\relax \citation{MacArthur1972,Tilman1982} \citation{Stenseth1997,krebs1995} \@writefile{toc}{\contentsline {chapter}{\numberline {6}Enemy--Victim Interactions}{161}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \@writefile{lof}{\contentsline {figure}{\numberline {6.1}{\ignorespaces Lynx--snowshoe hare cycles.}}{161}} \newlabel{fig:LH}{{6.1}{161}} \citation{Lotka:1956uq} \@writefile{toc}{\contentsline {section}{\numberline {6.1}Predators and Prey}{162}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.1.1}Lotka--Volterra model}{162}} \newlabel{eq:7.1}{{6.1}{162}} \newlabel{eq:7.2}{{6.2}{162}} \citation{Holling1959} \@writefile{toc}{\contentsline {paragraph}{Lotka--Volterra predator--prey model}{163}} \@writefile{toc}{\contentsline {subsubsection}{Functional response}{163}} \citation{Juliano:2001cq} \newlabel{FR}{{6.2a}{164}} \newlabel{sub@FR}{{(a)}{a}} \newlabel{FRH}{{6.2b}{164}} \newlabel{sub@FRH}{{(b)}{b}} \@writefile{lof}{\contentsline {figure}{\numberline {6.2}{\ignorespaces Types I, II, and III predator functional responses; these are the rates at which predators kill prey across different prey densities. \subref {FR} The original functional responses; \subref {FRH} Functional responses on a per prey basis. The Lotka--Volterra model assumes a type I functional response.}}{164}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Functional response}}}{164}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Functional response per prey}}}{164}} \newlabel{fig:FR}{{6.2}{164}} \@writefile{toc}{\contentsline {paragraph}{Functional responses}{165}} \@writefile{toc}{\contentsline {subsubsection}{Numerical response}{165}} \@writefile{toc}{\contentsline {subsubsection}{Lotka--Volterra isoclines}{166}} \newlabel{eq:hstar1}{{6.3}{166}} \newlabel{eq:hstar2}{{6.6}{166}} \newlabel{eq:3}{{6.7}{166}} \@writefile{lof}{\contentsline {figure}{\numberline {6.3}{\ignorespaces Lotka--Volterra predator--prey isoclines. The isoclines (solid and dashed lines) are the set of all points for which the predator growth rate or the herbivore growth rate are zero. Increases and decreases in abundance are indicated by arrows (solid - prey, dashed - predator). Prey abundance, $H$, decreases in quadrants 1 and 2 because predator abundance, $P$, is high; prey abundance increases in quadrants 3 and 4 because predator abundance is low. In contrast, predator abundance, $P$, increases in quadrants 4 and 1 because prey abundance is high, whereas predator abundance decreases in quandrants 2 and 3 because prey abundance is low. These reciprocal changes in each species abundance results in counterclockwise dynamics between the two populations.}}{167}} \newlabel{fig:LVIso}{{6.3}{167}} \@writefile{toc}{\contentsline {paragraph}{Lotka--Volterra prey and predator isoclines (Fig. 6.3\hbox {})}{168}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.1.2}Stability analysis for Lotka--Volterra}{168}} \@writefile{toc}{\contentsline {subsubsection}{Lotka--Volterra equilibrium}{169}} \@writefile{toc}{\contentsline {subsubsection}{Creating, solving and using the Jacobian matrix}{169}} \newlabel{eq:jacLV1}{{6.8}{169}} \newlabel{eq:jacLV2}{{6.9}{169}} \newlabel{eq:RH1}{{6.10}{169}} \newlabel{eq:RH2}{{6.11}{169}} \@writefile{toc}{\contentsline {paragraph}{Lotka--Volterra predator--prey eigenanalysis}{170}} \@writefile{toc}{\contentsline {subsubsection}{Lotka--Volterra Dynamics}{170}} \@writefile{toc}{\contentsline {paragraph}{Lotka--Volterra predator--prey dynamics (Fig. 6.4a\hbox {})}{170}} \citation{Rosenzweig:1969uq,Rosenzweig:1963fk} \newlabel{LVts}{{6.4a}{171}} \newlabel{sub@LVts}{{(a)}{a}} \newlabel{LVpp}{{6.4b}{171}} \newlabel{sub@LVpp}{{(b)}{b}} \@writefile{lof}{\contentsline {figure}{\numberline {6.4}{\ignorespaces Dynamics of the Lotka--Volterra predator--prey model. Both figures result from the same set of model parameters. \subref {LVts} The times series shows the population sizes through time; these dynamics correspond to the largest oscillations in \subref {LVpp}. \subref {LVpp} The phase plane plot includes three different starting abundances, indicated by symbols; the largest cycle (through solid dot) \subref {LVts}.