It is typically de-
termined by randomly resampling individuals [59], but could also be determined
by resampling samples. Rarefaction allows direct comparison of the richness of
two samples, corrected for numbers of individuals. This is particularly impor-
tant because R depends heavily on the number of individuals in a sample. Thus
rarefaction finds the general relation between the number(s) of species vs. num-
ber of individuals (Fig. 10.6), and is limited to less than or equal to the number
of species you actually observed. A related curve is the species-accumulation
curves, but this is simply a useful but haphazard accumulation of new species
(a cumulative sum) as the investigator samples new individuals.

Another issue that ecologists face is trying to estimate the true number of
species in an area, given the samples collected. This number of species would
be larger than the number of species you observed, and is often referred to as
total species richness or the asymptotic richness. Samples almost always find
only a subset of the species present in an area or region, but we might prefer
to know how many species are really there, in the general area we sampled.
There are many ways to do this, and while some are better than others, none
is perfect. These methods estimate minimum numbers of species, and assume
that the unsampled areas are homogeneous and similar to the sampled areas.

Before using these methods seriously, the inquisitive reader should consult
[59,124] and references at http://viceroy.eeb.uconn.edu/EstimateS. Below, we
briefly explore an example in R.

An example of rarefaction and total species richness

Let us “sample” a seasonal tropical rainforest on Barro Colorado Island (BCI)
http://ctfs.si.edu/datasets/bci/). Our goal will be to provide baseline data for
later comparison to other such studies.

We will use some of the data from a 50 ha plot that is included in the vegan
package [36,151]. We will pretend that we sampled every tree over 10 cm dbh,?
in each of 10 plots scattered throughout the 50 ha area. What could we say
about the forest within which the plots were located? We have to consider the
scale of the sampling. Both the experimental unit and the grain are the 1ha
plots. Imagine that the plots were scattered throughout the 50 ha plot, so that
the extent of the sampling was a full 50. ha® First, let’s pretend we have sampled
10 1 ha plots by extracting the samples out of the larger dataset.

> library(vegan)
> data(BCI)
> bci <- BCI[seq(5, 50, by =5), ]

5 “dbh” is diameter at 1.37 m above the ground.
6 See John Wiens’ foundational paper on spatial scale in ecology [220] describing the
meaning of grain, extent, and other spatial issues.



298 10 Community Composition and Diversity

Next, for each species, I sum all the samples into one, upon which I will base
rarefaction and total richness estimation.

Next we combine all the plots into one sample (a single summed count for
each species present), select numbers of individuals for which I want rarefied
samples (multiples of 500), and then perform rarefaction for each of those num-
bers.

> N <- colSums(bci)
> subs3 <- c(seq(500, 4500, by = 500), sum(N))
> rar3 <- rarefy(N, sample = subs3, se = T, MARG = 2)

Next we want to graph it, with a few bells and whistles. We set up the graph of
the 10 plot, individual-based rarefaction, and leave room to graph total richness
estimators as well (Fig. 10.6).

> plot(subs3, rar3[1, ], ylab = "Species Richness",

+ axes = FALSE, xlab = "No. of Individuals",

+ type = "n", ylim = c(0, 250), xlim = c(500,

+ 7000))

> axis(1, at = 1:5 * 1000)

> axis(2)

> box()

> text (2500, 200, "Individual-based rarefaction (10 plots)")

§ — Individual-based rarefaction (10 plots)

5= ©
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ACE estimate
Chao?2 estimate

100
1
Richness observed in 50 ha

T T T T T
1000 2000 3000 4000 5000

No. of Individuals

Fig. 10.6: Baseline tree species richness estimation based on ten 1ha plots, using
individual-based rarefaction, and two different total richness estimators, ACE and
Chao 2. The true total tree richness in the 50 ha plot is present for comparison.

Here we plot the expected values and also + 2 SE.
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> lines(subs3, rar3[1, ], type = "b")
> lines(subs3, rar3[1, ] + 2 * rar3[2, ], 1ty
> lines(subs3, rar3[1, ] - 2 * rar3[2, ], 1ty

3)
3)

Next we hope to estimate the minimum total number of species (asymptotic
richness) we might observe in the area around (and in) our 10 plots, if we
can assume that the surrounding forest is homogeneous (it would probably be
best to extrapolate only to the 50ha plot). First, we use an abundance-based
coverage estimator, ACE, that appears to give reasonable estimates [124]. We
plot intervals, the expected values + 2SE (Fig. 10.6).

> ace <- estimateR(N)
> segments (6000, ace["S.ACE"] - 2 * ace["se.ACE"],

+ 6000, ace["S.ACE"] + 2 * ace["se.ACE"], 1wd = 3)

> text (6000, 150, "ACE estimate", srt = 90, adj = c(1,

+ 0.5))

Next we use a frequency-based estimator, Chao 2, where the data only need to
be presence/absence, but for which we also need multiple sample plots.

> chaoF <- specpool(bci)

> segments (6300, chaoF[1, "Chao"] - 2 * chaoF[1,

+ "Chao.SE"], 6300, chaoF[1, "Chao"] + 2 * chaoF[1,
+ "Chao.SE"], 1wd = 3, col = "grey")

> text (6300, 150, "Chao2 estimate", srt = 90, adj = c(1,
+ 0.5))

Last we add the observed number of tree species (over 10 cm dbh) found in the
entire 50 ha plot.

> points (6700, dim(BCI)[2], pch = 19, cex = 1.5)
> text (6700, 150, "Richness observed in 50 ha",
+ srt = 90, adj = c(1, 0.5))

This shows us that the total richness estimators did not overestimate the total
number of species within the extent of this relatively homogenous sample area
(Fig. 10.6).

If we wanted to, we could then use any of these three estimators to compare
the richness in this area to the richness of another area.

10.3 Distributions

In addition to plotting species in multidimensional space (Fig. 10.3), or esti-
mating a measure of diversity or richness, we can also examine the distributions
of species abundances.

Like any other vector of numbers, we can make a histogram of species abun-
dances. As an example, here we make a histogram of tree densities, where each
species has its own density (Fig. 10.7a). This shows us what is patently true for
nearly all ecological communities — most species are rare.
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10.3.1 Log-normal distribution

Given general empirical patterns, that most species are rare, Frank Preston
[168,170] proposed that we describe communities using the logarithms of species
abundances (Fig. 10.7).” This often reveals that a community can be described
approximately with the normal distribution applied to the log-transformed data,
or the log-normal ditribution. We can also display this as a rank-abundance
distribution (Fig. 10.7c). To do this, we assign the most abundant species as
rank = 1, and the least abundant has rank = R, in a sample of R species, and
plot log-abundance vs. rank.

May [129] described several ways in which common processes may drive
log-normal distributions, and cause them to be common in data sets. Most
commonly cited is to note that log-normal distributions arise when each ob-
servation (i.e., each random variable) results from the product of independent
factors. That is, if each species’ density is determined by largely independent
factors which act multiplicatively on each species, the resulting densities would
be log-normally distributed.
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(a) Raw data (b) Species—abundance dist. (c) Rank-abundance dist.

Fig. 10.7: Three related types of distributions of tree species densities from Barro
Colorado Island [36]. (a) Histogram of raw data, (b) histogram of log-transformed
data; typically referred to as the “species—abundance distribution,” accompanied here
with the normal probability density function, (¢) the “rank—abundance distribution,”
as typically presented with the log-transformed data, with the complement of the cu-
mulative probability density function (1-pdf) [129]. Normal distributions were applied
using the mean and standard deviation from the log-transformed data, times the total
number of species.

7 Preston used base 2 logs to make his histogram bins, and his practice remains
standard; we use the natural log.
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Log-normal abundance distributions (Fig. 10.7)

We can plot tree species densities from Barro Colorado Island [36], which is aailable
online, or in the vegan package. First we make the data available to us, then make
a simple histogram.

> data(BCI)
> N <- sort(colSums(BCI), decr = TRUE)
> hist (N, main = NULL)

Next we make a species—abundance distribution, which is merely a histogram of the
log-abundances (classically, base 2 logs, but we use base ¢). In addition, we add the
normal probability density function, getting the mean and standard deviation from
the data, and plotting the expected number of species by multiplying the densities
by the total number of species.

> hist(log(N), xlab = "Log Density Classes", main = NULL)
> m.spp <- mean(log(N))

> sd.spp <- sd(log(N))

> R <- length(N)

> curve(dnorm(x, m.spp, sd.spp) * R, 0, 8, add = T)

Next we create the rank—abundance distribution, which is just a plot of log-
abundances vs. ranks.

> plot(log(N), type = "b", ylim = c(0, 8), main = NULL,

+ xlab = "Species Rank", ylab = "Log Density")
> ranks.lognormal <- R * (1 - pnorm(log(N), m.spp,
+ sd.spp))

> lines(ranks.lognormal, log(l))

We can think of the rank of species i as the total number of species that are more
abundant than species i. This is essentially the opposite (or complement) of the
integral of the species—abundance distribution [129]. That means that if we can
describe the species abundance distribution with the normal density function, then

1-cumulative probability function is the rank.

10.3.2 Other distributions

Well over a dozen other types of abundance distributions exist to describe abun-
dance patterns, other than the log-normal [124]. They can all be represented as
rank-abundance distributions.

The geometric distribution® (or pre-emption niche distribution) reflects a
simple idea, where each species pre-empts a constant fraction of the remaining
niche space [129, 145]. For instance, if the first species uses 20% of the niche
space, the second species uses 20% of the remaining 80%, etc. The frequency of
the ith most abundant species is

8 This probability mass function, P; = d(1 —d)"™', is the probability distribution of
the number of attempts, i, needed for one success, if the independent probability
of success on one trial is d.
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N .
N; = FTd(l —ady! (10.6)

where d is the abundance of the most common species, and C is just a constant
to make Y. N; = Ny, where C = 1 — (1 —d)°7. Thus this describes the geometric
rank—-abundance distribution.

The log-series distribution [55] describes the frequency of species with n

individuals,

F(S,) = % (10.7)

where @ is a constant that represents diversity (greater @ means greater di-
versity); the a for a diverse rainforest might be 30-100. The constant x is a
fitted, and it is always true that 0.9 < x < 1.0 and x increases toward 0.99
as N/S — 20 [124]. x can be estimated from S/N = [(1 — x)/x] - [-In(1 — X)].
Note that this is not described as a rank—abundance distribution, but species
abundances can nonetheless be plotted in that manner [129].

The log-series rank—abundance distribution is a bit of a pain, relying on the
standard exponential integral [129], E|(s) = f:o exp(—t)/tdt. Given a range of N,
we calculate ranks as

F(N) = afm exp(—1)/tdt (10.8)

where we can let t = 1 and s = Nlog (1 + a/N7).

The log-series distribution has the interesting property that the total number
of species in a sample of N individuals would be S; = alog(l + N/a). The
parameter @ is sometimes used as a measure of diversity. If your data are log-
series distributed, then « is approximately the number of species for which you
expect 1 individual, because x = 1. Two very general theories predict a log-series
distribution, including neutral theory, and maximum entropy. Oddly, these two
theories both predict a log-series distirbution, but make opposite assumptions
about niches and individuals (see next section).

MacArthur’s broken stick distribution is a classic distribution that results in
a very even distribution of species abundances [118]. The number of individuals
of each species i is

St
Nr <41

N;i= — — 10.9
SZ (10.9)

where Ny and S7 are the total number of individuals and species in the sam-
ple, respectively. MacArthur described this as resulting from the simultaneous
breakage of a stick at random points along the stick. The resulting size fragments
are the N; above. MacArthur’s broken stick model is thus both a stochastic and
a deterministic model. It has a simulation (stick breakage) that is the direct
analogue of the deterministic analytical expression.

Other similarly tactile stick-breaking distributions create a host of differ-
ent rank-abundance patterns [124,206]. In particular, the stick can be broken
sequentially, first at one random point, then at a random point along one of
two newly broken fragments, then at an additional point along any one of the
three broken fragments, etc., with S —1 breaks creating S 7 species. The critical
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difference between the models then becomes how each subsequent fragment is se-
lected. If the probability of selecting each fragment is related directly to its size,
then this becomes identical to MacArthur’s broken stick model. On the other
hand, if each subsequent piece is selected randomly, regardless of its size, then
this results in something very similar to the log-normal distribution [196, 205].
Other variations on fragment selection generate other patterns [206].

Broken Stick
Log-series
Log-normal
Geometric

1e+02 1e+03

1e+01

1e+00

1e-01

1 51 101 151 201 251 301

Fig. 10.8: A few common rank—-abundance distributions, along with the BCI data
[36]. The log-normal curve is fit to the data, and the broken stick distribution is
always determined by the number of species. Here we let the geometric distribution
be determined by the abundance of the most common species. The log-series was
plotted so that it matched qualitatively the most abundant species.
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Generating other rank—abundance distributions)

‘We can illustrate the above rank—abundance distributions as they might relate to the
BCI tree data (see previous code). We start with MacArthur’s broken stick model.
We use cumulative summation backwards to add all 1/n;, and then re-sort it by rank
(cf. eq. 10.9).

> N <- sort(colSums(BCI), decr = TRUE)

> f1 <- sort(cumsum(1/(R:1)), decr = TRUE)
> Nt <- sum(N)

> NMac <- Nt * f1/sum(f1)

Next, we create the geomtric rank—abundance distribution, where we let the BCI
data tell us d, the density of the most abundant species; therefore we can multiply
these by Nr to get expected abundances.

> d <- N[1]/Nt
> Ngeo.f <-d * (1 - d)~(0:(R - 1))
> Ngeo <- Nt * Ngeo.f

Last, we generate a log-series relevant to the BCI data. First, we use the opti-
mal.theta function in the untb package to find a relevant value for Fisher’s a. (See
more and 6 and a below under neutral theory).

> library(untb)
> alpha <- optimal.theta(N)

To calculate the rank abundance distribution for the log-series, we first need a func-
tion for the “standard exponential integral” which we then integrate for each popu-
lation size.

> sei <- function(t = 1) exp(-t)/t

> alpha <- optimal.theta(N)

> ranks.logseries <- sapply (N, function(x) {
+ n <- x * log(1l + alpha/Nt)

f <- integrate(sei, n, Inf)

fv <- f[["value"]]

alpha * fv

+ + + +

»
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Plotting other rank-abundance distributions (Fig. 10.8)

Now we can plot the BCI data, and all the distributions, which we generated above.
Note that for the log-normal and the log-series, we calculated ranks, based on the
species—abundance distributions, whereas in the standard form of the geometric and
broken stick distributions, the expected abundances are calculated, in part, from the
ranks.

plot(1:R, N, ylim = c(0.1, 2000), xlim = c(1,
301), axes = FALSE, log = "y")

axis(2)
axis(1, 1 + seq(0, 300, by = 50))
box ()

=4)
lines(1:R, Ngeo, 1ty = 3)

lines(ranks.logseries, N, 1ty = 2)

lines(ranks.lognormal, N, lty = 1)

legend ("topright", c("Broken Stick", "Log-series",
"Log-normal", "Geometric"), 1ty = c(4, 2,

>
+
>
>
>
> lines(1:R, NMac, lty
>
>
>
>
+
+ 1, 3), bty = "n")

Note that we have not fit the the log-series or geometric distributions to the data,
but rather, placed them in for comparison. Properly fitting curves to distributions
is a picky business [124,151], especially when it comes to species abundance distri-

butions.

10.3.3 Pattern wvs. process

Note the resemblance between stick-breaking and niche evolution — if we en-
vision the whole stick as all of the available niche space, or energy, or limit-
ing resources, then each fragment represents a portion of the total occupied
by each species. Thus, various patterns of breakage act as models for niche
partitioning and relative abundance patterns. Other biological and stochastic
processes create specific distributions. For instance, completely random births,
deaths, migration, and speciation will create the log-series distribution and the
log-normal-like distributions (see neutral theory below). We noted above that
independent, multiplicatively interacting factors can create the log-normal dis-
tribution.

On the other hand, all of these abundance distributions should probably
be used primarily to describe patterns of commonness, rarity, and not to infer
anything about the processes creating the patterns. These graphical descriptions
are merely attractive and transparent ways to illustrate the abundances of the
species in your sample/site/experiment.

The crux of the issue is that different processes can cause the same abun-
dance distribution, and so, sadly, we cannot usually infer the underlying pro-
cesses from the patterns we observe. That is, correlation is different than cau-
sation. Abundances of real species, in nature and in the lab, are the result
of mechanistic processes, including as those described in models of abundance
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distributions. However, we cannot say that a particular pattern was the result
of a particular process, based on the pattern alone. Nonetheless, they are good
summaries of ecological communities, and they show us, in a glance, a lot about
diversity.

Nonetheless, interesting questions remain about the relations between pat-
terns and processes. Many ecologists would argue that describing patterns and
predicting them are the most important goals of ecology [156], while others ar-
gue that process is all important. However, both of these camps would agree
about the fallacy of drawing conclusions about processes based on pattern —
nowhere in ecology has this fallacy been more prevalent than with abundance
distributions [66].

10.4 Neutral Theory of Biodiversity and Biogeography

One model of abundance distributions is particularly important, and we elabo-
rate on it here. It is referred to variously as the unified neutral theory of biodi-
versity and biogeography [81], or often “neutral theory” for short. Neutral theory
is important because it does much more than most other models of abundance
distributions. It is a testable theory that makes quantitative predictions across
several levels of organizations, for both evolutionary and ecological processes.

Just as evolutionary biology has neutral theories of gene and allele frequen-
cies, ecology has neutral theories of population and community structure and
dynamics [9,22,81]. Neutral communities of species are computationally and
mathematically related and often identical to models of genes and alleles [53]
(Table 10.2). Thus, lessons you have learned about genetic drift often apply
to neutral models of communities. Indeed, neutral ecological dynamics at the
local scale are often referred to as ecological drift, and populations change via
demographic stochasticity.?

Stephen Hubbell proposed his “unified neutral theory of biodiversity and
biogeography” (hereafter NTBB, [81]) as a null model of the dynamics of indi-
viduals, to help explain relative abundances of tropical trees. Hubbell describes
it as a direct descendant of MacArthur and Wilson’s theory of island biogeog-
raphy [121,122] (see below, species—area relations). Hubbell proposed it both
as a null hypothesis and also — and this is the controversial part — as a model
of community dynamics that closely approximates reality.

The relevant “world” of the NTBB is a metacommunity (Fig. 10.9), that is,
a collection of similar local communities connected by dispersal [102].10 The
metacommunity is populated entirely by individuals that are functionally iden-
tical. The NTBB is a theory of the dynamics of individuals, modeling individual

% Some have called neutral theory a null model, but others disagree [61], describing
distinctions between dynamical, process-based neutral models with fitted parame-
ters, vs. static data-based null models [60]. Both can be used as benchmarks against
which to measure other phenomena. Under those circumstances, I suppose they
might both be null hypotheses.

