\relax \@writefile{toc}{\contentsline {chapter}{\numberline {3}Density-dependent Growth}{61}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \newlabel{ch:DDG}{{3}{61}} \newlabel{sec:1}{{3}{61}} \newlabel{fig:MeloDDG1}{{3.1a}{61}} \newlabel{sub@fig:MeloDDG1}{{(a)}{a}} \newlabel{fig:MeloDDG2}{{3.1b}{61}} \newlabel{sub@fig:MeloDDG2}{{(b)}{b}} \@writefile{lof}{\contentsline {figure}{\numberline {3.1}{\ignorespaces Song Sparrow \emph {Melospiza melodia} counts from 1966--2003 and the relation between observed counts and annual growth rate determined from those counts, fit with ordinary least squares regression. See Chapter 1 for data source.}}{61}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Song Sparrow Counts}}}{61}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$N_{t+1}/N_t$ $vs$. Counts}}}{61}} \@writefile{toc}{\contentsline {section}{\numberline {3.1}Discrete Density-dependent Growth}{62}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1.1}Motivation}{62}} \newlabel{eq:1}{{3.3}{62}} \newlabel{eq:2add}{{3.4}{63}} \newlabel{eq:2add3}{{3.6}{63}} \newlabel{eq:3dd}{{3.7}{63}} \newlabel{eq:4dd}{{3.8}{63}} \@writefile{toc}{\contentsline {paragraph}{Writing a Function For Discrete Logistic Growth}{63}} \@writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces Discrete logistic growth with $r_d=1$, $\alpha = 0.01$. }}{64}} \newlabel{fig:dlg}{{3.2}{64}} \@writefile{toc}{\contentsline {paragraph}{Graphing Population Size}{64}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1.2}Relations between growth rates and density}{64}} \@writefile{toc}{\contentsline {paragraph}{(Per Capita) Population Growth Increment $vs$. $N$ (Fig. 3.3\hbox {})}{65}} \newlabel{pgi}{{3.3a}{65}} \newlabel{sub@pgi}{{(a)}{a}} \newlabel{ppgi}{{3.3b}{65}} \newlabel{sub@ppgi}{{(b)}{b}} \@writefile{lof}{\contentsline {figure}{\numberline {3.3}{\ignorespaces Relations between the total and per capita discrete growth increments and population size.}}{65}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Population Growth Increment}}}{65}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Per capita Growth Increment}}}{65}} \newlabel{fig:DGI1}{{3.3}{65}} \citation{Case2000} \citation{May2001} \newlabel{eq:pgi}{{3.9}{66}} \newlabel{eq:quad}{{3.10}{66}} \newlabel{eq:quad0}{{3.11}{66}} \newlabel{sec:per-capita-popul}{{3.1.2}{66}} \newlabel{eq:ppgi}{{3.12}{66}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1.3}Effect of initial population size on growth dynamics}{66}} \newlabel{fig:init}{{3.4a}{67}} \newlabel{sub@fig:init}{{(a)}{a}} \newlabel{fig:a}{{3.4b}{67}} \newlabel{sub@fig:a}{{(b)}{b}} \@writefile{lof}{\contentsline {figure}{\numberline {3.4}{\ignorespaces Confirmation of analytical solutions for discrete logistic growth}}{67}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Variation in $N_0$}}}{67}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Variation in $\alpha $}}}{67}} \@writefile{toc}{\contentsline {paragraph}{Numerical Evaluation of Initial Conditions (Fig. 3.4a\hbox {})}{68}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1.4}Effects of $\alpha $}{68}} \@writefile{toc}{\contentsline {paragraph}{Numerical Evaluation of $\alpha $ (Fig. 3.4b\hbox {})}{68}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1.5}Effects of $r_{d}$}{69}} \@writefile{lof}{\contentsline {figure}{\numberline {3.5}{\ignorespaces The variety of population dynamics resulting from different values of $r_d$ for the discrete logistic growth model ($r_d = 1,1.2, \ldots , 3$, $\alpha =0.01$). See Fig. 3.6\hbox {} for a more informative view.