}}{171}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Time series}}}{171}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Phase plane}}}{171}} \newlabel{fig:LVDyn}{{6.4}{171}} \@writefile{toc}{\contentsline {paragraph}{Lotka--Volterra predator--prey dynamics (Fig. 6.4b\hbox {})}{171}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.1.3}Rosenzweig--MacArthur model}{171}} \citation{Hassell1978,MacArthur1966} \citation{Holling1959} \newlabel{eq:10}{{6.12}{172}} \@writefile{toc}{\contentsline {paragraph}{Rosenzweig-MacArthur predator--prey function}{173}} \@writefile{toc}{\contentsline {subsubsection}{Rosenzweig-MacArthur isoclines}{173}} \newlabel{eq:RMiso1}{{6.17}{173}} \newlabel{eq:8}{{6.18}{173}} \@writefile{lof}{\contentsline {figure}{\numberline {6.5}{\ignorespaces Rosenzweig-MacArthur predator--prey isoclines for the predator (dashed) and the prey (solid). The isoclines are the set of all points for which the predator growth rate (dashed) and the herbivore growth rate (solid) are zero. The arrows get shorter, and the arrowheads closer together because the populations change more slowly as we approach the steady state equilibrium. Note that the $x$-intercept of the prey isocline is $K$.}}{174}} \newlabel{fig:RMiso}{{6.5}{174}} \@writefile{toc}{\contentsline {paragraph}{Rosenzweig-MacArthur isoclines (Fig. 6.5\hbox {})}{175}} \@writefile{toc}{\contentsline {subsubsection}{Creating and using the Jacobian}{175}} \newlabel{eq:jacrm5}{{6.19}{175}} \@writefile{toc}{\contentsline {paragraph}{Analysis of the Jacobian for Rosenzweig-MacArthur}{176}} \citation{Rosenzweig:1969uq,Rosenzweig:1963fk} \citation{Rosenzweig1971} \@writefile{toc}{\contentsline {subsection}{\numberline {6.1.4}The paradox of enrichment}{177}} \newlabel{PPP}{{6.6a}{178}} \newlabel{sub@PPP}{{(a)}{a}} \newlabel{LK}{{6.6b}{178}} \newlabel{sub@LK}{{(b)}{b}} \@writefile{lof}{\contentsline {figure}{\numberline {6.6}{\ignorespaces Illustrating the paradox of enrichment. \subref {PPP} One example of the paradox of enrichment, where large carrying capacity causes cycles instead of a stable attractor (compare to Fig. 6.5\hbox {}). \subref {LK} Stability declines when the prey are too strongly self-limiting (very small $K$) or especially when they have the capacity to achieve very high abundances (large $K$).}}{178}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$K=2000$}}}{178}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Stability \emph {vs.} $K$}}}{178}} \newlabel{fig:PE}{{6.6}{178}} \@writefile{toc}{\contentsline {paragraph}{Phase plane portrait for the paradox of enrichment (Fig. 6.6a\hbox {})}{178}} \@writefile{toc}{\contentsline {paragraph}{The Jacobian for the paradox of enrichment (Fig. 6.6b\hbox {})}{179}} \@writefile{toc}{\contentsline {section}{\numberline {6.2}Space, Hosts, and Parasitoids}{179}} \citation{May:1978fk} \citation{Nicholson:1935aa} \@writefile{toc}{\contentsline {subsection}{\numberline {6.2.1}Independent and random attacks}{180}} \newlabel{eq:12}{{6.20}{180}} \newlabel{eq:13}{{6.21}{180}} \newlabel{eq:para1}{{6.22}{180}} \newlabel{eq:para2}{{6.23}{180}} \@writefile{lof}{\contentsline {figure}{\numberline {6.7}{\ignorespaces Dynamics around the unstable equilibrium of the Nicholson-Bailey host--parasitoid model ($R=3$, $a=0.005$). Arrows indicate a single time step; the point is the equilibrium at the center.