10 The metacommunity concept is quite general, and a neutral metacommunity is but
one caricature [102].
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Fig. 10.9: A cartoon of a local community of forest canopy trees (small box) nested
inside part of the metacommunity of a tropical forest. The true metaccommunity
would extend far beyond the boundaries of this figure to include the true potential
source of propagules. Shades of grey indicate different species. The local community
is a sample of the larger community (such as the 50 ha forest dynamics plot on BCI)
and receives migrants from the metacommunity. Mutation gives rise to new species
in the metacommunity. For a particular local community, such as a 50 ha plot on an
island in the Panama canal, the metacommunity will include not only the surrounding
forest on the island, but also Panama, and perhaps much of the neotropics [86].

births, deaths, migration and mutation. It assumes that within a guild, such
as late successional tropical trees, species are essentially neutral with respect
to their fitness, that is, they exhibit fitness equivalence. This means that the
probabilities of birth, death, mutation and migration are identical for all in-
dividuals. Therefore, changes in population sizes occur via random walks, that
is, via stochastic increases and decreases with time step (Fig. 10.10). Random
walks do not imply an absence of competition or other indirect enemy mediated
negative density dependence. Rather, competition is thought to be diffuse, and
equal among individuals. We discuss details of this in the context of simula-
tion. Negative density dependence arises either through a specific constraint on
the total number of individuals in a community [81], or as traits of individuals
related to the probabilities of births, deaths, and speciation [214].

A basic paradox of the NTBB, is that in the absence of migration or muta-
tion, diversity gradually declines to zero, or monodominance. A random walk
due to fitness equivalence will eventually result in the loss of all species except
one.!'! However, the loss of diversity in any single local community is predicted
to be very, very slow, and is countered by immigration and speciation (we dis-

' This is identical to allele frequency in genetic drift.
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Fig. 10.10: Neutral ecological drift. Here we start with 10 species, each with 90 individ-
uals, and let their abundances undergo random walks within a finite local community,
with no immigration. Here, one generation is equal to nine deaths and nine births.
Note the slow decline in unevennes — after 1000 deaths, no species has become extinct.

cuss more details below). Thus, species do not increase deterministically when
rare — this makes the concept of coexistence different than the stable coexis-
tance criteria discussed in previous chapters. Coexistance here is not stable but
rather only a stochastic event with a limited time horizon which is balanced by
the emergence of new species.

If all communities are thought to undergo random walks toward monodomi-
nance, how is diversity maintained in any particular region? Two factors main-
tain species in any local community. First, immigration into the local com-
munity from the metacommunity can bring in new species. Even though each
local community is undergoing a random walk toward monodominance, each
local community may become dominated by any one of the species in the pool
because all species have equal fitness. Thus separate local communities are pre-
dicted to become dominated by different species, and these differences among
local communities help maintain diversity in the metacommunity landscape.'?
Second, at longer time scales and larger spatial scales, speciation (i.e., mutation
and lineage-splitting) within the entire metacommunity maintains biodiversity.
Mutation and the consequent speciation provide the ultimate source of varia-
tion. Random walks toward extinction in large communities are so lengthy that
the extinctions are balanced by speciation.

12 This is the same as how genetic drift operates across subpopulations connected by
low rates of gene exchange.
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Introducing new symbols and jargon for ecological neutral theory, we state
that the diversity of the metacommunity, 6, is a function of the number of
individuals in the metacommunity, Jy, and the per capita rate at which new
species arise (via mutation) v (6 = 2Jyv; Table 10.2). A local community un-
dergoes ecological drift; drift causes the slow loss of diversity, which is balanced
by a per capita (J) immigration rate m.

Table 10.2: Comparison of properties and jargon used in ecological and population
genetic neutral theory (after Alonso et al. [1]). Here x is a continuous variable for
relative abundance of a species or allele (0 < x > 1, x = n/J). Note this is potentially
confused with Fisher’s log-series (¢,) = 6x"/n, which is a discrete species abundance
distribution in terms of numbers of individuals, n (not relative abundance), and where
x=b/d.

Property Ecology Population Genetics
Entire System (size) Metacommunity (Jy) Population (N)
Nested subsystem (size) Local community (J;) Subpop. or Deme (N)
Smallest neutral system unit Individual organism Individual gene
Diversity unit Species Allele

Stochastic process Ecological drift Genetic drift
Generator of diversity (rate Speciation (v) Mutation (u)
symbol)

Fundamental diversity number 6 =~ 2Jy,v 0~ 4Nu

Fundamental dispersal number I = 2J;m 0 ~4Nm

Relative abundance distribu- g (1-x! % (1 -x)"!

tion (@ (x))

Time to common ancestor _IJTM;‘ log x ]I_Vf log x

It turns out that the abundance distribution of an infinitely large metacom-
munity is Fisher’s log-series distribution, and that 8 of neutral theory is a of
Fisher’s log-series [2,105,215]. However, in any one local community, random
walks of rare species are likely to include zero, and thus become extinct in the
local community by chance alone. This causes a deviation from Fisher’s log-
series in any local community by reducing the number of the the rarest species
below that predicted by Fisher’s log-series. In particular, it tends to create a
log-normal-like distribution, much as we often see in real data (Fig. 10.8). These
theoretical findings and their match with observed data are thus consistent with
the hypothesis that communities may be governed, in some substantive part,
by neutral drift and migration.

Both theory and empirical data show that species which coexist may be more
similar than predicted by chance alone [103], and that similarity (i.e., fitness
equality) among species helps maintain higher diversity than would otherwise
be possible [27]. Chesson makes an important distinction between stabilizing
mechanisms, which create attractors, and equalizing mechanisms, which reduce
differences among species, slow competitive exclusion and facilitate stabilization
[27].
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The NTBB spurred tremendous debate about the roles of chance and de-
terminism, of dispersal-assembly and niche-assembly, of evolutionary processes
in ecology, and how we go about “doing community ecology” (see, e.g., articles
in Functional Ecology, 19(1), 2005; Ecology, 87(6), 2006). This theory in its
narrowest sense has been falsified with a few field experiments and observation
studies [32,223]. However, the degree to which stochasticity and dispersal versus
niche partitioning structure communities remains generally unknown. Contin-
ued refinements and elaboration (e.g., [2,52, 64,86, 164,216]) seem promising,
continuing to intrigue scientists with different perspectives on natural communi-
ties [86,99]. Even if communities turn out to be completely non-neutral, NTBB
provides a baseline for community dynamics and patterns that has increased the
rigor of evidence required to demonstrate mechanisms controlling coexistence
and diversity. As Alonso et al. state, “...good theory has more predictions per
free parameter than bad theory. By this yeardstick, neutral theory fares fairly
well” [1].

10.4.1 Different flavors of neutral communities

Neutral dynamics in a local community can be simulated in slightly different
ways, but they are all envisioned some type of random walk. A random walk
occurs when individuals reproduce or die at random, with the consequence that
each population increases or decreases by chance.

The simplest version of a random walk assumes that births and deaths and
consequent increases and decreases in population size are equally likely and
equal in magnitude. A problem with this type of random walk is that a com-
munity can increase in size (number of individuals) without upper bound, or
can disappear entirely, by chance. We know this doesn’t happen, but it is a
critically important first step in conceptualizing a neutral dynamic [22].

Hubbell added another level of biological reality by fixing the total number
of individuals in a local community, J;, as constant. When an individual dies, it
is replaced with another individual, thus keeping the population size constant.
Replacements come from within the local community with probability 1-m, and
replacements come from the greater metacommunity with probability m. The
dynamics of the metacommunity are so slow compared to the local community
that we can safely pretend that it is fixed, unchanging.

Volkov et al. [215] took a different approach by assuming that each species
undergoes independent biased random walks. We imagine that each species un-
dergoes its own completely independent random walk, as if it is not interacting
with any other species. The key is that the birth rate, b, is slightly less than the
death rate, d — this bias toward death gives us the name biased random walk.
In a deterministic model with no immigration or speciation, this would result
in a slow population decline to zero. In a stochastic model, however, some pop-
ulations will increase in abundance by chance alone. Slow random walks toward
extinctions are balanced by speciation in the metacommunity (with probabil-
ity v).

If species all undergo independent biased random walks, does this mean
species don’t compete and otherwise struggle for existance? No. The reason that
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b < d is precisely because all species struggle for existance, and only those with
sufficiently high fitness, and which are lucky, survive. Neutral theory predicts
that it is these species that we observe in nature — those which are lucky, and
also have sufficiently high fitness.

In the metacommunity, the average number of species, (¢M), with population
size n is

(pMy = axg (10.10)

where x = b/d, and 6 = 2Jyv [215]. The M superscript refers to the metacom-
munity, and the angle brackets indicate merely that this is the average. Here
b/d is barely less than one, because it a biased random walk which is then offset
by speciation, v. Now we see that this is exactly Fisher’s log-series distribution
(eq. 10.7), where that x = b/d and 6 = «@. Volkov et al. thus show that in a
neutral metacommunity, x has a biological interpretation.

The expected size of the entire metacommunity is simply the sum of all of
the average species’ n [215].

(o]

JM=Zn<¢34>=elfx (10.11)

n=1

Thus the size of the metacommunity is an emergent property of the dynamics,
rather than an external constraint. To my mind, it seems that the number of
individuals in the metacommunity must result from responses of individuals to
their external environment.

Volkov et al. went on to derive expressions for births, deaths, and average
relative abundances in the local community [139,215]. Given that each individ-
ual has an equal probability of dying and reproducing, and that replacements
can also come from the metacommunity with a probability proportional to their
abundance in the metacommunity, one can specify rules for populations in lo-
cal communities of a fixed size. These are the probability of increase, by, or
decrease, d,x, in a species, k, of population size n.

nJp—n Uk n
by =(1- — +m—(1-— 10.12
k= m) JpJr—1 mJM( JL) ( )
nJp—n mug\ n
dor=(0-m)— + 1-—|— 10.13
ok ( m)JLJL—l m( JM)JL ( )

These expressions are the sum of two joint probabilities, each of which is com-
prised of several independent events. These events are immigration, and birth
and death of individuals of different species. Here we describe these probabil-
ities. For a population of size n of species k, we can indicate per capita, per
death probabilities including

e m, the probability that a replacement is immigrant from the metacommu-
nity, and 1 —m, the probability that the replacement is from the local com-
munity.
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e n/J;, the probability that an individual selected randomly from the local
community belongs to species k, and 1—n/Jy or (J—n)/(JL), the probability
that an individual selected randomly from the local community belongs to
any species other than k.

e (J—n)/(Jy—1), the conditional probability that, given that an individual of
species k has already been drawn from the population, an individual selected
randomly from the local community belongs to any species other than to
species k.

® u/Jy, the probability that an individual randomly selected from the meta-
community belongs to species k, and 1 —n/Jy, the probability that an indi-
vidual randomly selected from the metacommunity belongs to any species
other than k.

Each of these probabilities is the probability of some unspecified event — that
event might be birth, death, or immigration.

Before we translate eqs. 10.12, 10.13 literally, we note that b and d each have
two terms. The first term is for dynamics related to the local community, which
happen with probability 1 — m. The second is related to immigration from the
metacommunity which occurs with probability m. Consider also that if a death
is replaced by a birth of the same species, or a birth is countered by a death
of the same species, they cancel each other out, as if nothing ever happened.
Therefore each term requires a probability related to species k and to non-k.

Eq. 10.12, b,x, is the probability that an individual will be added to the
population of species k. The first term is the joint probability that an addition
to the population comes from within the local community (1 —m) and the birth
comes from species k (n/J.) and there is a death of an individual of any other
species ((Jp —n)/(Jp — 1)).' The second term is the joint probability that the
addition to the population comes from the metacommunity via immigration (m)
and that the immigrant is of species k (ux/Jy) and is not accompanied by a
death of an individual of its species (n/JL).

An individual may be subtracted from the population following similar logic.
Eq. 10.13, d,\, is the probability that a death will remove an individual from
the population of species k. The first term is the joint probability that the death
occurs in species k (n/Jy) and the replacement comes from the local community
(1—m) and is some species other than k ((Jp —n)/(Jp—1)). The second term is the
joint probability that the death occurs in species k (n/J;), and that it is replaced
by an immigrant (m) and the immigrant is any species in the metacommunity
other than k (1 — i /Ju).

10.4.2 Investigating neutral communities

Here we exxplore netural communities using the untb package, which contains
a variety of functions for teaching and research on neutral theory.

13 The denominator of the death probability is J, — I instead of J; because we have
already selected the first individual who will do the reproduction, so the total
number of remaining individuals is J; — 1 rather than J;; the number of non-k
individuals remains J; — n
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Pure drift

After loading the package and setting graphical parameters, let’s run a sim-
ulation of drift. Recall that drift results in the slow extinction of all but one
species (Fig. 10.10). We start with a local community with 20 species, each with
25 individuals!* The simulation then runs for 1000 generations (where 9/900
individuals die per generation).!®

> library(untb)
> a <- untb(start = rep(1:20, 25), prob = 0, gens = 2500,
+ D = 9, keep = TRUE)

We keep, in a matrix, all 450 trees from each of the 1000 time steps so that
we can investigate the properties of the community. The output is a matrix
where each element is an integer whose value represents a species ID. Rows are
time steps and we can think of columns as spots on the ground occupied by
trees. Thus a particular spot of ground may be occupied by an individual of
one species for a long time, and suddenly switch identity, because it dies and
is replaced by an individual of another species. Thus the community always
has 450 individuals (columns), but the identities of those 450 change through
time, according to the rules laid out in eqs. 10.12, 10.13. Each different species is
represented by a different integer; here we show the identitites of ten individuals
(columns) for generations 901-3.

> (a2 <- a[901:903, 1:10])

[,11 [,2]1 .31 [,4]1 C,8] .61 [,71 [,8] [,9] [,10]
[1,] 7 15 4 15 11 7 15 14 20 20
[2,] 7 16 4 156 11 7 15 14 20 20
£3,] 7 15 4 15 11 7 15 14 20 20

Thus, in generation 901, tree no. 1 is species 7 and in generation 902, tree no.
3 is species 4.

We can make pretty pictures of the communities at time steps 1, 100, and
2000, by having a single point for each tree, and coding species identity by
shades of grey.!6

> times <- c(1, 50, 2500)
> sppcolors <- sapply(times, function(i) grey((ali,
+ 1 - 1)/20))

This function applies to the community, at each time step, the grey function.
Recall that species identity is an integer; we use that integer to characterize
each species’ shade of grey.

Next we create the three graphs at three time points, with the appropriate
data, colors, and titles.

14 This happens to be the approximate tree density (450 trees ha™!, for trees > 10 cm
DBH) on BCI.

15 Note that display.untb is great for pretty pictures, whereas untb is better for
more serious simulations.

16 We could use a nice color palette, hcl, based on hue, chroma, and luminance, for
instance hcl(a[i,]*30+50)
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> layout (matrix(1:3, nr = 1))
> par(mar = c(1, 1, 3, 1))
> for (j in 1:3) {

+ plot(c(1, 20), c(1, 25), type = "n", axes = FALSE)
+ points(rep(1:20, 25), rep(1:25, each = 20),
+ pch = 19, cex = 2, col = sppcolors[, jl)
+ title(paste("Time = ", times[j], sep = ""))
+
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Fig. 10.11: Three snapshots of one community, drifting through time. Shades of grey
represent different species. Second row contains rank abundance distributions; third
row contains species abundance distributions. Drift results in the slow loss of diversity.

From these graphs (Fig. 10.11), we see that, indeed, the species identity of the
450 trees changes through time. Remember that this is not spatially explicit —
we are not stating that individual A is next, or far away from, individual B.
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Rather, this is a spatially implicit representation — all individuals are charac-
terized by the same probaibllities.

Next let’s graph the rank abundance distribution of these communities (Fig.
10.11). For each time point of interest, we first coerce each “ecosystem” into a
count object, and then plot it. Note that we plot them all on a common scale
to facilitate comparison.

> layout (matrix(1:3, nr = 1))
> for (i in times) {

+ plot(as.count(ali, J), ylim = c(1, max(as.count(a[times[3],
+ 1))), xlim = c(0, 20))

+ title(paste("Time = ", i, sep = ""))

+

Next we create species abundance distributions, which are histograms of species’
abundances (Fig. 10.11). If we want to plot them on a common scale, it takes
a tad bit more effort. We first create a matrix of zeroes, with enough columns
for the last community, use preston to create the counts of species whose
abundances fall into logarithmic bins, plug those into the matrix, and label the
matrix columns with the logarithmic bins.

> out <- lapply(times, function(i) preston(ali,

+ 1))

> bins <- matrix(0, nrow = 3, ncol = length(out[[3]]))
> for (i in 1:3) bins[i, 1:length(out[[i]])] <- out[[i]]
> bins

[,11 [,2] [,3]1 [,4] [,8] [,61 [,7]1 [,8]
[1,] 0 0 0 0 0 20 0 0
[2,] 0 0 0 0 0 18 2 0
[3,] 0 1 0 0 0 4 4 3

> colnames (bins) <- names(preston(a[times[3], ]))

Finally, we plot the species—abundance distributions.

> layout (matrix(1:3, nr = 1))
> for (i in 1:3) {

+ par(las = 2)

+ barplot(bins[i, ], ylim = c(0, 20), xlim = c(0,

+ 8), ylab = "No. of Species", xlab = "Abundance Category")
+F

Bottom line: drift causes the slow loss of species from local communities (Fig.
10.11). What is not illustrated here is that without dispersal, drift will cause
different species to become abundant in different places because the variation is
random. In that way, drift maintains diversity at large scales, in the metacom-
munity. Last, low rates of dispersal among local communities maintains some
diversity in local communities without changing the entire metacommunity into
a single large local community. Thus dispersal limitiation, but not its absence,
maintains diversity.

Next, let’s examine the dynamics through time. We will plot individual
species trajectories (Fig. 10.12a).
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> sppmat <- species.table(a)
> matplot(1:times[3], sppmat[1:times[3], 1, type = "1",
+ ylab = "Population Density")

The trajectories all start at the same abundance, but they need not have. The
trajectories would still have the same drifting quality.
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Fig. 10.12: Dynamics and average variation within populations. In random walks,
average variation (measured with the coefficient of variation) increases with time.