}}{69}} \newlabel{fig:DDGr1}{{3.5}{69}} \@writefile{toc}{\contentsline {paragraph}{Simple Numerical Evaluation of $r_d$ (Fig. 3.5\hbox {})}{69}} \@writefile{lof}{\contentsline {figure}{\numberline {3.6}{\ignorespaces A more informative view of the effects of variation in $r_{d}$ on population dynamics.}}{70}} \newlabel{fig:DDGr2}{{3.6}{70}} \citation{May:1974fk} \@writefile{toc}{\contentsline {paragraph}{Presentation of Limit Cycles (Fig. 3.6\hbox {})}{71}} \@writefile{toc}{\contentsline {subsubsection}{Bifurcations}{72}} \@writefile{lof}{\contentsline {figure}{\numberline {3.7}{\ignorespaces Illustration of the long term dynamics of discrete logistic population growth. When a small change in a continuous parameter results in a change in the number of attractors (e.g. a single point equilibrium to a stable 2-point limit cycle), we call this a bifurcation.}}{73}} \newlabel{fig:bifurcation}{{3.7}{73}} \@writefile{toc}{\contentsline {paragraph}{Bifurcation Plot: Attractors as a Function of $r_d$ (Fig. 3.7\hbox {})}{73}} \citation{Ellner:2005fk} \citation{May:1974fk} \citation{Becks2005,Constantino1995,Kendall:1998ys} \@writefile{toc}{\contentsline {subsubsection}{Sensitivity to initial conditions}{74}} \@writefile{toc}{\contentsline {paragraph}{Sensitivity to Intitial Conditions}{74}} \@writefile{toc}{\contentsline {subsubsection}{Boundedness, and other descriptors}{74}} \citation{Kingsland:1985kx} \@writefile{lof}{\contentsline {figure}{\numberline {3.8}{\ignorespaces Effects of differences in initial population size on the short term and long term dynamics, and their correspondence, of three populations.}}{75}} \newlabel{fig:DDGChaosInitN}{{3.8}{75}} \@writefile{toc}{\contentsline {section}{\numberline {3.2}Continuous Density Dependent Growth}{75}} \newlabel{clogisticK}{{3.13}{75}} \newlabel{clogistica}{{3.14}{75}} \citation{Stephens:1999mz} \@writefile{toc}{\contentsline {subsection}{\numberline {3.2.1}Generalizing and resimplifying the logistic model}{76}} \newlabel{clogisticderive1}{{3.15}{76}} \newlabel{eq:ddd}{{3.18}{76}} \newlabel{eq:7}{{3.20}{76}} \newlabel{eq:6}{{3.21}{77}} \newlabel{fig:dd1}{{3.9a}{77}} \newlabel{sub@fig:dd1}{{(a)}{a}} \newlabel{fig:dd2}{{3.9b}{77}} \newlabel{sub@fig:dd2}{{(b)}{b}} \@writefile{lof}{\contentsline {figure}{\numberline {3.9}{\ignorespaces Elaborating on simple logistic growth. \subref {fig:dd1}, a specific example of a generalized density dependence via effects on birth rate and death rate. \subref {fig:dd2} Net density dependence for our generalized model and logisitc linear density dependence.