}}{182}} \newlabel{fig:nb}{{6.7}{182}} \@writefile{toc}{\contentsline {paragraph}{Dynamics of the Nicholson-Bailey host--parasitoid model (Fig. 6.7\hbox {})}{182}} \citation{May:1978fk} \@writefile{toc}{\contentsline {subsubsection}{Simulating Random Attacks}{183}} \citation{May:1978fk} \@writefile{lof}{\contentsline {figure}{\numberline {6.8}{\ignorespaces Histogram of simulated host populations, attacked at a rate of 0.24 mean attacks per host, assuming a attacks on hosts are random and independent of each other.}}{185}} \newlabel{fig:PoisSim}{{6.8}{185}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.2.2}Aggregation leads to coexistence}{185}} \citation{Bolker:2008rr} \@writefile{toc}{\contentsline {paragraph}{Showing the negative binomial distribution (Fig. 6.9\hbox {})}{186}} \citation{May:1978fk} \@writefile{lof}{\contentsline {figure}{\numberline {6.9}{\ignorespaces The negative binomial distribution, where the dispersion parameter $k$ controls variance or breadth the distribution. For a given mean, smaller $k$ causes a greater variance, and results in a higher proportion of zeroes. These $k$ are representative of values from Pacala \emph {et al.} (1990).}}{187}} \newlabel{fig:negbin}{{6.9}{187}} \newlabel{eq:may14a}{{6.26}{187}} \newlabel{eq:may14b}{{6.27}{187}} \@writefile{toc}{\contentsline {subsubsection}{Equilibria for a discrete-time model}{187}} \newlabel{eq:16}{{6.28}{188}} \newlabel{eq:18}{{6.29}{188}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.2.3}Stability of host--parasitoid dynamics}{188}} \citation{Pacala1990} \newlabel{eq:jacrm5}{{6.30}{189}} \newlabel{eq:pert1}{{6.31}{189}} \newlabel{eq:pert2}{{6.32}{189}} \newlabel{fig:mod}{{6.10a}{190}} \newlabel{sub@fig:mod}{{(a)}{a}} \newlabel{fig:LK2}{{6.10b}{190}} \newlabel{sub@fig:LK2}{{(b)}{b}} \@writefile{lof}{\contentsline {figure}{\numberline {6.10}{\ignorespaces Dynamical stability of a discrete host--parasitoid model with aggregation \subref {fig:mod} Region of stability for the rate of change following a small perturbation away from equilibrium. The plus sign ``+'' is $(0,0)$ and the two small circles are the complex eigenvalues. The length of the vector is the modulus.}}{190}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {The complex number plane}}}{190}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Stability \emph {vs.} $k$}}}{190}} \newlabel{fig:distab}{{6.10}{190}} \@writefile{toc}{\contentsline {paragraph}{Stability of the host--parasitoid model with aggregation (Fig. 6.10b\hbox {})}{190}} \@writefile{toc}{\contentsline {paragraph}{Graphing eigenvalues in the complex number plane (Fig. 6.10a\hbox {})}{191}} \@writefile{toc}{\contentsline {subsubsection}{Dynamics of the May host--parasitoid model}{191}} \citation{Kermack:1927fk} \citation{Kermack:1927fk} \citation{McCallum:2001uq} \citation{Ellner:2006qe,Kermack:1927fk} \@writefile{toc}{\contentsline {section}{\numberline {6.3}Disease}{192}} \newlabel{eq:SIR}{{6.33}{192}} \citation{McCallum:2001uq} \@writefile{toc}{\contentsline {paragraph}{Density--dependent \emph {SIR} model}{193}} \citation{McCallum:2001uq} \newlabel{eq:sir6}{{6.36}{194}} \newlabel{eq:1}{{6.37}{194}} \@writefile{toc}{\contentsline {paragraph}{Simple \emph {SIR} dynamics (Fig. 6.11\hbox {})}{194}} \@writefile{lof}{\contentsline {figure}{\numberline {6.11}{\ignorespaces Epidemic with the simplest SIR model. Assumes constant population size.