For random walks in general, the observed variance and coefficient of varia-
tion (CV = &/%) of a population will grow over time [32]. Here we calculate the
average population CV of cumulative observations (note the convenient use of
nested (s)apply functions). Let’s calculate the CV’s for every tenth time step.

> cvtimes <- seq(2, 2500, by = 10)

> CV.within <- sapply(cvtimes, function(i) {

+ cvs <- apply(sppmat[1:i, ], 2, function(x) sd(x)/mean(x))
+ mean(cvs)

+ 1

Now plot the average CV through time. The average observed CV should in-
crease (Fig. 10.12b).

> plot(cvtimes, CV.within, type = "1")

This shows us that the populations never approach an equilibrium, but wander
aimlessly.

Real data

Last, we examine a BCI data set [36]. We load the data (data from 50 1ha
plots x 225 species, from the vegan package), and sum species abundances to
get each species total for the entire 50 h plot (Fig. 10.13a).
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> library(vegan)

> data(BCI)

> n <- colSums(BCI)

> par(las = 2, mar = c(7, 4, 1, 1))

> xs <- plot(preston(rep(1:225, n), n = 12, original = TRUE))

We would like to estimate 8 and m from these data, but that requires specialized
software for any data set with a realistic number of individuals. Specialized
software would provide maximum likelihood estimates (in a reasonable amount
of computing time) for m and 6 for large communities [51,69,86]. The BCI data
have been used repeatedly, so we rely on estimates from the literature (6 ~ 48,
m ~ 0.1) [51,215]. We use the approach of Volkov et al. [215] to generate expected
species abundances (Fig. 10.13a).

> v1 <- volkov(sum(n), c(48, 0.1), bins = TRUE)
> points(xs, v1[1:12], type = "b")

More recently, Jabot and Chave [86] arrived at estimates that differed from
previous estimates by orders of magnitude (Fig. 10.13b). Their novel approach
estimated 6 and m were derived from both species abundance data and from
phylogenetic data (0 ~ 571, 724, m ~ 0.002). This is possible because neutral
theory makes a rich array of predictions, based on both ecological and evolution-
ary processes. Their data were only a little bit different (due to a later census),
but their analyses revealed radically different estimates, with a much greater
diversity and larger metacommunity (greater §), and much lower immigration
rates (smaller m).

Here we derive expected species abundance distributions. The first is based
soley on census data, and is similar to previous expections (Fig. 10.13b).

> v2 <- volkov(sum(n), c(48, 0.14), bins = TRUE)

> xs <- plot(preston(rep(1:225, n), n = 12, original = TRUE),
+ col = 0, border = 0)

> axis(1, at = xs, labels = FALSE)

> points(xs, v2[1:12], type = "b", 1ty = 2, col = 2)

However, when they also included phylogenetic data, they found very different
expected species abundance distributions (Fig. 10.13b).

> v4 <- volkov(sum(n), c(571, 0.002), bins = TRUE)
> points(xs, v4[1:12], type = "b", 1ty = 4, col = 2)

If nothing else, these illustrate the effects of increasing 6 and reducing m.

10.4.3 Symmetry and the rare species advantage

An important advance in neutral theory is the quantitfication of a symmetric
rare species advantage. The symmetry hypothesis posits that all species have
a symmetrical rare species advantage [214,216]. That is, all species increase
when rare to the same degree (equal negative density dependence). In a strict
sense, all individuals remain the same in that their birth and death probabilities
change with population size in the same manner for all species. This obviously
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Fig. 10.13: Species abundance distributions for BCI trees. (a) Data for histogram
from [36], overlain with expected abundances with 6 and m values fitted to the data
[561,215]. (b) Jabot and Chave found that when they used only species abundances (as
did previous investigators) their pattern was similar to previous findings (solid line).
However, adding phylogenetic information led to very different expectations (dashed
line).

reduces the chance of random walks to extinction, but is nonetheless the same
among all species. Estimation of the magnitude of the rare species advantage is
interesting addition to stepwise increasing complexity.

To sum up: it is safe to say that neutral theory has already made our think-
ing about community structure and dynamics more sophisticated and subtle, by
extending island biogeography to individuals. The theory is providing quanti-
tative, pattern-generating models, that are analogous to null hypotheses. With
the advent of specialized software, theory is now becoming more useful in our
analysis of data [51,69, 86].

10.5 Diversity Partitioning

We frequently refer to biodiversity (i.e., richness, Simpson’s, and Shannon-
Wiener diversity) at different spatial scales as @, 8, and y diversity (Fig. 10.14).

e Alpha diversity, «, is the diversity of a point location or of a single sample.

e Beta diversity, B, is the diversity due to multiple localities; 8 diversity is
sometimes thought of as turnover in species composition among sites, or
alternatively as the number of species in a region that are not observed in
a sample.

e Gamma diversity, vy, is the diversity of a region, or at least the diversity
of all the species in a set of samples collected over a large area (with large
extent relatve to a single sample).
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Diversity across spatial scales can be further be partitioned in one of two ways,
either using additive or multiplicative partitioning.
Additive partitioning [42,43,97] is represented as

a+B=y (10.14)

where @ is the average diversity of a sample, vy is typically the diversity of the
pooled samples, and B is found by difference (8 = y — @). We can think of 8
as the average number of species not found in a sample, but which we know
to be in the region. Additive partitioning allows direct comparison of average
richness among samples at any hierarchical level of organization because all
three measures of diversity (@, B, and y) are expressed in the same units. This
makes it analogous to partitioning variance in ANOVA. This is not the case for
multiplicative partitioning diversity.
Partitioning can also be multiplicative [219],

ap=vy (10.15)

where B is a conversion factor that describes the relative change in species
composition among samples. Sometimes this type of B diversity is thought of
as the number of different community types in a set of samples. However, one
must use this interpretation with great caution, as either meaning of 8 diversity
depends completely on the sizes or extent of the samples used for a diversity.
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Fig. 10.14: Hierarchical sampling of moth species richness in forest patches in Indiana
and Ohio, USA [198]. e-diversity is the diversity of a single site (richness indicated
by numbers). y-diversity is the total number of species found in any of the samples
(here y = 230spp.). Additive S-diversity is the difference, y — @, or the average number
of species not observed in a single sample. Diversity partitioning can be done at two
levels, sites within ecoregions and ecoregions within the geographic region (see example
in text for details).
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Let us examine the the limits of 8 diversity in extremely small and extremely
large samples. Imagine that our sample units each contain, on average, one
individual (and therefore one species) and we have 10% samples. If richness is
our measure of diversity, then @ = 1. Now imagine that in all of our samples we
find a total of 100 species, or y = 100. Our additive and multiplicative partitions
would then be 4 = 99, and By, = 100, respectively. If the size of the sample unit
increases, each sample will include more and more individuals and therefore
more of the diversity, and by definition, 8 will decline. If each sample gets large
enough, then each sample will capture more and more of the species until a
sample gets so large that it includes all of the species (i.e., @ — ). At this
point, B4 — 0 and By — 1.

Note that B4 and By do not change at the same rates (Fig. 10.15). When
we increase sample size so that each sample includes an average of two species
(@ =2), then B4 = 98 and By = 50. If each sample were big enough to have on
average 50 species (@ = 50), then B4 = 50 and By = 2. So, the 8’s do not change
at the same rate (Fig. 10.15).
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Fig. 10.15: Relations of B4 (with additive partitioning) and By (with multiplicative
partitioning) to @, for a fixed y = 500 species. In our example, we defined diversity as
species richness, so the units of 84 and @ are number of species per sample, and @ is
the mean number of species in a sample.

Multiplicative By is sometimes thought of as the number of independent
“communities” in a set of samples. This would make sense if our sampling regime
were designed to capture representative parts of different communities. For ex-
ample, if we sampled an elevational gradient, or a productivity gradient, and
our smallest sample was sufficiently large so as to be representative of that point
along the gradient!” then By could provide a measure of the relative turnover in

17 One type of sample that attempts to do this is a relevé.
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composition or “number of different communities.” However, we know that com-
position is also predicted to vary randomly across the landscape [36]. Therefore,
if each sample is small, and not really representative of a “community,” then the
small size of the samples will inflate 8); and change the interpretation.

As an example, consider the BCI data, which consists of 50 contiguous 1 ha
plots. First, we find y (all species in the data set, or the number of columns),
and @ (mean species number per 1ha plot).

> (gamma <- dim(BCI) [2])
[1] 225
> (alpha.bar <- mean(specnumber (BCI)))

[1] 90.78

Next we find additive B-diversity and multiplicative B-diversity.

> (beta.A <- gamma - alpha.bar)
[1] 134.2

> (beta.M <- gamma/alpha.bar)
[1] 2.479

Now we interpret them. These plots are located in a relatively uniform tropical
rainforest. Therefore, they each are samples drawn from a single community
type. However, the samples are small. Therefore, each 1ha plot (10* m? in size)
misses more species than it finds, on average (84 > @). In addition, By = 2.48,
indicating a great deal of turnover in species composition. We could mistakenly
interpret this as indicating something like ~ 2.5 independent community types
in our samples. Here, however, we have a single community type — additive
partitioning is a little simpler and transparent in its interpretation.
For other meanings of B-diversity, linked to neutral theory, see [36,144].

10.5.1 An example of diversity partitioning

Let us consider a study of moth diversity by Keith Summerville and Thomas
Crist [197,198]. The subset of their data presented here consists of woody plant
feeding moths collected in southwest Ohio, USA. Thousands of individuals were
trapped in 21 forest patches, distributed in two adjacent ecoregions (12 sites -
North Central Tillplain [NCT], and 9 sites - Western Allegheny Plateau [WAP],
Fig. 10.14). This data set includes a total of 230 species, with 179 species present
in the NCT ecoregion and 173 species present in the WAP ecoregion. From these
subtotals, we can already see that each ecoregion had most of the combined total
species (y).

We will partition richness at three spatial scales: sites within ecoregions (@),
ecoregions (@,), and overall (y). This will result in two S-diversities: f; among
sites within each ecoregion, and B, between ecoregions. The relations among
these are straightforward.
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) = Q) +ﬁ1 (1016)
y=a + 5 (10.17)
Yy=a+pi+B (10.18)

To do this in R, we merely implement the above equations using the data in
Fig. 10.14 [198]. First, we get the average site richness, @;. Because we have dif-
ferent numbers of individuals from different site, and richness depends strongly
on the number of individuals in our sample, we may want to weight the sites by
the number of individuals. However, I will make the perhaps questionable argu-
ment for the moment that because trapping effort was similar at all sites, we will
not adjust for numbers of individuals. We will assume that different numbers of
individuals reflect different population sizes, and let number of individuals be
one of the local determinants of richness.

> data(moths)
> al <- mean(moths[["spp"]l])

Next we calculate average richness richness for the ecoregions. Because we had
12 sites in NCT, and only nine sites in WAP for what might be argued are
landscape constraints, we will use the weighted average richness, adjusted for
the number of sites.!'® We also create an object for y = 230.

> a2 <- sum(c(NCT = 179, WAP = 173) * c(12, 9)/21)
> g <- 230

Next, we get the remaining quantities of interest, and show that the partition
is consistent.

> bl <- a2 - ail

> b2 <-g - a2

> abg <- c(al = al, bl = b1, a2 = a2, b2 = b2, g = g)

> abg

al bl a2 b2 g
65.43 111.00 176.43 53.57 230.00

>al + bl + b2 ==g
[1] TRUE

The partitioning reveals that B; is the largest fraction of overall y-richness
(Fig. 10.16). This indicates that in spite of the large distance between sampling
areas located in different ecoregions, and the different soil types and associated
flora, most of the variation occurs among sites within regions. If there had been
a greater difference in moth community composition among ecoregions, then
B2-richness would have made up a greater proportion of the total.

18 The arithmetic mean is Y a;Y;, where all a; = 1/n, and n is the total number of
observations. A weighted average is the case where the g; represent unequal weights,
often the fraction of n on which each Y; is based. In both cases, >, a = 1.
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Fig. 10.16: Hierarchical partitioning of moth species richness in forest patches [198].
See Fig. 10.14 for geographical locations.

These calculations show us how simple this additive partition can be, al-
though more complicated analyses are certainly possible. It can be very impor-
tant to weight appropriately the various measures of diversity (e.g., the number
of individuals in each sample, or number of samples per hierarchical level). The
number of individuals in particular has a tremendous influence on richness,
but has less influence on Simpson’s diversity partitioning. The freely available
PARTITION software will perform this additive partitioning (with sample sizes
weights) and perform statistical tests [212].

10.5.2 Species—area relations

The relation between the number of species found in samples of different area
has a long tradition [5,10,120-122,169,178|, and is now an important part of
the metastasizing subdiscipline of macroecology [15,71].

Most generally, the species—area relation (SAR) is simply an empirical pat-
tern of the number of species found in patches of different size, plotted as a
function of the sizes of the respective patches (Fig. 10.17). These patches may
be isolated from each other, as islands in the South Pacific [121], or mountain-
tops covered in coniferous forest surrounded by a sea of desert [16], or calcareous
grasslands in an agricultural landscape [68]. On the other hand, these patches
might be nested sets, where each larger patch contains all others [41,163].

Quantitatively, the relation is most often proposed as a simple power law,

R = cA* (10.19)

where R is the number of species in a patch of size A, and ¢ and z are fitted
constants. This is most often plotted as a log—log relation, which makes it linear.

log(R)=b+zA (10.20)
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Fig. 10.17: Power law species—area relations.

where b is the intercept (equal to logc) and z is the slope.

Drawing power law species—area relations (Fig. 10.17)
Here we simply draw some species area curves.

> A <-1071:10

>c<-1.5

>z <-0.25

> curve(c * x"z, 10, 10710, n = 500, ylab = "No. of Species",
+ xlab = "Area (ha)")

> A <-1071:10

>c<-1.5

>z <- 0.25

> curve(log(c, 10) + z * x, 1, 10,

+ ylab = quote(log[10] ("No. of Species")),

+ xlab = quote(log[10] ("Area (ha)")))
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Fig. 10.18: Fitted power law species—area relations.

Fitting a species—area relation (Fig. 10.18)

Here we fit a species—area curve to data, and examine the slope. We could fit a
nonlinear power relation (y = cA?); this would be appropriate, for instance, if the
residual noise around the line were of the same magnitude for all patch areas. We
could use reduced major axis regression, which is appropriate when there is equiv-
alent uncertainty or error on both x and y. Last (and most often), we could use
a simple linear regression on the log-transformed data, which is appropriate when
we know x to a high degree of accuracy, but measure y with some error, and the
transformation causes the residual errors to be of similar magnitude at all areas. We
start with the last (log-transformed). Here we plot the data, and fit a linear model
to the common log-transformed data.

> plot(log(spp, 10) ~ log(area, 10), moths)
> mod <- Im(log(spp, 10) ~ log(area, 10), data = moths)
> abline (mod)

Next we fit the nonlinear curve to the raw data, and overlay that fit (on the log
scale).

> mod.nonlin <- nls(spp ~ a * area"z, start = list(a =1,

+ z = 0.2), data = moths)

> curve(log(coef (mod.nonlin) [1], 10) + x * coef(mod.nonlin) [2],
+ 0, 3, add = TRUE, 1ty = 2)
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Assessing species—area relations

Note that in Figure 10.18, the fits differ slightly between the two methods. Let’s
compare the estimates of the slope — we certainly expect them to be similar, given
the picture we just drew.

> confint (mod)

2.5 % 97.5 %
(Intercept) 1.50843 1.6773
log(area, 10) 0.09026 0.1964

> confint (mod.nonlin)

2.5% 97.5%
a 31.61609 50.1918
z 0.08492 0.1958

We note that the estimates of the slopes are quite similar. Determining the better
of the two methods (or others) is beyond the scope of this book, but be aware that

methods can matter.

The major impetus for the species—area relation came from (i) Preston’s
work on connections between the species—area relation and the log-normal
species abundance distribution [169,170], and (ii) MacArthur and Wilson’s the-
ory of island biogeography!® [122].

Preston posited that, given the log-normal species abundance distributions
(see above), then increasingly large samples should accumulate species at partic-
ular rates. Direct extensions of this work, linking neutral theory and maximum
entropy theory to species abundances and species—area relations continues to-
day [10,71,81]

Island biogeography

MacArthur and Wilson proposed a simple theory wherein the number of species
on an oceanic island was a function of the immigration rate of new species, and
extinction rate of existing species (Fig. 10.19). The number of species at any one
time was a dynamic equilibrium, resulting from both slow inevitable extinction
and slow continual arrival of replacements. Thus species composition on the
island was predicted to change over time, that is, to undergo turnover.

Let us imagine immigration rate, y, as a function of the number of species
already on an island, x (Fig. 10.19). This relation will have a negative slope, be-
cause as the number of species rises, that chance that a new individual actually
represents a new species will decline. The immigration rate will be highest when
there are no species on the island, x = 0, and will fall to zero when every con-
ceivable species is already there. In addition, the slope should be decelerating

1% (Originally proposed in a paper entitled “An Equilibrium Theory of Insular Zoo-
geography” [121])
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(concave up) because some species will be much more likely than others to im-
migrate. This means that the immigration rate drops steeply as the most likely
immigrants arrive, and only the unlikely immigrants are missing. Immigrants
may colonize quickly for two reasons. First, as Preston noted, some species are
simply much more common than others. Second, some species are much better
dispersers than others.

Now let us imagine extinction rate, y, as a function of the number of species,
x (Fig. 10.19). This relation will have a positive slope, such that the probability
of extinction increases with the number of species. This is predicted to have
an accelerating slope (concave-up), for essentially the same sorts of reasons
governing the shape of the immigration curve: Some species are less common
than others, and therefore more likely to become extinct do to demographic and
environmental stochasticity, and second, some species will have lower fitness for
any number of reasons. As the number of species accumulates, the more likely
it will become that these extinction-prone species (rare and/or lower fitness)
will be present, and therefore able to become extinct.

The rate of change of the number of species on the island, AR, will be the
difference between immimigration, I, and extinction, E, or

AR=1-E. (10.21)

When 4R = 0, we have an equilibrium. If we knew the quantitative form of im-
migration and extinction, we could solve for the equilibrium. That equilibrium
would be the point on the x axis, R, where the two rates cross (Fig. 10.19).

In MacArthur and Wilson’s theory of island biogeography, these rates could
be driven by the sizes of the islands, where

e larger islands had lower extinction rates because of larger average popula-
tion sizes.

e larger islands had higher colonization rates because they were larger targets
for dispersing species.

The distance between an island and sources of propagules was also predicted
to influence these rates.

e Islands closer to mainlands had higher colonization rates of new species
because more propagules would be more likely to arrive there,

e The effect of area would be more important for islands far from mainlands
than for islands close to mainlands.