}}{77}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Birth and Death Rates}}}{77}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Net Density Dependence}}}{77}} \@writefile{toc}{\contentsline {paragraph}{Density Dependence on Birth and Death Rates (Figs. 3.9a\hbox {}, 3.9b\hbox {})}{78}} \newlabel{clogisticderive2}{{3.22}{78}} \newlabel{clogisticdiff}{{3.23}{78}} \newlabel{clogisticderive3}{{3.24}{78}} \citation{Chen2001} \citation{Neubert1997} \@writefile{toc}{\contentsline {subsubsection}{The integral of logistic growth}{79}} \newlabel{fig:clogisticNt}{{3.25}{79}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.2.2}Equilibria of the continuous logistic growth model}{79}} \newlabel{clogistica2}{{3.26}{79}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.2.3}Dynamics around the equilibria --- stability}{79}} \@writefile{toc}{\contentsline {subsubsection}{Analytical linear stability analysis}{80}} \@writefile{lof}{\contentsline {figure}{\numberline {3.10}{\ignorespaces Population growth rate, $\mathrm {d}{N}/\mathrm {d}{t}$, as a function of $N$. Points a--e are labelled for convenience. At values of $N$ associated with points $a$ and $d$, growth rate (here labelled as $F(N)$) equals zero. At values of $N$ associated with $b$ and $c$ growth rate is positive, and for $e$ growth rate is negative. \emph {Note this is growth rate as a function of $N$} (time is not explicitly part of this graph).}}{81}} \newlabel{fig:FN.N}{{3.10}{81}} \@writefile{toc}{\contentsline {paragraph}{Growth rate $vs.$ $N$}{82}} \newlabel{eq:dot}{{3.27}{82}} \newlabel{stab2}{{3.11a}{83}} \newlabel{sub@stab2}{{(a)}{a}} \newlabel{stab3}{{3.11b}{83}} \newlabel{sub@stab3}{{(b)}{b}} \@writefile{lof}{\contentsline {figure}{\numberline {3.11}{\ignorespaces Linear Stability}}{83}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Growth Rate $vs$. $N$}}}{83}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Exponential Recovery}}}{83}} \newlabel{eq:pdlog}{{3.28}{83}} \newlabel{eq:pdlog2}{{3.29}{83}} \newlabel{eq:9}{{3.30}{83}} \newlabel{eq:8}{{3.31}{84}} \newlabel{eq:6}{{3.32}{84}} \@writefile{toc}{\contentsline {paragraph}{Symbolic differentiation}{84}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.2.4}Dynamics}{85}} \@writefile{toc}{\contentsline {paragraph}{Function for an ODE}{85}} \newlabel{sec:writing-your-own}{{3.2.4}{85}} \newlabel{clogisticDDD}{{3.35}{85}} \newlabel{c1}{{3.12a}{86}} \newlabel{sub@c1}{{(a)}{a}} \newlabel{c2}{{3.12b}{86}} \newlabel{sub@c2}{{(b)}{b}} \@writefile{lof}{\contentsline {figure}{\numberline {3.12}{\ignorespaces Dynamics of continuous logistic population growth. \subref {c1} The characteristic shape of logistic growth. \subref {c2} Regardless of $N_0$ or $r$, populations converge slowly (small $r$) or quickly (high $r$) on $K=1/\alpha $.}}{86}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {One Population}}}{86}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Many Different Populations}}}{86}} \@writefile{toc}{\contentsline {paragraph}{Plotting Random Populations ( (Fig. 3.12b\hbox {}))}{86}} \@writefile{toc}{\contentsline {section}{\numberline {3.3}Other Forms of Density-dependence}{86}} \citation{Sibly:2005ys} \citation{Sibly:2005ys} \citation{Sibly:2005ys} \citation{Sibly:2005ys} \newlabel{eq:11}{{3.36}{87}} \@writefile{toc}{\contentsline {paragraph}{Theta-logistic function}{87}} \newlabel{eq:12}{{3.37}{87}} \newlabel{th1}{{3.13a}{88}} \newlabel{sub@th1}{{(a)}{a}} \newlabel{th2}{{3.13b}{88}} \newlabel{sub@th2}{{(b)}{b}} \newlabel{th3}{{3.13c}{88}} \newlabel{sub@th3}{{(c)}{c}} \@writefile{lof}{\contentsline {figure}{\numberline {3.13}{\ignorespaces Theta-logistic growth. In a review of population dynamics, Sibly et al. \cite {Sibly:2005ys} use theta-logistic density