}}{195}} \newlabel{fig:sir1}{{6.11}{195}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.3.1}SIR with frequency--dependent transmission}{195}} \newlabel{eq:SIRfd1}{{6.38}{195}} \newlabel{eq:SIRfd2}{{6.39}{195}} \newlabel{eq:SIRfd2}{{6.40}{195}} \citation{McCallum:2001uq} \citation{Ellner:2006qe} \@writefile{toc}{\contentsline {paragraph}{Frequency--dependent \emph {SIR} model}{196}} \citation{McCallum:2001uq} \@writefile{lof}{\contentsline {figure}{\numberline {6.12}{\ignorespaces The rate of transmission may depend only on the linear dependence of mass action, or may depend curvilinearly on the prevalence, the frequency of infected individuals in the population.}}{197}} \newlabel{fig:transfunc}{{6.12}{197}} \@writefile{toc}{\contentsline {paragraph}{Transmission models (Fig. 6.12\hbox {})}{197}} \citation{Antonovics:1992rm} \newlabel{eq:19}{{6.41}{198}} \newlabel{sirfd}{{6.13a}{199}} \newlabel{sub@sirfd}{{(a)}{a}} \newlabel{sirdd}{{6.13b}{199}} \newlabel{sub@sirdd}{{(b)}{b}} \@writefile{lof}{\contentsline {figure}{\numberline {6.13}{\ignorespaces Prevalence ($I/N$) \emph {vs.} population density. With frequency--dependent transmission, \subref {sirfd}, prevalence may decrease with population density. In contrast, with density--dependent transmission, \subref {sirdd}, prevalence may increase with density.}}{199}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Frequency--dependent}}}{199}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Density--dependent}}}{199}} \newlabel{fig:sirFD}{{6.13}{199}} \@writefile{toc}{\contentsline {paragraph}{\emph {SIR} dynamics with frequency--dependent transmission (Fig. 6.13\hbox {})}{199}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.3.2}SIR with population dynamics}{200}} \newlabel{eq:SIRbd}{{6.42}{200}} \@writefile{toc}{\contentsline {paragraph}{Disease model with population growth}{200}} \citation{Ellner:2006qe} \citation{Ellner:2006qe} \citation{Kermack:1927fk} \citation{Ellner:2006qe,Kermack:1927fk} \citation{Bolker:2008rr} \@writefile{lof}{\contentsline {figure}{\numberline {6.14}{\ignorespaces Epidemic for a nonlethal disease, with an SIR model which includes births and deaths, and a constant population size.}}{202}} \newlabel{fig:sirbd}{{6.14}{202}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.3.3}Modeling data from Bombay}{202}} \@writefile{toc}{\contentsline {subsubsection}{Optimization}{202}} \@writefile{lof}{\contentsline {figure}{\numberline {6.15}{\ignorespaces Cumulative deaths for plague, in Bombay, India, 1905--1906 (raw data and fitted model, as described in this section).}}{203}} \newlabel{fig:sir2}{{6.15}{203}} \@writefile{lof}{\contentsline {figure}{\numberline {6.16}{\ignorespaces Likelihood profile plots, indicating confidence intervals on transformed SIR model parameters.}}{205}} \newlabel{fig:profile}{{6.16}{205}} \@writefile{toc}{\contentsline {section}{\numberline {6.4}Summary}{206}} \@writefile{toc}{\contentsline {section}{Problems}{207}} \@setckpt{Chap06/Chapter06}{ \setcounter{page}{209} \setcounter{equation}{44} \setcounter{enumi}{4} \setcounter{enumii}{0} \setcounter{enumiii}{0} \setcounter{enumiv}{0} \setcounter{footnote}{20} \setcounter{mpfootnote}{0} \setcounter{part}{2} \setcounter{section}{4} \setcounter{subsection}{0} \setcounter{subsubsection}{0} \setcounter{paragraph}{0} \setcounter{subparagraph}{0} \setcounter{figure}{16} \setcounter{table}{0} \setcounter{chapter}{6} \setcounter{theorem}{0} \setcounter{prob}{4} \setcounter{merk}{0} \setcounter{pp@next@reset}{0} \setcounter{parentequation}{0} \setcounter{float@type}{4} \setcounter{KVtest}{0} \setcounter{subfigure}{0} \setcounter{subfigure@save}{2} \setcounter{lofdepth}{1} \setcounter{subtable}{0} \setcounter{subtable@save}{0} \setcounter{lotdepth}{1} \setcounter{FancyVerbLine}{1} }