Like much good theory, these were simple ideas, but had profound effects on
the way ecologists thought about communities. Now these ideas, of dispersal
mediated coexistence and landscape structure, continue to influence community
ecologists [15,81,102].

Drawing immigration and extinction curves

It would be fun to derive a model of immigration and extinction rates from
first principles [121], but here we can illustrate these relations with some simple
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Fig. 10.19: Immigration and extinction curves for the theory of island biogeography.
The declining curves represent immigration rates as functions of the number of species
present on an island. The increasing curves represent extinction rates, also as functions
of island richness. See text for discussion of the heights of these curves, i.e., controls
on these rates. Here the dashed lines represent an island that is shrinking in size.

phenomenological graphs. We will assume that immmigration rate, I, can be
represented as a simple negative exponential function exp(lp — iR), where I is
the rate of immigration to an empty island, and i is the per species negative
effect on immigration rate.

> I0 <- log(1)

> b <-0.1

> curve(exp(I0 - b * x), 0, 50, xlab = "No. of Species (R)",
+ ylab = "Rate (I or E)")

Note that extinction rate, E, must be zero if there are no species present. Imag-
ine that extinction rate is a function of density and that average density declines
as the number of species increases, or N = 1/R.%0.

> d <- 0.01
> curve(exp(d * x) - 1, 0, 50, add = TRUE)

We subtract 1 merely to make sure that £ = 0 when R = 0.
The number of species, R, will result from 4R = 0 = I - E, the point at which
the lines cross.

[ = ek (10.22)
E=e¢®R-1 (10.23)
SR=0=I1-E (10.24)

20 Why would this make sense ecologically?
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Here we find this empricially by creating a function of R to minimize — we
will minimize (I — E)?; squaring the difference gives the quantity the convenient
property that the minimum will be approached from either positive or negative
values.

> deltaR <- function(R) {
+ (exp(I0O - b * R) - (exp(d * R) - 1))"2
+ }

We feed this into an optimizer for one-parameter functions, and specify that we
know the optimum will be achieved somewhere in the interval between 1 and
50.

> optimize(f = deltaR, interval = c(1, 50))[["minimum"]]
[1] 16.91

The output tells us that the minimum was achieved when R ~ 16.9.
Now imagine that rising sea level causes island area to shrink. What is this
predicted to do? It could

1. reduce the base immigration rate because the island is a smaller target,
2. increase extinction rate because of reduced densities.?!

Let us represent reduced immigration rate by reducing Iy.

> 10 <- log(1/2)
> curve(exp(I0O - b * x), 0, 50, add = TRUE, 1ty = 2)

Next we increase extinction rate by increasing the per species rate.

>d <- 0.014
> curve(exp(d * x) - 1, 0, 50, add = TRUE, 1ty = 2)

If we note where the rates cross, we find that the number of predicted species
has declined. With these new immigration and extinciton rates the predicted
number of species is

> optimize(f = deltaR, interval = c(1, 50))[["minimum"]]
[1] 11.00

or 11 species, roughly a 35% decline ((17 — 11)/17 = 0.35).

The beauty of this theory is that it focuses our attention on landscape level
processes, often outside the spatial and temporal limits of our sampling regimes.
It specifies that any factor which helps determine the immigration rate or ex-
tinction rate, including island area or proximity to a source of propagules, is
predicted to alter the equilibrium number of species at any point in time. We
should further emphasize that the identity of species should change over time,
that is, undergo turnover, because new species arrive and old species become
extinct. The rate of turnover, however, is likely to be slow, because the species
that are most likely to immigrate and least likely to become extinct will be the
same species from year to year.

2 We might also predict an increased extinction rate because of reduced rescue effect
(Chapter 4).
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10.5.3 Partitioning species—area relations

You may already be wondering if there is a link island biogeography and S-
diversity. After all, as we move from island to island, and as we move from
small islands to large islands, we typically encounter additional species, and
that is what we mean by B-diversity. Sure enough, there are connections [42].

Let us consider the moth data we used above (Fig. 10.14). The total number
of species in all of the patches is, as before, y. The average richness of these
patches is @, and also note that part of what determines that average is the area
of the patch. That is, when a species is missing from a patch, part of the reason
might be that the patch is smaller than it could be. We will therefore partition
B into yet one more category: species missing due to patch size, Bureq. This new
quantity is the average difference between @ and the diversity predicted for the
largest patch (Fig. 10.20). In general then,

E = ﬁarea +ﬁrepluce (1025)

where Brepiace is the average number of species missing that are not explained
by patch size.

In the context of these data (Fig. 10.20), we now realize that 81 = Burea +
Becoregion, so the full partition becomes

Y= ap + ﬁarea + ﬂecoregion + ,Bgengr.region (1026)

where Brepiace = Becoregion +Bgeogr.resion- NOte that earlier in the chapter, we did not
explore the effect of area. In that case, Becoregion included both the effect of area
and the effect of ecoregion; here we have further partitioned this variation into
variation due to patch size, as well as variation due to ecoregion. This reduces
the amount of unexplained variation among sites within each ecoregion.

Let’s calculate those differences now. We will use quantities we calculated
above for @, @, y, and a nonlinear species—area model from above. We can
start to create a graph similar to Fig. 10.20.

> plot(spp ~ area, data = moths, ylim = c(30, 230),

+ xlab = "Area (ha)", ylab = "No. of Species (R)")
> curve (coef (mod.nonlin) [1] * x"coef (mod.nonlin) [2],
+ 0, max(moths[["area"]]), add = TRUE, 1ty = 2,

+ lwd = 2)

> abline(h = g, 1ty = 3)
> text (275, g, quote(gamma), adj = c(0.5, 1.5),
+ cex = 1.5)

Next we need to find the predicted richness for the maximum area. We use our
statistical model to find that.

> (MaxR <- predict(mod.nonlin, list(area = max(moths[["area"]]1))))
[1] 88.62

We can now find Bureq; Beco a0d Bgeo-
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> b.area <- MaxR - al
> b.eco <- a2 - (b.area + al)
> b.geo <- g - a2

Now we have partitioned vy a little bit more finely with a beastiary of 8’s, where

e (@, is the average site richness.

® Bureq is the average number of species not observed, due to different patch
sizes.

® B.co is the average number of species not observed at a site, is not missing
due to patch size, but is in the ecoregion.

® Bqeo is the average number of species not found in the samples from different
ecoregions.

Finally, we add lines to our graph to show the partitions.

abline(h = g, 1ty = 3)

abline(h = b.eco + b.area + al, 1ty = 3)
abline(h = b.area + al, 1ty = 3)
abline(h = a1, 1ty = 3)

vV VvV Vv Vv

Now we have further quantified how forest fragment area explains moth species
richness. Such understanding of the spatial distribution of biodiversity pro-
vides a way to better quantify patterns governed by both dispersal and habitat
preference, and allows us to better describe and manage biodiversity in human-
dominated landscapes.
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Fig. 10.20: Combining species—area relations with additive diversity partitioning. For-
est fragment area explains relatively little of the diversity which accumulates in iso-
lated patches distributed in space. However, it is likely that area associated with the
collection of samples (i.e., the distances among fragments) contributes to Bec, and Beeo.
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10.6 Summary

We have examined communities as multivariate entities which we can describe
and compare in a variety of ways.

e Composition includes all species (multivariate data), whereas species diver-
sity is a univariate description of the variety of species present.

e There are many ways to quantify species diversity, and they tend to be
correlated. The simplest of these is richness (the number of species present),
whereas other statistics take species’ relative abundances into account.

e Species abundance distributions and rank abundance distributions are anal-
ogous to probability distributions, and provide more thorough ways to de-
scribe the patterns of abundance and variety in communities. These all
illustrate a basic law of community ecology: most species are rare. Null
models of community structure and processes make predictions about the
shape of these distributions.

e Ecological neutral theory provides a dynamical model, not unlike a null
model, which allows quantitative predictions relating demographic, immi-
gration, and speciation rates, species abundance distributions, and patterns
of variation in space and time.

e Another law of community ecology is that the number of species increases
with sample area and appears to be influenced by immigration and extinc-
tion rates.

e We can partition diversity at different spatial scales to understand the struc-
ture of communities in landscapes.

Problems

Table 10.3: Hypothetical data for Problem 1.

Site  Sp. A Sp.B Sp.C
Site 1 0 1 10
Site2 5 9 10
Site 3 25 20 10

10.1. How different are the communities in Table 10.37

(a) Convert all data to relative abundance, where the relative abundance of
each site sum to 1.

(b) Calculate the Euclidean and Bray-Curtis (Sgrensen) distances between each
pair of sites for both relative and absolute abundances.

(c) Calculate richness, Simpson’s and Shannon-Wiener diversity for each site.

10.2. Use rarefaction to compare the tree richness in two 1 ha plots from the BCI
data in the vegan package. Provide code, and a single graph of the expectations
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for different numbers of individuals; include in the graph some indication of the
uncertainty.

10.3. Select one of the 1ha BCI plots (from the vegan package), and fit three
different rank abundance distributions to the data. Compare and contrast their
fits.

10.4. Simulate a neutral community of 1000 individuals, selecting the various
criteria on yur own. Describe the change through time. Relate the species abun-
dance distributions that you observe through time to the parameters you choose
for the simulation.

10.5. Using the dune species data (vegan package), partition species richness
into @, B, and 7 richness, where rows are separate sites. Do the same thing using
Simpson’s diversity.
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A Brief Introduction to R

R is a language. Use it every day, and you will learn it quickly.

§, the precursor to R, is a quantitative programming environment developed
at AT&T Bell Labs in the 1970s. S-Plus is a commercial, “value-added” ver-
sion and was begun in the 1980s, and R was begun in the 1990s by Robert
Gentleman and Ross Thaka of the Statistics Department of the University of
Auckland. Nearly 20 senior statisticians provide the core development group
of the R language, including the primary developer of the original § language,
John Chambers, of Bell Labs.

R is an official part of the Free Software Foundation’s GNU project!
(http://www.fsf.org/). It is free to all, and licensed to stay that way.

R is a language and environment for dynamical and statistical computing
and graphics. R is similar to the S language, different implementation of §.
Technically speaking, R is a “dialect” of §. R provides a very wide variety of
statistical (linear and nonlinear modelling, classical statistical tests, time-series
analysis, classification, clustering, ...) and graphical techniques, and is highly
extensible. R has become the lingua franca of academic statistics, and is very
useful for a wide variety of computational fields, such as theoretical ecology.

A.1 Strengths of R/S

e Simple and compact syntax of the language. You can learn R quickly, and
can accomplish a lot with very little code.

e Extensibility. Anyone can extend the functionality of R by writing code.
This may be a simple function for personal use, or a whole new family of
statistical procedures in a new package.

e A huge variety of statistical and computing procedures. This derives from
the ease with which R/§ can be extended and shared by users around the
world.

e Rapid updates.

! Pronounced “g-noo” — it is a recursive acronym standing for “GNU’s Not Unix.”
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e Replicability and validation. All data analyses should be well documented,
and this only happens reliably when the analyses are performed with scripts
or programs, as in R or SAS. Point-and-click procedures cannot be validated
by supervisors, reviewers, or auditors.

e Getting help from others is easy. Any scripted language can be quickly and
easily shared with someone who can help you. I cannot help someone who
says “first I clicked on this, and then I clicked on that ....”

e Repetitive tasks simplified. Writing code allows you to do anything you
want a huge number of times. It also allows very simple updates with new
data.

e High quality graphics. Well-designed publication-quality plots can be pro-
duced with ease, including mathematical symbols and formulae where
needed. Great care has been taken over the defaults for the minor design
choices in graphics, but the user retains full control.

e R is available as Free Software under the terms of the Free Software Foun-
dation’s GNU General Public License in source code form. It compiles and
runs out of the box on a wide variety of UNIX platforms and similar sys-
tems (including FreeBSD and Linux). It also compiles and runs on Windows
9x/NT /2000 and Mac OS.

e Accessibility. Go now to www.r-project.org. Type “R” into Google. The
R Project page is typically the first hit.

There is a tremendous amount of free documentation for R. Rcomes with a
selection of manuals under the “Help” menu — explore these first. At the main
R project web site, see the “Documentation” on the left sidebar. The FAQ’s are
very helpful. The “Other” category includes a huge variety of items; search in
particular for “Contributed documentation.” There you will find long (100+
pages) and short tutorials. You will also find two different “RReference Cards,”
which are useful lists of commonly used functions.?

A.2 The R Graphical User Interface (GUI)

R has a very simple but useful graphical user interface (GUI; Fig. A.1). A few
points regarding the GUI:

e “You call this a graphical user interface?” Just kidding — the GUI is not
designed for point-and-click modeling.

e The R GUI is designed for package management and updates.

e The R GUI is designed for use with scripts.

The R GUI does not provide a “statistics package.” R is a language and
programming environment. You can download an R package called Remdr that
provides a point-and-click interface for introductory statistics, if you really,
really want to. In my experience, students who plan to use statistics in their

2 1 find this when I google “r ‘contributed documentation’.”
3 Try googling ‘R Reference Card’ in quotes.
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Fig. A.1: The Mac OS X R GUI. Color coded syntax not visible in this figure.

research find it more frustrating to learn this interface than to learn to take

advantage of the language.

The R GUI is designed for maintenance. With the R GUI you can check for
updates, and download any of the hundreds of small packages that extend R in
hundreds of ways. (A package is not unlike a “PROC,” for SAS users — first

you tell call it, then you use it).

The R GUI is designed for using scripts. Scripts are text files that contain
your analysis; that is, they contain both code to do stuff, and comments about
what you are doing and why. These are opened within R and allow you to do

work and save the code.

e Scripts are NOT Microsoft Word documents that require Microsoft Word to
open them, but rather, simple text files, such as one could open in Notepad,

or SimpleText.

e Scripts are a written record of everything you do along the way to achieving

your results.
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e Scripts are the core of data analysis, and provide many of the benefits of
using a command-driven system, whether R, Matlab, or some other program
or environment.

e Scripts are interactive. I find that because scripts allow me to do anything
and record what I do, they are very interactive. They let me try a great
variety of different things very quickly. This will be true for you too, once
you begin to master the language.

The R GUI can be used for simple command line use. At the command line,
you can add 2+2 to get 4. You could also do ar (1ake.phosphorus) to perform
autoregressive time series analysis on a variable called lake.phosphorus, but
you would probably want to do that in a script that you can save and edit, to
keep track of the analysis that you are doing.

A.3 Where is R?

As an Open Source project, R is distributed across the web. People all around
the world continue to develop it, and much of it is stored on large computer
servers (“mirrors”) across the world. Therefore, when you download R, you
download only a portion of it — the language and a few base packages that
help everything run. Hundreds of “value-added” packages are available to make
particular tasks and groups of tasks easier. We will download one or more of
these.

It is useful to have a clear conception of where different parts of R reside (Fig.
A.2). Computer servers around the world store identical copies of everything
(hence the terms archive and “mirrors”). When you open R, you load into your
computer’s virtual, temporary RAM more than just the R language — you
automatically load several useful packages including “base,” “stat,” and others.
Many more packages exist (about a dozen come with the normal download) and
hundreds are available at each mirror. These are easily downloaded through the
R GUL

A.4 Starting at the Very Beginning

To begin with, we will go through a series of steps that will get you up and
running using a script file with which to interact with R, and using the proper
working directory. Start here.

1. Create a new directory (i.e., a folder) in “Documents” (Mac) or “My Docu-
ments” (Windows). and call it “Rwork.” For now, calling it the same thing
as everyone else will just simplify your life. If you put “Rwork” elsewhere,
adjust the relevant code as you go. For now, keep all of your script files and
output files into that directory.

2. Open the R GUI in a manner that is appropriate for your operating system
and setup (e.g., double-click the desktop icon).



A.4 Starting at the Very Beginning 339

You and Your Computer

Code is 'submitted' to R.
YOU

W Keyboard and Screen
Additional

Workspace packages loaded

(in RAM) ‘\
Results Saved

Computer

(‘write', 'save', 'dev.print') Hard Drive

Install R with base packages;
add additional packages

CRAN Mirrors
on the internet

Fig. A.2: A conceptual representation of where R exists. "CRAN” stands for "Com-
prehensive R Archive Network.” "JRAM” (random access memory) is your computer’s
active brain; R keeps some stuff floating in this active memory and this "stuff” is the
workspace.

3. Set the working directory. You can do this via Misc directory in Mac OS
X or in the File menu in Windows using “Change dir....” Set the working
directory to “Rwork.” (If you have not already made an Rwork directory, do
so now — put it in “Documents” or “My Documents.”)

4. Open a new R script (“New Document”) by using the File menu in the
R GUI. On the first line, type # My first script with the pound sign. On
the next line, type setwd (‘~/Documents/Rwork’) if you are on a Mac, or
setwd(‘C:/Documents and Settings/Users/Jane/My Documents/Rwork’)
on Windows, assuming you are named “Jane;” if not, use the appropriate
pathname. Save this file in “Rwork;” save it as “RIntro.R.” Windows may
hide the fact that it is saving it as a “.txt” file. I will assume you can prevent
this.

You should submit code to R directly from the script. Use the script to store
your ideas as comments (beginning with #) and your code, and submit code
directly from the script file within R (see below for how to do that). You do not
need to cut-and-paste. There are slight differences between operating systems
in how to submit code from the script file to the command line.

e In Microsoft Windows, place the cursor on a line in the script file or high-
light a section of code, and then hit Ctrl-R to submit the code.

e In Apple Mac OS X, highlight a section of code and then hit Command-
return to submit the code (see the Edit menu).

From this point on, enter all of the code (indicated in typewriter font, and
beginning with “>7) in your script file, save the file with Command-S (Mac) or
Ctrl-S (Windows), and then submit the code as described above. Where a line
begins with “+,” ignore the plus sign, because this is just used by R to indicate
continued lines of code. You may enter a single line of code on more than one
line. R will simply continue as if you wrote it all on one line.

You can start the help interface with this command.

> help.start()
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This starts the HTML interface to on-line help (using a web browser available
at your machine). You can use help within the R GUI, or with this HTML help
system.

Find out where you are using getwd() (get the working directory). Use a
comment (beginning with #) to remind yourself what this does.

> # Here I Get my Working Directory; that is,
> # I find out which folder R is currently operating from.
> getwd()

The precise output will depend on your computer.

You can also set the working directory using setwd(); if you created a
directory called Rwork as specified above, one of the following these should
work, depending on your operating system. If these both fail, keep trying, or
use the menu in the R GUI to set the working directory.