dependence, $1-(N/K)^{\theta }$, to show that populations most frequently have a concave-up $\theta < 1$ pattern. }}{88}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Density Dependence}}}{88}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Growth Rate}}}{88}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$N$ Dynamics}}}{88}} \@writefile{toc}{\contentsline {paragraph}{Theta-logistic density dependence}{88}} \@writefile{toc}{\contentsline {paragraph}{Theta-logistic growth rate}{89}} \@writefile{toc}{\contentsline {paragraph}{Theta-logistic dynamics}{89}} \@writefile{toc}{\contentsline {section}{\numberline {3.4}Maximum Sustained Yield}{89}} \newlabel{eq:msy1}{{3.39}{89}} \newlabel{eq:msyth}{{3.41}{89}} \citation{Roughgarden:1996fr} \newlabel{eq:FN}{{3.43}{90}} \newlabel{eq:F}{{3.44}{90}} \citation{Roughgarden:1996fr} \@writefile{toc}{\contentsline {paragraph}{\emph {MSY} and harvesting (Fig. 3.14a\hbox {})}{91}} \@writefile{toc}{\contentsline {paragraph}{Equilibrium solution for logistic growth with harvesting (Fig. 3.14b\hbox {})}{91}} \newlabel{eq:ecopt}{{3.46}{91}} \citation{Bolker:2008rr} \citation{Riebesell:1974qr,Rosenzweig1971,Tilman1982} \citation{Stevens:2006on} \newlabel{msy1}{{3.14a}{92}} \newlabel{sub@msy1}{{(a)}{a}} \newlabel{msy2}{{3.14b}{92}} \newlabel{sub@msy2}{{(b)}{b}} \@writefile{lof}{\contentsline {figure}{\numberline {3.14}{\ignorespaces Illustration of maximum sustained yield under harvesting. \subref {msy1} both the logistic growth model eq. 3.13\hbox {} and the linear harvest model eq. 9.6\hbox {}, and \subref {msy2} the combined growth model that includes harvesting as a source of mortality. Equilibria occur when the growth rate, $y$, equals zero, crossing the $x$ axis.}}{92}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Logistic Growth and Harvest Functions}}}{92}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Logistic Growth \emph {with} Harvesting}}}{92}} \@writefile{toc}{\contentsline {section}{\numberline {3.5}Fitting Models to Data}{92}} \newlabel{sec:data}{{3.5}{92}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.5.1}The role of resources in altering population interactions within a simple food web}{92}} \citation{Stevens:2006on} \citation{Leibold1996} \citation{Stevens:2006on} \@writefile{toc}{\contentsline {subsection}{\numberline {3.5.2}Initial data exploration}{93}} \citation{Stevens:2006on} \@writefile{lof}{\contentsline {figure}{\numberline {3.15}{\ignorespaces Raw data for \emph {Closterium} time series. Each line connects estimates of the \emph {Closterium} popoulation in a single replicate microcosm. Each estimate is based on a $\sim 0.3$\tmspace +\thinmuskip {.1667em}mL sample drawn from the microcosm after it has been mixed. Low nutrient concentration is $1/10\times $ the standard (high) concentration.}}{94}} \newlabel{fig:closraw}{{3.15}{94}} \citation{Fussmann:2005uq} \citation{Sibly:2005ys} \@writefile{toc}{\contentsline {subsection}{\numberline {3.5.3}A time-implicit approach}{95}} \newlabel{eq:percapita}{{3.49}{95}} \newlabel{eq:5}{{3.50}{95}} \newlabel{fig:pgr1}{{3.5.3}{96}} \@writefile{lof}{\contentsline {figure}{\numberline {3.16}{\ignorespaces Per capita growth rate $vs$. population size at the beginning of the interval (data from one high nutrient replciate).