> setwd("~/Documents/Rwork")
or
> setwd("C:/Documents and Settings/Users/Jane/My Documents/Rwork")

On the Mac, a UNIX environment, the tilde-slash (~ /) represents your home
directory.

I urge you to use setwd at the beginning of each script file you write so that
this script always sets you up to work in a particular, specified directory. As you
write your script file, remember,

e Text that begins with “#” will be ignored by R.
e Text that does not make sense to R will cause R to return an error message,
but will not otherwise mess things up.

Remember that a strength of R is that you can provide, to yourself and
others, comments that explain every step and every object. To add a comment,
simply type one or more “#,” followed by your comment.

Finally, have fun, be amused. Now you are ready for programming in R.

R is a language. Use it every day, and you will learn it quickly.
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Programming in R

This material assumes you have completed Appendix A, the overview of R. Do
the rest of this Appendix in a script. Make comments of your own throughout
your script.

Open and save a new file (or script) in R. Think of your script as a pad of
paper, on which you program and also on which you write notes to yourself.
See Appendix A for instructions.

You will want to take copious notes about what you do. Make these notes
in the script file, using the pound sign #. Here is an example:

> # This will calculate the mean of 10 random standard normal variables.
> mean( rnorm( 10 ) )

[1] 0.1053

You submit this (as described above) from the script directly to the Console
with (select) Command-r on a Mac, or Ctrl-r on Windows.

B.1 Help

You cannot possibly use R without using its help facilities. R comes with a lot
of documentation (see the relevant menu items), and people are writing more
all the time (this document is an example!).

After working through this tutorial, you could go through the document
“An Introduction to R” that comes with R. You can also browse “Keywords by
Topic” which is found under “Search Engine & Keywords” in the Help menu.

To access help for a specific function, try

> 7" (mean)

Help for 'mean' is shown in browser /usr/bin/open ...
Use
help("mean", htmlhelp = FALSE)
or
options(htmlhelp = FALSE)
to revert.
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or

> help(mean)

Help for 'mean' is shown in browser /usr/bin/open ...
Use
help("mean", htmlhelp = FALSE)
or
options(htmlhelp = FALSE)
to revert.

The help pages provide a very regular structure. There is a name, a brief
description, its usage, its arguments, details about particular aspects of its use,
the value (what you get when you use the function), references, links to other
functions, and last, examples.

If you don’t know the exact name of the R function you want help with, you
can try

> help.search("mean")
> apropos ("mean")

These will provide lists of places you can look for functions related to this
keyword.

Last, a great deal of R resides in packages online (on duplicate servers around
the world). If you are on line, help for functions that you have not yet down-
loaded can be retrieved with

> RSiteSearch("violin")
> RSiteSearch('"violin", restrict = c("functions"))

To learn more about help functions, combine them!

> help(RSiteSearch)

B.2 Assignment

In general in R, we perform an action, and take the results of that action and
assign the results to a new object, thereby creating a new object. Here I add
two numbers and assign the result to an new object I call a.

>a<-2+3
> a

[1]1 5

Note that T use an arrow to make the assignment — I make the arrow with a
less-than sign, <, and a dash. Note also that to reveal the contents of the object,
I can type the name of the object.

I can then use the new object to perform another action, and assign

>b <-a+a

I can perform two actions on one line by separating them with a semicolon.
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>a+a; a+b

[1] 10
[2] 15

Sometimes the semicolon is referred to as an “end of line” operator.

B.3 Data Structures

We refer to a single number as a scalar; a scalar is a single real number. Most
objects in R are more complex. Here we describe some of these other objects:
vectors, matrices, data frames, lists, and functions.

B.3.1 Vectors

Perhaps the fundamental unit of R is the wector, and most operations in R are
performed on vectors. A vector may be just a column of scalars, for instance;
this would be a column vector.

Here we create a vector called Y.

To enter data directly into R, we will use c() and create an R object, in
particular a vector. A vector is, in this case, simply a group of numbers arranged
in a row or column. Type into your script

>Y < c(8.3, 8.6, 10.7, 10.8, 11, 11, 11.1, 11.2,
+ 11.3, 11.4)

where the arrow is a less-than sign, <, and a dash, -. Similarly, you could use

>Y=c¢(8.3, 8.6, 10.7, 10.8, 11, 11, 11.1, 11.2, 11.3,
+ 11.4)

These are equivalent.
R operates (does stuff) to objects. Those objects may be vectors, matrices,
lists, or some other class of object.

Sequences

I frequently want to create ordered sequences of numbers. R has a shortcut for
sequences of integers, and a slightly longer method that is completely flexible.
First, integers:

> 1:4
[11 1234
> 4:1
[11 4321

> -1:3
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[1] -1 0 1 2 3
> -(1:3)
[1] -1 -2 -3

Now more complex stuff, specifying either the units of the sequence, or the total
length of the sequence.

> seq(from = 1, to = 3, by = 0.2)

[1] 1.01.2 1.4 1.6 1.82.02.22.42.62.83.0

> seq(1, 3, by = 0.2)
[11 1.01.21.41.6 1.82.02.22.42.62.83.0
> seq(1, 3, length = 7)
[1] 1.000 1.333 1.667 2.000 2.333 2.667 3.000
I can also fill in with repetitive sequences. Compare carefully these examples.
> rep(1, 3)
[1] 111
> rep(1:3, 2)
11123123
> rep(1:3, each = 2)

[1] 112233

B.3.2 Getting information about vectors

Here we can ask R to tell us about Y, getting the length (the number of elements),
the mean, the maximum, and a six number summary.

> sum(Y)
[1] 105.4
> mean(Y)
[1] 10.54
> max (Y)
[1] 11.4

> length(Y)
(11 10

> summary (Y)
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Min. 1st Qu. Median Mean 3rd Qu. Max.
8.3 10.7 11.0 10.5 11.2 11.4

A vector could be character, or logical as well, for instance

> Names <- c("Sarah", "Yunluan")
> Names

[1] "Sarah" "Yunluan"

> b <- c(TRUE, FALSE)
>b

[1] TRUE FALSE

Vectors can also be dates, complex numbers, real numbers, integers, or factors.
For factors, such as experimental treatments, see section B.3.5. We can also ask
R what classes of data these belong to.

> class(Y)
[1] "numeric"
> class(b)
[1] "logical"

Here we test whether each element of a vector is greater than a particular
value or greater than its mean. When we test an object, we get a logical vector
back that tells us, for each element, whether the condition was true or false.

>Y > 10

[1] FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
> Y > mean(Y)

[1] FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

We test using >, <, >=, <=, ==, ! = and other conditions. Here we test whether
a vector is equal to a number.

> Y == 11
[1] FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE

A test of “not equal to”

>Y I= 11
[1] TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE

This result turns out to be quite useful, including when we want to extract
subsets of data.
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Algebra with vectors

In R, we can add, subtract, multiply and divide vectors. When we do this, we
are really operating on the elements in the vectors. Here we add vectors a and
b.

> a <-1:3
> b <- 4:6
>a+b

(11579

Similarly, when we multiply or divide, we also operate on each pair of elements
in the pair of vectors.

>ax*b

[11 4 10 18

> a/b

[1] 0.25 0.40 0.50

We can also use scalars to operate on vectors.
>a+ 1

[1] 234

>a *2

[1] 24 6

> 1/a

[1] 1.0000 0.5000 0.3333

What R is doing is recycling the scalar (the 1 or 2) as many times as it needs
to in order to match the length of the vector. Note that if we try to multiply
vectors of unequal length, R performs the operation but may or may not give
a warning. Above, we got no warningmessage. However, if we multiply a vector
of length 3 by a vector of length 2, R returns a warning.

>a * 1:2

[11 143

R recycles the shorter vector just enough to match the length of the longer
vector. The above is the same as

>ax*c(l1, 2, 1)

[11 143

On the other hand, if we multiply vectors of length 4 and 2, we get no error,
because four is a multple of 2.
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> 1:4 % 1:2

[11 1438

Recycling makes the above the same as the following.
> 1:4 % c(1, 2, 1, 2)

[11 1 4 3 8

B.3.3 Extraction and missing values
We can extract or subset elements of the vector.
I extract subsets of data in two basic ways, by

e identifying which rows (or columns) I want (i.e. the first row), or
e providing a logical vector (of TRUE’s and FALSE’s) of the same length as
the vector I am subsetting.

Here I use the first method, using a single integer, and a sequence of integers.
> Y[1]
[1] 8.3
> Y[1:3]
[1] 8.3 8.6 10.7

Now I want to extract all girths greater than the average girth. Although I don’t
have to, I remind myself what the logical vector looks like, and then I use it.

> Y > mean(Y)

[1] FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
> Y[Y > mean(Y)]

[1] 10.7 10.8 11.0 11.0 11.1 11.2 11.3 11.4

Note that I get back all the values of the vector where the condition was TRUE.

In R, missing data are of the type “NA.” This means “not available,” and
R takes this appellation seriously. thus is you try to calculate the mean of
a vector with missing data, R resists doing it, because if there are numbers
missing from the set, how could it possibly calculate a mean? If you ask it to
do something with missing data, the answer will be missing too.

Given that R treats missing data as missing data (and not something to be
casually tossed aside), there are special methods to deal with such data. For
instance, we can test which elements are missing with a special function, is.na.

> a <- c(5, 3, 6, NA)
> a

[1] 5 3 6 NA

> is.na(a)
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[1] FALSE FALSE FALSE TRUE
> lis.na(a)

[11 TRUE TRUE TRUE FALSE
> a[l!is.na(a)]

[1] 53 6

> na.exclude(a)

[11 536
attr(,"na.action")
[1] 4

attr(,"class")
[1] "exclude"

Some functions allow you to remove missing elements on the fly. Here we let a
function fail with missing data, and then provide three different ways to get the
same thing.

> mean(a)

[1] NA

> mean(a, na.rm = TRUE)
[1] 4.667

> d <- na.exclude(a)
> mean(d)

[1] 4.667

Note that R takes missing data seriously. If the fourth element of the set really
is missing, I cannot calculate a mean because I don’t know what the vector is.

B.3.4 Matrices
A matrix is a two dimensional set of elements, for which all elements are of the
same type. Here is a character matrix.

> matrix(letters[1:4], ncol = 2)

[,11 [,2]
[1’] ngn nen
[2’] npn ngn

Here we make a numeric matrix.

> M <- matrix(1:4, nrow = 2)
> M

[,11 [,2]
[1,] 1 3
[2,1] 2 4
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Note that the matrix is filled in by columns, or column major order. We could
also do it by rows.

> M2 <- matrix(1:4, nrow = 2, byrow = TRUE)

> M2

[,11 [,2]
[1,] 1 2
[2,1] 3 4
Here is a matrix with 1s on the diagonal.
> I <- diag(1l, nrow = 2)
> I

[,11 [,2]
[1,] 1 0
[2,] 0 1

The identity matrix plays a special role in matrix algebra; in many ways it
is equivalent to the scalar 1. For instance, the inverse of a matrix, M, is M~!,
which is the matrix which satisfies the equality MM~ = I, where I is the identity
matrix. We solve for the inverse using a few different methods, including

> Minv <- solve(M)
> M 7*} Minv

[,11 [,2]
[1,] 1 0
[2,]1 0 1

QR decomposition is available (e.g., qr.solve()).

Note that R recycles the “1” until the specified number of rows and columns
are filled. If we do not specify the number of rows and columns, R fills in the
matrix with what you give it (as it did above).

Extraction in matrices

I extract elements of matrices in the same fashion as vectors, but specify both
rows and columns.

> M[1, 2]

(11 3

> M[1, 1:2]

[11 1 3

If T leave either rows or columns blank, R returns all rows (or columns).
> M[, 2]

[1] 3 4

> ML, ]

[,11 [,2]
[1,] 1 3
[2,1] 2 4
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Simple matrix algebra
Basic matrix algebra is similar to algebra with scalars, but with a few very

important differences. Let us define another matrix.

> N <- matrix(0:3, nrow = 2)
>N

[,11 [,2]
[1,] 0 2
[2,] 1 3

To perform scalar, or element-wsie operations, we have

ab m o
o) () o)
am bo
AB = ( on dp) (B.2)
The element-wise operation on these two is the default in R,
>M*N
[,11 [,2]

[1,] 0 6
(2,1 2 12

where the element in row 1, column 1 in M is multiplied by the element in the
same position in N.
To perform matriz mulitplication, recall from Chap. 2 that,

(ae(e)

_ ((am + bn) (ao + bp)
AB = ((cm +dn) (co + dp))

To perform matriz mulitplication in R, we use %*%,

> M J*) N

[,11 [,2]
[1,] 3 11
[2,] 4 16

Refer to Chapter 2 (or “matrix algebra” at Wikipedia) for why this is so.
Note that matrix multiplication is not commutative, that is, NM # MN.
Compare the previous result to

>N 7*} M
[,11 [,2]

[1,] 4 8
(2,1 7 15
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Note that a vector in R is not defined a priori as a column matrix or a row
matrix. Rather, it is used as either depending on the circumstances. Thus, we
can either left multiply or right multiply a vector of length 2 and M.

> 1:2 J*x M

[,11 [,2]
[1,] 5 11

> M p*j 1:2

[,1]

If you want to be very, very clear that your vector is really a matrix with one
column (a column vector), you can make it thus.

> V <- matrix(1:2, ncol = 1)

Now when you multiply M by V, you will get the expected sucesses and failure,
according to the rules of matrix algebra.

>M 55V

[,1]

> try(V 7%) M)

R has formal rules about how it converts vectors to matrices on-the-fly, but it
is good to be clear on your own.

Other matrix operations are available. Whenever we add or subtract matri-
ces together, or add a matrix and a scalar, it is always element-wise.

>M+ N

[,1]1 [,2]
[1,] 1 5
[2,] 3 7

>M+ 2

[,11 [,2]
[1,] 3 5
[2,] 4 6

The transpose of a matrix is the matrix we get when we substitute rows for
columns, and columns for rows. To transpose matrices, we use t ().

> t(M)

[,11 [,2]
[1,] 1 2
[2,1] 3 4
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More advanced matrix operations are available as well, for singular value
decomposition (svd), eigenanalysis (eigen), finding determinants (det), QR
decomposition (gr), Choleski factorization (chol), and related functions. The
Matrix package was designed to handle with aplomb large sparse matrices.

B.3.5 Data frames

Data frames are two dimensional, a little like spreadsheets and matrices. All
columns having exactly the same number of rows. Unlike matrices, each col-
umn can be a different data type (e.g., numeric, integer, charactor, complex,
imaginary). For instance, the columns of a data frame could contain the names
of species, the experimental treatment used, and the dimensions of species traits,
as character, factor, and numeric variables, respectively.

"S.rugosa",

"E.graminifolia", "A. pilosus"), treatment = factor(c("Control",

c(1.1,

> dat <- data.frame(species = c("S.altissima",

+

+ "Water", "Control", "Water")), height

+ 0.8, 0.9, 1), width = c(1, 1.7, 0.6, 0.2))
> dat

species treatment height width

S.altissima Control 1.1
S.rugosa Water

1

2 0.8 1.
3 E.graminifolia  Control 0.9 0.
4 1.0 0.

A. pilosus Water

1.0

N O N

We can extract data from data frames just the way we can with matrices.

> dat[2, ]

species treatment height width
2 S.rugosa Water 0.8 1.7
> dat[3, 4]
[1] 0.6

We can test elements in data frames, as here where I test whether each element
column 2 is “Water.” I then use that to extract rows of data that are associated

with this criterion.

> dat[, 2] == "Water"
[1] FALSE TRUE FALSE TRUE
> dat[dat[, 2] == "Water", ]

species treatment height width
2 S.rugosa Water 0.8 1.7
4 A. pilosus Water 1.0 0.2

I could also use the subset function

> subset(dat, treatment == "Water")
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species treatment height width
2  S.rugosa Water 0.8 1.7
4 A. pilosus Water 1.0 0.2

There are advantages to using data frames which will become apparent.

Factors

Factors are a class of data; as such they could belong above with our discussion
of character and logical and numeric vectors. I tend, however, to use them in
data frames almost exclusively, because I have a data set that includes a bunch
of response variables, and the factors imposed by my experiment.

When defining a factor, R by default orders the factor levels in alphabetic
order — we can reorder them as we like. Here I demonstrate each piece of code
and then use the pieces to make a factor in one line of code.

> c("Control", "Medium", "High")
[1] "Control" "Medium" "High"
> rep(c("Control", "Medium", "High"), each = 3)

[1] "Control" "Control" "Control" "Medium" "Medium" "Medium"
[7] "High" "High" "High"

> Treatment <- factor(rep(c("Control", "Medium", "High"),
+ each = 3))
> Treatment

[1] Control Control Control Medium Medium Medium High
[8] High High
Levels: Control High Medium

Note that R orders the factor alphabetically. This may be relevant if we do
something with the factor, such as when we plot it (Fig. B.1a).

> levels(Treatment)
[1] "Control" "High" "Medium"

> stripchart(1:9 ~ Treatment)

Now we can re-specify the factor, telling R the order of the levels we want,
taking care to remember that R can tell the difference between upper and lower
case (Fig. B.1b). See also the function relevel.

> Treatment <- factor(rep(c("Control", "Medium", "High"),
+ each = 3), levels = c("Control", "Medium", "High"))
> levels(Treatment)

[1] "Control" "Medium" "High"

> stripchart(1:9 ~ Treatment)
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Fig. B.1: Graphics before and after the factor was releveled to place the factor levels
in a logical order.

B.3.6 Lists

An amazing data structure that R boasts is the list. A list is simply a collection
of other objects kept together in a hierarchical structure. Each component of
the list can be a complete different class of object. Let’s build one.

> my.list <- list(My.Y =Y, b = b, Names, Weed.data = dat,

+ My.matrix = M2, my.no = 4)
> my.list
$My.Y

[1] 8.3 8.6 10.7 10.8 11.0 11.0 11.1 11.2 11.3 11.4

$b
[1] 4 5 6

[[3]1]
[1] "Sarah" "Yunluan"

$Weed.data
species treatment height width
1 S.altissima  Control 1.1 1.0

2 S.rugosa Water 0.8 1.7
3 E.graminifolia  Control 0.9 0.6
4 A. pilosus Water 1.0 0.2
$My .matrix

[,11 [,2]

[1,] 1 2
[2,1] 3 4
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We see that this list is a set of objects: a numeric vector, a logical vector, a
character vector, a data frame, a matrix, and a scalar (a number). Lists can be
nested within other lists.

Note that if we do not specify a name for a component, we can still extract
it using the number of the component.

I extract list components in several ways, including by name, and by number
(see 7’ [ for more information).

> my.list[["b"]]

[11 456

> my.list[[2]]

[1] 45 6

If T use a name, there are a few ways, including
> my.list[["b"]]

[11 45 6

> my.list$b

[11 45 6

If by number, that are two ways, with one or two brackets. In addition to two
brackets, as above, we can use one bracket. This allows for extraction of more
than one component of the list.

> my.list[1:2]

$My .Y
[1] 8.3 8.6 10.7 10.8 11.0 11.0 11.1 11.2 11.3 11.4

$b
[1] 45 6

Note that I can extract a subset of one component.
> my.1ist [["b"]] [1]
(1] 4

If one way of extraction is working for you, experiment with others.

B.3.7 Data frames are also lists

You can also think of a data frame as a list of columns of identical length. I like
to extract columns the same way — by name.

> mean(dat$height)

[1] 0.95
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B.4 Functions

A function is a command that does something. You have already been using
functions, throughout this document. Let’s examine functions more closely.

Among other things, a function has a name, arguments, and values. For
instance,

> help (mean)

This will open the help page (again), showing us the arguments. The first argu-
ment x is the object for which a mean will be calculated. The second argument
is trim=0. If we read about this argument, we find that it will “trim” a specified
fraction of the most extreme observations of x. The fact that the argument trim
is already set equal to zero means that is the default. If you do not use trim,
then the function will use trim=0. Thus, these two are equivalent.

> mean(1:4)

[1] 2.5

> mean(1:4, trim = 0)
[1] 2.5

R is an “object-oriented” language. A consequence of this is that the same func-
tion name will perform different actions, depending on the class of the object.

> class(1:10)

[1] "integer"

> class(warpbreaks)
[1] "data.frame"

> summary(1:10)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 3.25 5.50 5.50 7.75 10.00

> summary (warpbreaks)

breaks wool tension
Min. :10.0 A:27 L:18
1st Qu.:18.2 B:27 M:18
Median :26.0 H:18
Mean :28.1
3rd Qu.:34.0
Max. :70.0

In the warpbreaks data frame, summary provides the six number summary for
each numeric or integer column, but provides “tables” of the factors, that is, it
counts the occurrences of each level of a factor and sorts the levels. When we
use summary on a linear model, we get output of the regression,

' R has hundreds of built-in data sets for demonstrating things. We use one here
called 'warpbreaks.” You can find some others by typing data().
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> summary(lm(breaks ~ wool, data = warpbreaks))

Call:
Im(formula = breaks ~ wool, data = warpbreaks)

Residuals:
Min 1Q Median 3Q Max
-21.04 -9.26 -3.65 4.71 38.96

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 31.04 2.50 12.41 <2e-16
woolB -5.78 3.54 -1.63 0.11

Residual standard error: 13 on 52 degrees of freedom
Multiple R-squared: 0.0488, Adjusted R-squared: 0.0305
F-statistic: 2.67 on 1 and 52 DF, p-value: 0.108

B.4.1 Writing your own functions

One very cool thing in R is that you can write your own functions. Indeed it is
the extensibility of R that makes it the home of cutting edge working, because
edge cutters (i.e., leading scientists) can write code that we all can use. People
actually write entire packages, which are integrated collections of functions, and
R has been extended with hundreds of such packages available for download at
all the R mirrors.

Let’s make our own function to calculate a mean. Let’s further pretend you
work for an unethical boss who wants you to show that average sales are higher
than they really are. Therefore your function should provide a mean plus 5%.

> MyBogusMean <- function(x, cheat = 0.05) {

+ SumOfX <- sum(x)

+ n <- length(x)

+ trueMean <- SumOfX/n

+ (1 + cheat) * trueMean
+ }

> RealSales <- ¢(100, 200, 300)
> MyBogusMean (RealSales)

[1]1 210

Thus a function can take any input, do stuff, including produce graphics, or
interact with the operating system, or manipulated numbers. You decide on the
arguments of the function, in this case, x and cheat. Note that we supplied a
number for cheat; this results in the cheat argument having a default value,
and we do not have to supply it. If an argument does not have a default, we
have to supply it. If there is a default value, we can change it. Now try these.

> MyBogusMean (RealSales, cheat = 0.1)

[1]1 220
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> MyBogusMean (RealSales, cheat = 0)

[1]1 200

B.5 Sorting
We often like to sort our numbers and our data sets; a single vector is easy. To
do something else is only a little more difficult.

> e <-c(5, 4, 2, 1, 3)
> e

(1154213

> sort(e)

[1] 12345

> sort(e, decreasing = TRUE)
1154321

If we want to sort all the rows of a data frame, keeping records (rows) intact, we
can use order. This function is a little tricky, so we explore its use in a vector.

> e

[11] 54213
> order(e)
1143521
> elorder(e)]
[1] 12345

Here order generates an index to properly order something. Above, this index
is used to tell R to select the 4th element of e first — order puts the number
4’ into the first spot, indicating that R should put the 4th element of e first.
Next, it places '3’ in the second spot because the 3rd element of e belongs in
the 2nd spot of an ordered vector, and so on.

We can use order to sort the rows of a data frame. Here I order the rows
of the data frame according to increasing order of plant heights.

> dat

species treatment height width
1 S.altissima  Control 1.1 1.0
2 S.rugosa Water 0.8 1.7
3 E.graminifolia  Control 0.9 0.6
4 A. pilosus Water 1.0 0.2

> order.nos <- order(dat$height)
> order.nos
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[1] 2341

This tells us that to order the rows, we have to use the 2nd row of the original
data frame as the first row in the ordered data frame, the 3rd row as the new
second row, etc. Now we use this index to select the rows of the original data
frame in the correct order to sort the whole data frame.

> dat[order.nos, ]

species treatment height width

2 S.rugosa Water 0.8 1.7
3 E.graminifolia  Control 0.9 0.6
4 A. pilosus Water 1.0 0.2
1 S.altissima  Control 1.1 1.0

We can reverse this too, of course.

> dat[rev(order.nos), ]

species treatment height width

1 S.altissima  Control 1.1 1.0
4 A. pilosus Water 1.0 0.2
3 E.graminifolia  Control 0.9 0.6
2 S.rugosa Water 0.8 1.7

B.6 Iterated Actions: the apply Family and Loops

We often want to perform an action again and again and again. .., perhaps
thousands or millions of times. In some cases, each action is independent —
we just want to do it a lot. In these cases, we have a choice of methods. Other
times, each action depends on the previous action. In this case, I always use
for-loops.2 Here I discuss first methods that work only for independent actions.

B.6.1 Iterations of independent actions

Imagine that we have a matrix or data frame and we want to do the same thing
to each column (or row). For this we use apply, to “apply” a function to each
column (or row). We tell apply what data we want to use, we tell it the “margin”
we want to focus on, and then we tell it the function. The margin is the side of
the matrix. We describe matrices by their number of rows, then columns, as in
“a 2 by 5 matrix,” so rows constitute the first margin, and columns constitute
the second margin. Here we create a 2 X 5 matrix, and take the mean of rows,
for the first margin. Then we sum the columns for the second margin.

> m <- matrix(1:10, nrow = 2)
>m

2 There are other methods we could use. These are discussed by others, under var-
ious topics, including “flow control.” We use ODE solvers for continuous ordinary
differential equations.
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[,11 [,2] [,3]1 [,4] [,s]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

> apply(m, MARGIN = 1, mean)
[11 5 6
> apply(m, MARGIN = 2, sum)

[1] 3 7 11 15 19

See 7rowMeans for simple, and even faster, operations.

Similarly, lapply will “apply” a function to each element of a list, or each
column of a data frame, and always returns a list. sapply does something
similar, but will simplify the result, to a less complex data structure if possible.

Here we do an independent operation 10 times using sapply, defining a
function on-the-fly to calculate the mean of a random draw of five observations
from the standard normal distribution.

> sapply(1:10, function(i) mean(rnorm(5)))

[1] -0.5612 -0.4815 -0.4646 0.7636 0.1416 -0.5003 -0.1171
[8] 0.2647 0.6404 -0.1563

B.6.2 Dependent iterations

Often the repeated actions depend on previous outcomes, as with population
growth. Here we provide a couple of examples where we accomplish this with
for loops.

One thing to keep in mind for for loops in R: the computation of this is
fastest if we first make a holder for the output. Here I simulate a random walk,
where, for instance, we start with 25 individuals at time = 0, and increase or
decrease by some amount that is drawn randomly from a normal distribution,
with a mean of zero and a standard deviation 2. We will round the “amount” to
the nearest integer (the zero-th decimal place). Your output will differ because
it is a random process.

> gens <- 10

> output <- numeric(gens + 1)

> output[1] <- 25

> for (t in 1:gens) output[t + 1] <- output[t] + round(rnorm(n = 1,
+ mean = 0, sd = 2), 0)

> output

[1] 25 29 25 26 28 29 30 32 33 29 30
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B.7 Rearranging and Aggregating Data Frames

B.7.1 Rearranging or reshaping data

We often need to rearrange our data. A common example in ecology is to collect
repeated measurements of an experimental unit and enter the data into multiple
columns of a spreadsheet, creating a wide format. R prefers to analyze data in
a single column, in a long format. Here we use reshape to rearrange this.

These data are carbon dioxide uptake in 12 individual plants. They are
currently structured as longitudinal data; here we rearrange them in the wide
format, as if we record uptake seven sequential observations on each plant in
different columns. See ?reshape for details. Here v.names refers to the column
name of the response variable, idvar refers to the column name for the variable
that identifies an individual on which we have repeated measurements, and
timevar refers to the column name which identifies different observations of
the same individual plant.

> summary (C02)

Plant Type Treatment conc
Qni 7 Quebec 142 nonchilled:42 Min. . 95
Qn2 : 7 Mississippi:42 chilled 142 1st Qu.: 175
Qn3 7 Median : 350
Qcl 7 Mean : 435
Qc3 7 3rd Qu.: 675
Qc2 7 Max. :1000
(Other) :42
uptake
Min. 7.7
1st Qu.:17.9
Median :28.3
Mean :27.2
3rd Qu.:37.1
Max. :45.5
> C02.wide <- reshape(C02, v.names = "uptake", idvar = "Plant",
+ timevar = "conc", direction = "wide")
> names (C02.wide)
[1] "Plant" "Type" "Treatment"  "uptake.95"

[6] "uptake.175" ‘"uptake.250" '"uptake.350" "uptake.500"
[9] "uptake.675" "uptake.1000"

This is often how we might record data, with an experimental unit (individual,
or plot) occupying a single row. If we import the data in this format, we would
typically like to reorganize it in the long format, because most analyses we
want to do may require this. Here, v.names and timevar are the names we
want to use for some new columns, for the response variable and the identifier
of the repeated measurement (typically the latter may be a time interval, but
here it is a CO, concentration). times supplies the identifier for each repeated
observation.
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> C02.long <- reshape(C02.wide, v.names = "Uptake",

+ varying = list(4:10), timevar = "Concentration",
+ times = c(95, 175, 250, 350, 500, 675, 1000))

> head(C02.1long)

Plant Type Treatment Concentration Uptake id

1.95 Qnl Quebec nonchilled 95 16.0 1
2.95 Qn2 Quebec nonchilled 95 13.6 2
3.95 Qn3 Quebec nonchilled 95 16.2 3
4.95 Qcl Quebec chilled 95 14.2 4
5.95 Qc2 Quebec chilled 95 9.3 b
6 1 6

.95 Qc3 Quebec chilled 95 15.
If we wanted to, we could use order () to re-sort the data frame, for instance
to match the original.

> C02.long2 <- with(C02.long, C02.longl[order(Plant,
+ Concentration), ])
> head(C02.1long2)

Plant Type Treatment Concentration Uptake id

1.95 Qnl Quebec nonchilled 95 16.0 1
1.175 Qnl Quebec nonchilled 175 30.4 1
1.250 Qnl Quebec nonchilled 250 34.8 1
1.350 Qnl Quebec nonchilled 350 37.2 1
1.500 Qnl Quebec nonchilled 500 35.3 1
1.675 Qnl Quebec nonchilled 675 39.2 1

See also the very simple functions stack and unstack.

B.7.2 Summarizing by groups

We often want to summarize a column of data by groups identified in another
column. Here I summarize CO, uptake by the means of each experimental
treatment, chilling. The code below provides the column to be summarized
(uptake), a vector (or list of vectors) containing the group id’s, and the function
to use to summarize each subset (means). We calculate the mean CO, uptake
for each group.

> tapply (CO2[["uptake"]], 1list(CO2[["Treatment"]]),
+ mean)

nonchilled chilled
30.64 23.78

We can get fancier, as well, with combinations of groups, for each combination
of Type and Treatment.

> tapply(CO2[["uptake"]], 1list(CO2[["Treatment"]],
+ Co2[["Type"1]), sd)

Quebec Mississippi
nonchilled 9.596 7.402
chilled 9.645 4.059
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We can also define a function on-the-fly to calculate both mean and standard
deviation of Type and Treatment combination. We will need, however, to define
groups differently, by creating the interaction of the two factors.

> tapply(CO2[["uptake"]], 1list(CO2[["Treatment"]],
+ Co2[["Type"]]), function(x) c(mean(x), sd(x)))

Quebec Mississippi
nonchilled Numeric,2 Numeric,2
chilled Numeric,2 Numeric,2

See also by that actually uses tapply to operate on data frames.

When we summarize data, as in tapply, we often want the result in a nice
neat data frame. The function aggregate does this. Its use is a bit like tapply
— you provide (i) the numeric columns of a data frame, or a matrix, (ii) a list
of named factors by which to organize the responses, and then (iii) the function
to summarize (or aggregate) the data. Here we summarize both concentration
and uptake.

> aggregate(C02[, 4:5], list(Plant = CO2[["Plant"]]),
+ mean)

Plant conc uptake

1 Qni1 435 33.23
2 Qn2 435 35.16
3 Qn3 435 37.61
4 Qc1l 435 29.97
5 Qc3 435 32.59
6 Qc2 435 32.70
7 Mn3 435 24.11
8 Mn2 435 27.34
9 Mnl 435 26.40
10 Mc2 435 12.14
11 Mc3 435 17.30
12 Mcl 435 18.00

A separate package entitled reshape supplies some very elegant and intuitive
approaches to the sorting, reshaping and aggregating of data frames. I typically
use the reshape package (with functions melt and cast), rather than the re-
shape function supplied in the stat. I do so merely because I find it a little
more intuitive. R also has strong connections to relational database systems
such as MySQL.

B.8 Getting Data out of and into the Workspace

We often want to get data into R, and we sometimes want to get it out, as well.
Here we start with the latter (referred to as writing data), and finish with the
former (referred to as reading data).

Here I create a data frame of numbers, and write it to a text file in two
different formats. The first is a file where the observations in each row are
separated by tabs, and the second separates them by commas.
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> dat <- data.frame(Name = rep(c("Control", "Treatment"),

+ each = 5), First = runif(10), Second = rnorm(1))
> write.table(dat, file = "dat.txt")
> write.csv(dat, file = "dat.csv")

Open these in a spreadsheet such as Calc (in OpenOffice and NeoOffice). We
can then read these into R using the read.* family of functions.

> dat.new <- read.csv("dat.csv")
> dat.new2 <- read.table("dat.txt", header = TRUE)

These objects will both be data frames.
Now let’s get a statistical summary and export that.

> mod.out <- summary(aov(First ~ Name, data = dat))
> mod.out[[1]]

Df Sum Sq Mean Sq F value Pr(>F)
Name 1 0.1562 0.1562 4.44 0.068
Residuals 8 0.2814 0.0352

> write.csv(mod.out[[1]], "ModelANOVA.csv")

Open this in a spreadsheet, such as Calc, in OpenOffice, or in any other appli-
cation.
See also the xtable package for making tables in BTEX or HTML formats.

B.9 Probability Distributions and Randomization

R has a variety of probability distributions built-in. For the normal distribution,
for instance, there are four functions:

dnorm The probability density function, that creates the widely observed bell-
shaped curve.

pnorm The cumulative probability function that we usually use to describe the
probability that a test statistic is greater than or equal to a critical value.

gnorm The quantile function that takes probabilities as input.

rnorm A random number generator which draws values (quantiles) from a dis-
tribution with a specified mean and standard deviation.

For each of these, default parameter values return the standard normal distri-
bution (u =0, o = 1), but these parameters can be changed.
Here we have the 95% confidence intervals.

> gnorm(p = ¢(0.025, 0.975))
[1] -1.96 1.96

Next we create a histogram using 20 random draws from a normal distribution
with a mean of 11 and a standard deviation of 6; we overlay this with the
probability density function (Fig. B.2).
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> myplot <- hist(rnorm(20, m = 11, sd = 6), probability = TRUE)
> myplot

$breaks
[11 O 5 10 15 20 25

$counts
[1] 18641

$intensities
[1] 0.01 0.08 0.06 0.04 0.01

$density
[1] 0.01 0.08 0.06 0.04 0.01

$mids
[1] 2.5 7.5 12.5 17.5 22.5

$xname
[1] "rnorm(20, m = 11, sd = 6)"

$equidist
(1] TRUE

attr(,"class")
[1] "histogram"

> lines(myplot$mids, dnorm(myplot$mids, m = 11, sd = 6))

o Histogram of rnorm(20, m = 11, sd = 6)

0.0

Density
0.04
I

[ T T T T T 1
0 5 10 15 20 25 30

rnorm(20, m = 11, sd = 6)

Fig. B.2: Histogram of random numbers drawn from a normal distribution with u = 11
and o = 6. The normal probability density function is drawn as well.
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B.10 Numerical integration of ordinary differential
equations

In order to study continuous population dynamics, we often would like to inte-
grate complex nonlinear functions of population dynamics. To do this, we need
to use numerical techniques that turn the infinitely small steps of calculus, dx,
into very small, but finite steps, in order to approximate the change in y, given
the change in x, or dy/dx. Mathematicians and computer scientists have devised
very clever ways of doing this very accurately and precisely. In R, the best pack-
age for this is deSolve, which contains several solvers for differential equations
that perform numerical integration. We will access these solvers (i.e. numerical
integraters) using the ode function in the deSolve package. This function, ode,
is a “wrapper” for the underlying suite of functions that do the work. That is,
it provides a simple way to use any one of the small suite of functions.

When we have an ordinary differential equation (ODE) such as logistic
growth,® we say that we “solve” the equation for a particular time interval given
a set of parameters and initial conditions or initial population size. For instance,
we say that we solve the logistic growth model for time at t = 0, 1... 20, with
parameters » = 1, @ = 0.001, and Ny = 10.