}}{96}} \citation{Pinheiro2000} \@writefile{lof}{\contentsline {figure}{\numberline {3.17}{\ignorespaces Per capita growth rates $vs$. population size, $N$, at the beginning of the interval for which the growth rate is calculated (includes all microcosms). Note that $y$-intercepts are all fairly similar, while the maximum $N$, slopes and $x$-intercepts differ markedly. }}{98}} \newlabel{fig:pgrall}{{3.17}{98}} \@writefile{toc}{\contentsline {subsubsection}{A statistical model of per capita growth}{98}} \newlabel{pgr1}{{3.18a}{99}} \newlabel{sub@pgr1}{{(a)}{a}} \newlabel{pgr2}{{3.18b}{99}} \newlabel{sub@pgr2}{{(b)}{b}} \newlabel{pgr3}{{3.18c}{99}} \newlabel{sub@pgr3}{{(c)}{c}} \@writefile{lof}{\contentsline {figure}{\numberline {3.18}{\ignorespaces Diagnostic plots for fitting the per capita growth rate to population size.}}{99}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Residuals $vs$. Fitted}}}{99}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Random Effects Q-Q Plot}}}{99}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {Residuals Q-Q Plot}}}{99}} \newlabel{fig:diagnostic}{{3.18}{99}} \citation{Burnham:2002mi} \citation{Bolker:2008rr,Pinheiro2000} \@writefile{toc}{\contentsline {subsection}{\numberline {3.5.4}A time-explicit approach}{101}} \@writefile{lof}{\contentsline {figure}{\numberline {3.19}{\ignorespaces High nutrient microcosms and the logistic growth model using coefficients from \texttt {modSlope}.}}{102}} \newlabel{fig:hi}{{3.19}{102}} \@writefile{lof}{\contentsline {figure}{\numberline {3.20}{\ignorespaces Coefficients estimated for each microcosm separately. Missing coefficients occurred when model fits could not be easily acheived.}}{103}} \newlabel{fig:coefs}{{3.20}{103}} \citation{Burnham:2002mi} \citation{Stevens:2006on} \citation{Bolker:2008rr} \@writefile{lof}{\contentsline {figure}{\numberline {3.21}{\ignorespaces Times series plots augmented with the overall predictions (solid lines for the fixed effects) and predictions for individual microcosms (dashed lines).}}{106}} \newlabel{fig:dyns}{{3.21}{106}} \@writefile{toc}{\contentsline {subsubsection}{Conclusions}{106}} \citation{Sibly:2005ys} \@writefile{toc}{\contentsline {section}{\numberline {3.6}Summary}{107}} \@writefile{toc}{\contentsline {section}{Problems}{107}} \newlabel{prob3:1}{{3.1}{107}} \newlabel{prob3:2}{{3.2}{107}} \newlabel{prob3:theta}{{3.3}{107}} \citation{Halley1996,Petchey2001} \newlabel{prob3:Harvest}{{3.4}{108}} \newlabel{prob3:EnvVar}{{3.5}{108}} \@setckpt{Chap03/Chapter03}{ \setcounter{page}{110} \setcounter{equation}{50} \setcounter{enumi}{3} \setcounter{enumii}{0} \setcounter{enumiii}{0} \setcounter{enumiv}{0} \setcounter{footnote}{17} \setcounter{mpfootnote}{0} \setcounter{part}{1} \setcounter{section}{6} \setcounter{subsection}{0} \setcounter{subsubsection}{0} \setcounter{paragraph}{0} \setcounter{subparagraph}{0} \setcounter{figure}{21} \setcounter{table}{0} \setcounter{chapter}{3} \setcounter{theorem}{0} \setcounter{prob}{5} \setcounter{merk}{0} \setcounter{pp@next@reset}{0} \setcounter{parentequation}{0} \setcounter{float@type}{4} \setcounter{KVtest}{0} \setcounter{subfigure}{0} \setcounter{subfigure@save}{3} \setcounter{lofdepth}{1} \setcounter{subtable}{0} \setcounter{subtable@save}{0} \setcounter{lotdepth}{1} \setcounter{FancyVerbLine}{2} }