Let’s do an example with ode, using logistic growth. We first have to define
a function in a particular way. The arguments for the function must be time, a
vector of populations, and a vector or list of model parameters.

> logGrowth <- function(t, y, p) {

+ N <- y[1]

+ with(as.list(p), {

+ dN.dt <-r * N * (1 - a * N)
+ return(list(dN.dt))

+ »

+ }

Note that I like to convert y into a readable or transparent state variable (N
in this case). I also like to use with which allows me to use the names of my
parameters [157]; this works only is p is a vector with named paramters (see
below). Finally, we return the derivative as a list of one component.

The following is equivalent, but slightly less readable or transparent.

> logGrowth <- function(t, y, p) {

+ dN.dt <- p[1] * y[1] * (1 - p[2] * y[1])
+ return(list(dN.dt))

+ }

To solve the ODE, we will need to specify parameters, and initial conditions.
Because we are using a vector of named parameters, we need to make sure we
name them! We also need to supply the time steps we want.

>p<-c(r=1, a=0.001)
> y0 <= ¢(N = 10)

>t <-1:20
3 e.g.dN/dt = rN(1 — aN)
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Now you put it all into ode, with the correct arguments. The output is a matrix,
with the first column being the time steps, and the remaining being your state
variables. First we load the deSolve package.

> library(deSolve)
> out <- ode(y = y0, times = t, func = logGrowth, parms = p)
> out[1:5, ]

time N
[1,] 1 10.00
[2,] 2 26.72
[3,] 3 69.45
4,1 4 168.66
[5,] 5 355.46

If you are going to model more than two species, y becomes a vector of length
2. Here we create a function for Lotka-Volterra competition, where

dN

d_tl :rlNl(l—ClllN]_alZNZ) (B5)

dn.

d—tz = r2N2 (1 — O.’ZQNZ - a’ZlNl) (BG)
(B.7)

> LVComp <- function(t, y, p) {

+ N <-y

+ with(as.list(p), {

+ dNi.dt <- r[1] * N[1] * (1 - a[1, 1] * N[1] -
+ al1, 2] = N[2])

+ dN2.dt <- r[2] * N[2] * (1 - a[2, 1] * N[1] -
+ al2, 2] * N[2])

+ return(list(c(dN1.dt, dN2.dt)))

+ »

+ }

Note that LVComp assumes that N and r are vectors, and the competition coef-
ficients are in a matrix. For instance, the function extracts the the first element
of r for the first species (r[1]); for the intraspecific competition coefficient for
species 1, it uses the element of a that is in the first column and first row
(al1,1]). The vector of population sizes, N, contains one value for each popu-
lation at one time point. Thus here, the vector contains only two elements (one
for each of the two species); it holds only these values, but will do so repeatedly,
at each time point. Only the output will contain all of the population sizxes
through time.

To integrate these populations, we need to specify new initial conditions,
and new parameters for the two-species model.

> a <- matrix(c(0.02, 0.01, 0.01, 0.03), nrow = 2)
>r <-c(1, 1)

> p2 <- list(r, a)

> NO <- c¢(10, 10)
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> t2 <- ¢(1, 5, 10, 20)
> out <- ode(y = NO, times = t2, func = LVComp, parms = p2)
> out[1:4, ]

time 1 2
[1,] 1 10.00 10.00
[2,] 5 35.54 21.80
[3,] 10 39.61 20.36
[4,] 20 39.99 20.01

The ode function uses a superb ODE solver, 1soda, which is a very powerful,
well tested tool, superior to many other such solvers. In addition, it has several
bells and whistles that we will not need to take advantage of here, although I
will mention one, hmax. This tells 1soda the largest step it can take. Once in
a great while, with a very stiff ODE (a very wiggly complex dynamic), ODE
assumes it can take a bigger step than it should. Setting hmax to a smallish
number will limit the size of the step to ensure that the integration proceeds as
it should.

One of the other solvers in the deSolve, 1sodar, will also return roots (or
equilibria), for a system of ODEs, if they exist. Here we find the roots (i.e. the
solutions, or equilibria) for a two species enemy-victim model.

> EV <- function(t, y, p) {

+ with(as.list(p), {

+ dv.dt <- b * y[1] * (1 - 0.005 * y[1]) -
+ a * y[1] * y[2]

+ de.dt <- a * e * y[1] * y[2] - s * y[2]
+ return(list(c(dv.dt, de.dt)))

+ »

+

To use 1sodar to find equilibria, we need to specify a root finding function whose
inputs are are the sme of the ODE function, and which returns a scalar (a single
number) that determines whether the rate of change (dy/dx) is sufficiently close
to zero that we can say that the system has stopped changed, that is, has
reached a steady state or equilibrium. Here we sum the absolute rates of change
of each species, and then subtract 107'%; if that difference is zero, we decide
that, for all pratcial purposes, the system has stopped changing.

> rootfun <- function(t, y, p) {

+ dstate <- unlist(EV(t, y, p))
+ return(sum(abs(dstate)) - 1e-10)
+ }

Note that unlist changes the 1ist returned by EV into a simple vector, which
can then be summed.

Next we specify parameters, and time. Here all we want is the root, so we
specify that we want the value of y after a really long time (1 = 10'°). The
1sodar function will stop sooner than that, and return the equilibrium it finds,
and the time step at which it occurred.
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>p<-c(b=0.5, a=0.02, e=0.1, s =0.2
>t <- c(0, 1e+10)

Now we run the function.

> out <- ode(y = c(45, 200), t, EV, parms = p, rootfun = rootfun,
+ method = "lsodar")
> out[, ]

time 1 2
[1,] 0.0 45 200.0
[2,] 500.8 100 12.5

Here we see that the steady state population sizes are V = 100 and E = 12.5,
and that given our starting point, this steady state was achieved at t = 500.8.
Other information is available; see ?1sodar after loading the deSolve package.

B.11 Numerical Optimization

We frequently have a function or a model that we think can describe a pattern
or process, but we need to “play around with” the numerical values of the
constants in order to make the right shape with our function/model. That is,
we need to find the value of the constant (or constants) that create the “best”
representation of our data. This problem is known as optimization.

Optimization is an entire scientific discipline (or two). It boils down to
quickly and efficiently finding parameters (i.e. constants) that meet our cri-
teria. This is what we are doing when we “do” statistics. We fit models to data
by telling the computer the structure of the model, and asking it to find values
of the constants that minimize the residual error.

Once you have a model of the reality you want to describe, the basic steps
toward optimization we consider are (i) create an objective function, (ii) use
a routine to minimize (or mazimize) the objective function through optimal
choice of parameter values, and (iii) see if the “optimal” parameters values make
sense, and perhaps refine and interpret them.

An objective function compares the data to the predicted values from the
model, and returns a quantitative measure of their difference. One widely used
objective function the least-squares criterion, that is, the objective function is
the average or the sum of the squared deviations between the model values and
the data — just like a simple ANOVA might. An optimization routine then tries
to find model parameters that minimize this criterion.

Another widely used objective function is the likelihood function, or maz-
imum likelihood. The likelihood function uses a probability distribution of our
choice (often the normal distribution). The objective function then calculates
the collective probability of observing those data, given the parameters and fit
of the model. In other words, we pretend that the model and the predicted
values are true, measure how far off each datum is from the predicted value,
and then use a probability distribution to calculate the probability of seeing
each datum. It then multiplies all those probabilities to get the likelihood of
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observing those data, given the selected parameters. An optimization routine
then tries to find model parameters that maximize this likelihood. In practice,
it is more computationally stable to calculate the negative of the sum of the
logarithms of the probabilities, and try to minimize that quantity, rather than
maximize the likelihood — but in principle they are they same thing.

Once we have an objective function, an optimization routine makes educated
guesses regarding good values for the parameters, until it finds the best values
it can, those which minimize the objective function. There are a great variety of
optimization routines, and they all have their strengths. One important tradeoff
they exhibit is that the fastest and most accurate methods are sometimes the
least able to handle difficult data [13]. Below, we rely on a combination to take
advantage of the strengths of each type.

Here we introduce two of R’s general purpose functions in the base pack-
age, optimize and optim, and another, in the bbmle package, mle2 [13]. The
function optimize should be used where we are in search of one parameter;
use others when more than one parameter is being optimized. There are many
other optimization routines in R, but we start here?.

Here we start with one of R’s general optimization functions, the one de-
signed for finding a single parameter. Let us find the mean (X) of some data
through optimization. We will start with data, y, and let our conceptual model
of that data be y, the mean. We then create a objective function whose output
will get smaller as the parameter of our model approaches the value we want.
Poughly speaking, the mean is the value that minimizes the total difference be-
tween all the data and the itself. We will use the least-squares criterion, where
the sum of all the squared deviations reaches a minimum when u approaches
the mean.

>y <= c(1, 0:10)

> f <- function(y, mu) {
+ sum((y - mu)~2)
+}

Our function, £, subtracts u from each value of y, squares each of these differ-
ences, and then sums these squared differences, to get the sum of squares. Our
goal is to minimize this. If we guessed at it by hand, we would get this (Fig.
B.3).

> guesses <- seq(4, 6, by = 0.05)

> LS.criterion <- sapply(guesses, function(mu) f(mu = mu,
+ y=y)

> plot(guesses, LS.criterion, type = "1")

Fig. B.3 shows us that the minimum of the objective function occurs when mu
is a little over 4.5. Now let’s let R minimize our least squared deviations. With
optimize, we provide the function first, we then provide a range of possible
values for the parameter of interest, and then give it the values of parameters
or data used by the function, other than the parameter we want to fit.

4 Indeed, all statistical models are fancy optimization routines.
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Fig. B.3: Illustration of the least squares criterion. Our objective function returns (i.e.
generates) the squared deviations between the fitted model and the data. Optimization
minimizes the criterion (“LS.criterion”) and thereby finds the right guess (x axis).

> (results <- optimize(f, c(0, 10), y = y))

$minimum
[1] 4.667

$objective
[1]1 124.7

We see that optimize returns two components in a list. The first is called
minimum, which is the parameter value that causes our function f to be at a
minimum. The second component, objective is the value of £ when mu =
4.667.

Next we demonstrate mle2, a function for maximum likelihood estimation.
Maximum likelihood relies on probability distributions to find the probability
of observing a particular data set, assuming the model is correct. This class of
optimization routines finds the parameters that maximize that probability.

Let us solve the same problem as above. For the same data, y, we create
a maximum likelihood function to calculate the mean. In maximum likelihood,
we actually minimize the negative logarithm of the likelihood because it is more
computationally stable — the same parameters that minimize the negative log-
likelihood also maximize the likelihood. We assume that the data are normally
distributed, so it makes sense to assume that the probabilities derive from the
normal probability density function.
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> LL <- function(mu, SD) {
+ -sum(dnorm(y, mean = mu, sd = SD, log = TRUE))
+ }

This objective function calculates the negative logarithm of the probability
density of each datum, given a particular mean and standard deviation, mu,
SD. The optimization routine, mle2, then finds mu and SD that minimize the
negative log-likelihood of those data.

> library(bbmle)
> (fit <- mle2(LL, start = list(mu = 5, SD = 1), control = list(maxit = 10°5)))

Call:
mle2(minuslogl = LL, start = list(mu = 5, SD = 1), control = list(maxit = 1075))

Coefficients:
mu SD
4.667 3.223

Log-likelihood: -31.07

Another way to put this objective function into mle2 is with a formula interface.

> mle2(y ~ dnorm(mu, sd = SD), start = list(mu
+ SD = 2))

1}

Call:
mle2(minuslogl = y ~ dnorm(mu, sd = SD), start = list(mu = 1,
SD = 2))

Coefficients:
mu SD
4.667 3.223

Log-likelihood: -31.07

We can examine this more closely, examing the probablities associated with the
profile confidence intervals.

> summary (fit)

Maximum likelihood estimation

Call:
mle2(minuslogl = LL, start = list(mu = 5, SD = 1), control = list(maxit = 1075))

Coefficients:

Estimate Std. Error z value Pr(z)
mu 4.667 0.930 5.02 5.3e-07
SD 3.223 0.658 4.90 9.6e-07

-2 log L: 62.14

> pr <- profile(fit)
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> par(mar = c(5, 4, 3, 2))
> plot(pr)

Likelihood profile: mu Likelihood profile: SD

1z|

Fig. B.4: Profile confidence intervals for various limits, based on mle2.

Often we have reason to limit parameters to particular bounds. Most often,
we may need to ensure that a parameter is greater than zero, or less than zero,
or less often between zero and one. Sometimes we have a rationale based on
physical or biological constraints that will limit a parameter within particular
values.

To constrain parameters, we could use a routine that applies constraints di-
rectly (see particular optimization methods under mle2,nlminb, and optim). We
could also transform the parameters, so that the optimizer uses the transformed
version, while the ODE model uses the parameters in their original units. For
instance, we could let the optimizer find the best value of a logarithm of our
parameter that allows the original parameter to make model predictions that
fit the data. Another consequence of using logarithms, rather than the original
scale is that it facilitates computational procedures in estimating vary large
and very small numbers. An example helps make this clear — see an extended
example in Chap. 6, on disease models.

B.12 Derivatives

We can use deriv and D to have R provides derivatives. First we supply an
expression, and then we get gradients.

> hostl <- expression(R * H * (1 + a * P)"-k)
> D(host1, "H")
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R* (1 +a*P) -k

B.13 Graphics

R is well known for its graphics capabilities, and entire books have been written
of the subject(s). For beginners, however, R can be frustrating when compared
to the point-and-click systems of most graphics “packages.” This frustration
derives from two issues. First, R’s graphics have of a learning curve, and second,
R requires us to type in, or code, our specifications. The upsides of these are
that R has infinite flexibility, and total replicability, so that we get exactly the
right figure, and the same figure, every time we run the same code.

B.13.1 plot

The most used graphics function is plot. Here I demonstrate several uses.
First let’s just create the simplest scatterplot (Fig. B.5a).

> data(trees)
> attach(trees)
> plot(Girth, Height)

To this we can add a huge variety of variation, using arguments to plot.

B.13.2 Adding points, lines and text to a plot

After we have started a plot, we may want to add more data or information.
Here set up a new graph without plotting points, add text at each point, then
more points, a line and some text.

> par(mar = c(5, 4, 3, 2))

> plot(Girth, Volume, type = "n", main = "My Trees")
> points(Girth, Volume, type = "h", col = "lightgrey",
+ pch = 19)

Now we want to add points for these data, using the tree heights as the plotting
symbol. We are going to use an alternate coloring system, designed with human
perception in mind (hcl). We scale the colors so that the hue varies between
30 and 300, depending on the height of the tree; I allow the symbols to be
transparent (90% opaque) overlapping. I also allow the size of the numbers to
vary with height (cex = 0.5 + hts) Last, we add a legend (Fig. B.5b).

> hts <- (Height - min(Height))/max(Height - min(Height))
> my.colors <- hcl(h = 30 + 270 * hts, alpha = 0.9)

> text(Girth, Volume, Height, col = my.colors, cex = 0.5 +
+ hts)
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Fig. B.5: See code for graphics parameters used to generate these plots. Fig. (b) uses an
alternate color scheme that provides human perception-adjusted hsv (hue, saturation,
and value) specification.

B.13.3 More than one response variable

We often plot more than one response variable on a single axis. We could use
lines or points to add each additional variable. We could also use matplot to
plot a matrix of variables vs. one predictor (Fig. B.5c).

>

vV Vv Vv +

trees.sort <- trees[order(trees$Girth, trees$Height),

matplot (trees.sort$Girth, trees.sort[, 2:3], type = "b")

text (18, 40,

"Volume",

text (10, 58, "Height")

col = "darkred")
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Table B.1: Commonly used arguments to plot. See help pages at ?7plot and
7plot.default for more information.

Argument Meaning

type Determines the type of X-Y plot, for example p, 1, s, for points,
lines, stair-step, and none, respectively. “None” is useful for set-
ting up a plotting region upon which to elaborate (see example
below). Defaults to p; see ?plot.default for other types.

axes Indicates whether to plot the axes; defaults to TRUE. Useful if
you want more control over each axis by using the axis function
separately (see below).

pch Point character (numeric value, 1-21). This can be a single value
for an entire plot, or take on a unique value for each point, or
anything in between. Defaults to 1. To add text more than one
character in length, for instance a species name, we can easily
add text to a plot at each point (see the next section).

1ty Line type, such as solid (1), dashed (2), etc. Defaults to 1.
lwd Line width (numeric value usually 0.5-3; default is 1).
col Color; can be specified by number (e.g., 2), or character (e.g.

“red”). Defaults to 1 (“black”). R has tremendous options for
color; see 7hcl.
main, ylab, xlab Text for main title, or axis labels.

xlim, ylim Limits for x and y axes, e.g. ylim=c(0, 1.5) sets the limits for
the y-axis at zero and 1.5. Defaults are calcualted from the data.
log Indicates which axes should use a (natural) logarithm scale, e.g.

log = ‘xy’ causes both axes to use logarithmic scales.

We frequently want to add a second y-axis to a graph that has a different scale
(Fig. B.5d). The trick we use here is that we plot a graph, but then tell R we
want to do the next command “. .. as if it was on a new device™ while it really is
not. We overlay what we just did with new stuff, without clearing the previous
stuff.

For our example, let’s start with just X and our first Y. Note we also specify
extra margin space room on the right hand side, preparing for the second Y
axis.

> quartz(, 4, 4)
> par(mar = c(5, 4, 2, 4))
> plot(Girth, Volume, main = "My Trees")

Now we try our trick. We draw a new plot “as if” it were a new graph. We use
the same X values, and the new Y data, and we also specify no labels. We also
use a different line type, for clarity.

> par(new = TRUE)
> plot(Girth, Height, axes = FALSE, bty = "n", xlab = "",
+ ylab = "", pch = 3)

5> From the par help page.



B.13 Graphics 377

Now we put the new Y values on the fourth side, the right hand Y axis. We
add a Y axis label using a function for marginal text (Fig. B.5d).

> axis(4)
> mtext("Height", side = 4, line = 3)

> par(mar = c(5, 4, 2, 4))

> plot(Girth, Volume, main = "My Trees")

> par(new = TRUE)

> plot(Girth, Height, axes = FALSE, bty = "n", xlab = "",
+ ylab = "", pch = 3)

> axis(4)

>

mtext ("Height", side = 4, line = 3)

B.13.4 Controlling Graphics Devices

When we make a graph with the plot function, or other function, it will typi-
cally open a graphics window on the computer screen automatically; if we desire
more control, we can use several functions to be more deliberate. We create new
graphics “devices” or graphs in several ways, including the functions windows ()
(Microsoft Windows OS), quartz() (Mac OS), x11() (X11 Window system).
For instance, to open a “graphics device” on a Mac computer that is 5 inches
wide and 3 inches tall, we write

> quartz(width = 5, height = 3)
To do the same thing on a computer running Windows, we type
> windows(width = 5, height = 3)

To control the parameters of the graph, that is, what it looks like, aside from
data, we use arguments to the par function. Many of these arguments refer to
sides of the graph. These a numbered 1-4 for the bottom X axis, the left side Y
axis, the top, and the right side Y axis. Arguments to par are many (see ?par),
and include the following.

mar controls the width of margins on each side; units are number of lines of
text; defaults to c(5, 4, 4, 2) + 0.1, so the bottom has the most room, and
the right hand side has the least room.

mgp controls the spacing of the axis title, labels and the actual line itself; units
of number of lines of text, and default to ¢(3, 1, 0), so the axis title sits
three lines away from the edge of the plotting region, the axis labels, one
line away and the axis line sits at the edge of the plotting region.

tcl tick length, as a fraction of the height of a line of text; negative values put
the tick marks outside, positive values put the tick marks inside. Defaults
to -0.5.

We can build each side of the graph separately by initiating a graph but not
plotting axes plot (..., axes = FALSE), and then adding the axes separately.
For instance, axis (1) adds the bottom axis.

Last, we can use layout to make graph with several smaller subgraphs (see
also (mfrow and mfcol arguments to par and the function split.screen). The
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function layout takes a matrix as its argument, the matrix contains a sequence
of numbers that tells R how to fill the regions Graphs can fit in more than one
of these regions if indicated by the same number.

Here we create a compound graphic organized on top of a 4 x4 grid; it will
have two rows, will be be filled in by rows. The first graph will be the upper
left, the second the upper right, and the third will fill the third and fourth spots
in the second. We will fill each with a slightly different plot of the same data
(Fig. B.6).

> quartz(, 5, 5)
> layout (matrix(c(1, 2, 3, 3), nrow = 2, byrow = TRUE))
> plot(Girth, Height)

Now we add the second and third ones but with different settings.

par(mar = ¢(3, 3, 1, 1), mgp = ¢(1.6, 0.2, 0), tcl = 0.2)
plot(Girth, Height)

par(mar = ¢(3, 3, 2, 1), mgp = c(1.6, 0.2, 0), tcl = 0.2)
plot(Girth, Height, axes = FALSE, xlim = c(8, 22))
axis(1, tcl = -0.3)

axis(2, tick = F)

rug (Height, side = 2, col = 2)

title("A Third, Very Wide, Plot")

V V.V V VYV VYV

B.13.5 Creating a Graphics File

Now that you have made this beautiful thing, I suppose you would like to stick
it into a manuscript. One way to get graphics out of R and into something
else (presentation software, a manuscript), is to create a graphics device, and
then save it with dev.print in a format that you like, such as PDF, postscript,
PNG, or JPEG.

For instance, we might do this to save a graphics file in our working directory.

> getwd ()

> quartz(, 4, 4)

> plot(Height, Volume, main = "Tree Data")
> dev.print(pdf, "MyTree.pdf")

This should have saved a small PDF figure in your current working directory,
returned by getwd.

You will have to find your own way to make graphics files that suits your
operating system, your preferred applications, and your personality.

B.14 Graphical displays that show distributions

Here we take a quick look at ways to reveal distributions of data. First, two views
to see in the Console, a six number summary of quantiles and the mean, and the
good ol’ stem and leaf plot, a favorite of computational botanists everywhere.
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Fig. B.6: A variety of examples with different graphics parameters.
summary (Girth)
Min. 1st Qu. Median Mean 3rd Qu. Max.
8.3 11.0 12.9 13.2 15.2 20.6
stem(Girth)

The decimal point is at the |

8 | 368
10 | 57800123447
12 | 099378
14 | 025
16 | 03359
18 | 00
20 | 6
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Here we will create 4 various plots revealing different ways to look at your data,
each with a couple bells and whistles. For kicks, we put them into a single
compound figure, in a “layout” composed of a matrix of graphs.

> layout (matrix(c(1, 2, 2, 3, 4, 4), nrow = 2, byrow = TRUE))

> plot(1:length(Girth), Girth, xlab = "Order of Sample Collection?")
> hist(Girth, prob = TRUE)

> rug(Girth)

> lines(density(Girth))

> boxplot(Girth, main = "Boxplot of Girth")

> points(jitter(rep(1, length(Girth))), Girth)

> qgnorm(log(Girth))

> gqline(log(Girth))

> title(sub = "Log transformed data')

B.15 Eigenanalysis

Performing eigenanalysis in Ris easy. We use the eigen function which returns a
list with two components. The first named component is a vector of eigenvalues
and the second named component is a matrix of corresponding eigenvectors.
These will be numeric if possible, or complex, if any of the elements are complex
numbers.

Here we have a typical demographic stage matrix.

> A <- matrix(c(0, 0.1, 10, 0.5), nrow = 2)
> eig.A <- eigen(4)
> str(eig.4)

List of 2
$ values : num [1:2] 1.28 -0.78
$ vectors: num [1:2, 1:2] -0.9919 -0.127 -0.997 0.0778

Singular value decomposition (SVD) is a generalization of eigenanalysis and
is used in Rfor some applications where eigenanalysis was used historically,
but where SVD is more numerically accurate (prcomp for principle components
analysis).

B.16 Eigenanalysis of demographic versus Jacobian
matrices

Eigenanalyses of demographic and Jacobian matrices are worth comparing. In
one sense, they have similar meanings — they both describe the asymptotic
(long-term) properties of a system, either population size (demographic ma-
trix) or a perturbation at an equilibrium. The quantitative interpretation of
the eigenvalues will therefore differ.

In the case of the stage (or age) structured demographic model, the elements
of the demographic matrix are discrete per capita increments of change over a
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Fig. B.7: Examples of ways to look at the distribution of your data. See 7hist, for
example, for more information.

specified time interval. This is directly analogous to the finite rate of increase,
4, in discrete unstructured models. (Indeed, an unstructured discrete growth
model is a stage-structured model with one stage). Therefore, the eigenvalues
of a demographic matrix will have the same units — a per capita increment
of change. That is why the dominant eigenvalue has to be greater than 1.0 for
the population to increase, and less than 1 (not merely less than zero) for the
population to decline.
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In the case of the Jacobian matrix, comprised of continuous partial differ-
ential equations, the elements are per capita instantaneous rates of change. As
differential equations, they describe the instantanteous rates of change, analo-
gous to r. Therefore, values greater than zero indicate increases, and values less
than zero indicate decreases. Because these rates are evaluated at an equilib-
rium, the equilibrium acts like a new zero — positive values indicate growth
away from the equilibrium, and negative values indicate shrinkage back toward
the equilibrium. When we evaluate these elements at the equilibrium, the num-
bers we get are in the same units as r, where values greater than zero indicate
increase, and values less than zero indicate decrease. The change they describe
is the instantaneous per capita rate of change of each population with respect
to the others. The eigenvalues summarizing all of the elements Jacobian matrix
thus must be less than zero for the disturbance to decline.

So, in summary, the elements of a demographic matrix are discrete incre-
ments over a real time interval. Therefore its eigenvalues represent relative per
capita growth rates a discrete time interval, and we interpret the eigenvalues
with respect to 1.0. On the other hand, the elements of the Jacobian matrix are
instantaneous per captia rates of change evaluated at an equilibrium. Therefore
its eigenvalues represent the per capita instantaneous rates of change of a tiny
perturbation at the equilibrium. We interpret the eigenvalues with respect to 0
indicating whether the perturbation grows or shrinks.

B.17 Symbols used in this book

I am convinced that one of the biggest hurdles to learning theoretical ecology
— and the one that is easiest to overcome — is to be able to “read” and hear
them in your head. This requires being able to pronounce Greek symbols. Few
of us learned how to pronounce “@” in primary school. Therefore, I provide here
an incomplete simplistic American English pronunciation guide for (some of)
the rest of us, for symbols in this book. Only a few are tricky, and different
people will pronounce them differently.
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Table B.2: Symbols and their pronunciation; occasional usage applies to lowercase,
unless otherwise specified. A few symbols have common variants. Any symbol might
be part of any equation; ecologists frequently ascribe other meanings which have to be
defined each time they are used. See also http://en.wikipedia.org/wiki/Greek letters

Symbol Spelling Pronunciation; occasional or conventional usage

A «a alpha  al’-fa; point or local diversity (or a parameter in the logseries abundance
distribution)
B, B beta bay’-ta; turnover diversity

r,y gamma gam’-ma; regional diversity

A, 5,0 delta  del’-ta; change or difference

E, €, ¢ epsilon ep’-si-lon; error

0,0 theta  thay’-ta (“th” as in “thanks”); in neutral theory, biodiversity.

A, A lambda lam’-da; eigenvalues, and finite rate of increase

M, u mu meeoo, myou; mean

N, v nu noo, nou

I, © pi pie; uppercase for product (of the elements of a vector)

P, p rho row (as in “a boat”); correlation

3, 0, ¢ sigma sig’-ma; standard deviation (uppercase is used for summation)

T, 7 tau (sounds like what you say when you stub your toe - “Ow!” but with a
“67).

D, ¢ phi fie, figh

X, x chi kie, kigh

Y, ¥ psi sie, sigh

Q w omega oh-may’-ga; degree of omnivory
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Index

greek symbols, 382

a, see competition coefficient

a-diversity, 318

B, see transmission coefficient

B-diversity, 318

Bij» 139, see competition coefficient,
invasion criterion

v, 193, see successional niche, SIR
models

y-diversity, 318

A, see lambda

Ay, see eigenvalue, dominant, see return
time

v, 309, see neutral theory

0, diversity, see neutral theory

f-logistic, see logistic growth

ACE, 299

additive partitioning, see diversity
partitioning

age structure, 34

age-specific fertility, 33

aggregation, 185

AIC, 100

alternate stable equilibria, 227

Andropogon gerardii, 262

area of discovery, 181

assimilation efficiency, 165

asymptotic richness, 297

attack rate, 163

attractor, 64

periodic, 72
average growth rate, 10

basic reproductive rate of disease, 194

BCI, 303, 316

bias-corrected quantiles, 58
bifurcation, 72

biodiversity, see diversity

birth, 48

birth-flow, 48

birth-pulse, 48

bluestem, 262

Bombay, see Mumbai
bootstrapped confidence interval, 56
bootstrapping, 49

Bray-Curtis distance, see distance
Buell-Small, 135, 255

buffered population growth, 275
butterflies, 74

carrying capacity, 63
Cedar Creek Natural History Area, 261
Chamaedorea, 49
Chao 2, 299
chaos, 71, 74
boundedness, 74
characteristic path length, 212
climax species, 259
Closterium acerosum, 93
coefficent of variation, 281
coefficient of variation, 316
compartmentation, 212
competition coefficient, see logistic
growth
two species, 136
competition coefficient
subscripts, 137
competition—colonization tradeoff, see
tradeoffs
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confint, 326

connectance, 212

conversion efficiency, 165, 243

core-satellite, see metapopulation

covariance, see environment—competition
covariation

coverage estimator, 299

CV, see coefficent of variation

damped oscillations, 71
degree distribution, 212
demographic model, 35
demography, 33
stage-structured growth, 38
density—dependent transmission, 193
density-dependence, 62
density-independence, 4
derivative
exponential growth, 16
discrete growth increment, 14
dispersal-assembly and niche-assembly
neutral theory, 310
distance, 287
Bray—Curtis, 289
Euclidean distance, 287
diversity, 291
diversity partitioning, 318
species—area relations, 330
dominance, 293
doubling time, 17
drift, see neutral theory
duration, see residence time

e, 15
E. coli, 14
ecoregions, 319
eigenanalysis

demographic matrix, 41
eigenvalue

dominant, 42, 150
El Cielo Biosphere Reserve, 49
elasticity, 47
emergent property, 211
entropy, 292, 293
environment—competition covariation,

275

epidemiological models, 192
Euclidean distance, see distance
experimental unit, 297
explanation, 3
extinction debt, 265, 273

fecundities, 36

fertility, 52

finite rate of competitive exclusion, 267

finite rate of increase, 7

Fisher’s log-series, see species—abundance

distribution, log-series

fitness equivalence, see neutral theory
neutral theory, 307

floating plants, 234

food chain length, 214

food web characteristics, 211

force of infection, 194

frequency—dependent transmission, 195

functional response, 163

generalization, 3
geometric
species—abundance distribution, 301
geometric series, 4
grain, 297

habitat destruction, 125, 261
half saturation constant, 165
handling time, 172
harvesting, fisheries, 90
harvesting, palm, 49
hierarchical partitioning, see diversity
partitioning

diversity partitioning, 322
Holling disc equation, 172
Hudson Bay Trading Co., 161
human economic systems, 230
hysteresis, 228, 234

IGP, see intraguild predation
incidence, 193
increase when rare, see invasion criterion
instantaneous per capita growth rate, 16
interaction strength, average, 216
interaction strength, quantified, 215
intraguild predation, 213, 242
intrinsic rate of increase, 16
invasion criterion, 144
island biogeography, 326
isoclines
interspecific competition, 143
predator—prey, Lotka—Volterra, 166
predator—prey, Rosenzweig—
MacArthur, 173
two species, Lotka—Volterra, 141

Jacobian elements, 217



Jacobian matrix, 148
discrete host—parasitoid model, 188
Rosenzweig-MacArthur predator—
prey, 175
Jacobian matrix
Lotka—Volterra predator—prey, 169
Ju, 309
neutral theory, 309

lambda, 7
dominant eigenvalue, 42
of the Poisson distribution, 181
power iteration, 43
relating to r, 18, 19
source-sink, 112
landscape level processes, 329
landscape mosaic, 259
Lefkovitch, 34
Levins, see metapopulation
life cycle graph, 35
life history stages, 34
links, 211
log-normal
species—abundance distribution, 300,
303
log-normal ditribution, see species—
abundance distribution
log-series
species—abundance distribution, 302,
309
logarithms, 8
logistic growth
discrete, 63
effect of r;, 69
equilibrium, stability, and dynamics,
79
generalizing, 76
integral, 79
theta-logistic, 87
Lotka—Volterra
equilibrium and r, 231
food web, 214
intraguild predation, 243
multiple basins of attraction, 230
predator—prey, 162
three-species competition, 230
two-species competition, 135
lottery models, 276

Index 399
lynx—hare cycles, 161

MacArthur’s broken stick
species—abundance distribution, 302
macrophytes, 234
mass action, 165, 193
matplot, 9
matrix algebra, 36
maximum entropy theory, 326
maximum sustained yield, 89
MBA, see multiple basins of attraction
Melospiza melodia, 3, 21, 61
metacommunity, see neutral theory
neutral theory, 306
metapoopulation
rescue effect, 120
metapopulation, 114, 115
core-satellite, 120
core-satellite simulations, 128
Gotelli, 118
habitat destruction, 125
Hanski, 120
Levins, 117
parallels with logistic growth, 123
propagule rain, 118
propagule rain, estimation, 258
Michaelis-Menten, 165, 172
mixed model, 98
model, 4
modulus, 189
moths, 319
multidimensional distance, see distance
distance, 289
Multiple basins of attraction, 228
multiplicative partitioning, see diversity
partitioning
Mumbai, 202

negative binomial distribution, 186
network, 212

niche overlap, 281

Nicholson-Bailey, 181

nlme, 103

nodes, 211

non-metric multidimensional scaling, 289
North Central Tillplain, 321

numerical response, 165

Nymphaea odorata, 5

omnivory, 213, 222
omnivory, stabilizing, 225
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outbreak, 193
overdispersion, 186

paradox of enrichment, 177
parallels with genetic drift
neutral theory, 307
parasitoids, 179
partial derivative, 82
partial differential equation, 148
PARTITION software, 323
partitioning, see diversity partitioning
path length, see characteristic path
length
pattern wvs. process, 305
species—abundance distribution, 305
per capita growth increment, 62
perturbation growth rate, see return
time, stability analysis
phase plane portrait, 177
phase plane portrait, 170, 174
pioneer species, 259
plague, 202
Poisson distribution, 180
postbreeding census, 48
prebreeding census, 48
predator—prey, 161
prediction, 3
prevalence, 193
primary productivity, 225
priority effects, 228, 230
projection
geometric growth, 20
population projection matrix, 35
propagule rain, see metapopulation

quadratic equation, 66
quantile, 27

R*, 262
Ry, see basic reproductive rate
r-selected, 266
random connection models, 215
random walk, 310

neutral theory, 310
random walks, biased

neutral theory, 310
rank—abundance distribution, 300, see

species—abundance distribution

rarefaction, 297
r4, See per capita growth increment
regression, 325

relative density, 287

reproductive value, 45

residence time, 193

resistant, see successional niche, SIR
models

return time, 155, 220, 222

richness, 293

Rosenzweig-MacArthur, 171

Routh-Hurwitz criteria, 150, 169

saddle, 146
neutral, 154
sapply, 10
SAR, see species—area relation
scale, 297
scaling (logistic growth), 124
Schizachyrium scoparium, 262
sensitivity, 46
sequential broken stick
species—abundance distribution, 302
Shannon-Wiener, 293
similarity, 290
Simpson’s diversity, 293, 295
sink, see source-sink
SIR models, 192
Solidago, 135
Song Sparrow, 3, 21
Sgrensen’s similarity, 291
Sgorenson distance, see distance
distance, 289
source-sink, 112
specialization, 281
species composition, 286
species pool, 292
species—area relation, 323
species—area relations
diversity partitioning, 330
species-accumulation curve, 297
stability analysis
recipe, 146
single species, 80
stabilizing vs. equalizing mechanisms
neutral theory, 309
stable limit cycles, 71
stage distribution
stable, 44
stationary, 44
stage structure, 34
statistical mechanics, 293
storage effect, 275
succession, 255



successional niche, 267
susceptible, see successional niche, SIR
models
symbolic differentiation, 84
symmetry, see neutral theory
neutral theory, 317

taco shell, see saddle, neutral

temporal niche, 283

time lag, 72

total species richness, 297

tradeoffs
rvs. K, 233
competition—colonization, 255
competition—maximum growth rate,

266
transition, 35
transmission coefficient, 193

Index 401

trophic level, 213

trophic position, 213
trophospecies, 212

type I functional response, 163

unified neutral theory of biodiversity and
biogeography, see neutral theory
units
exponential and geometric growth, 19
untb, 312

vaccinations, 194

variance in species composition, 292, 295
victim, 173

Western Allegheny Plateau, 321

zero net growth isocline, see isocline
ZNGI, see isocline



