\relax \@writefile{toc}{\contentsline {chapter}{\numberline {1}Simple Density-independent Growth}{3}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \newlabel{Chap:DIG}{{1}{3}} \newlabel{fig:Melo}{{1.1a}{3}} \newlabel{sub@fig:Melo}{{(a)}{a}} \newlabel{fig:ssgr}{{1.1b}{3}} \newlabel{sub@fig:ssgr}{{(b)}{b}} \@writefile{lof}{\contentsline {figure}{\numberline {1.1}{\ignorespaces Song Sparrow (\emph {Melospiza melodia}) counts in Darrtown, OH, USA. From Sauer, J. R., J. E. Hines, and J. Fallon. 2005. The North American Breeding Bird Survey, Results and Analysis 1966--2004. Version 2005.2. USGS Patuxent Wildlife Research Center, Laurel, MD.}}{3}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Counts of Song Sparrows}}}{3}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Relative Annual Change $vs$. $N$}}}{3}} \@writefile{toc}{\contentsline {section}{\numberline {1.1}A Very Specific Definition}{4}} \citation{Levins1966} \@writefile{toc}{\contentsline {section}{\numberline {1.2}A Simple Example}{5}} \newlabel{sec:1}{{1.2}{5}} \@writefile{toc}{\contentsline {section}{\numberline {1.3}Exploring Population Growth}{5}} \newlabel{fig:lily1}{{1.3}{6}} \@writefile{lof}{\contentsline {figure}{\numberline {1.2}{\ignorespaces Hypothetical water lily population size through time.}}{6}} \@writefile{toc}{\contentsline {paragraph}{Simple Graphing of Population Size (Fig. 1.3\hbox {})}{6}} \@writefile{toc}{\contentsline {paragraph}{Vectorized math}{6}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.3.1}Projecting population into the future}{7}} \newlabel{eq:GeoGrow}{{1.1}{7}} \@writefile{toc}{\contentsline {paragraph}{Projecting population size}{8}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.3.2}Effects of initial population size}{8}} \@writefile{toc}{\contentsline {paragraph}{Effects of Initial Population Size}{8}} \newlabel{eq:1}{{1.2}{9}} \@writefile{toc}{\contentsline {paragraph}{Graphing a Matrix (Figs. 1.3a\hbox {}, 1.3b\hbox {})}{9}} \newlabel{fig:geoN1}{{1.3a}{9}} \newlabel{sub@fig:geoN1}{{(a)}{a}} \newlabel{fig:geoN2}{{1.3b}{9}} \newlabel{sub@fig:geoN2}{{(b)}{b}} \@writefile{lof}{\contentsline {figure}{\numberline {1.3}{\ignorespaces Effects of variation in initial $N$ on population size, through time. Different symbols indicate different populations.}}{9}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Arithmetic Scale on $y$}}}{9}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Logarithmic Scale on $y$}}}{9}} \newlabel{fig:NtInit}{{1.3}{9}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.3.3}Effects of different per capita growth rates}{10}} \@writefile{toc}{\contentsline {paragraph}{Effects of Different $\lambda $ (Fig. 1.4\hbox {})}{10}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.3.4}Average growth rate}{10}} \@writefile{lof}{\contentsline {figure}{\numberline {1.4}{\ignorespaces Effects of variation in $\lambda $ on population size through time. The dotted line indicates no change ($N_t = N_0, \hskip 1em\relax \lambda =1$). Numbers (1, 2, 3) indicate populations resulting from $\lambda =(0.5,\tmspace +\thinmuskip {.1667em}1.0,\tmspace +\thinmuskip {.1667em}1.5)$, respectively. Any $\lambda $ greater than 1 results in positive geometric growth; any $\lambda < 1$ results in negative geometric growth, or population decline. }}{11}} \newlabel{fig:NtLambda}{{1.4}{11}} \newlabel{eq:1}{{1.4}{11}} \newlabel{eq:4}{{1.5}{12}} \newlabel{eq:5}{{1.8}{12}} \@writefile{lof}{\contentsline {figure}{\numberline {1.5}{\ignorespaces Song Sparrow population sizes, and projections based on arithmetic and geometric mean $R$.}}{12}} \newlabel{fig:geo}{{1.5}{12}} \@writefile{toc}{\contentsline {paragraph}{Comparing arithmetic and geometric averages (Fig. 1.5\hbox {})}{13}} \@writefile{toc}{\contentsline {section}{\numberline {1.4}Continuous Exponential Growth}{13}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.4.1}Motivating continuous exponential growth}{14}} \newlabel{eq:e}{{1.9}{14}} \@writefile{toc}{\contentsline {paragraph}{Numerical approximation of $e$}{15}} \@writefile{lof}{\contentsline {figure}{\numberline {1.6}{\ignorespaces The limit to subdividing reproduction into smaller steps. We can compare this numerical approximation to the true value, $e^1 = $ 2.718.}}{15}} \newlabel{fig:e}{{1.6}{15}} \newlabel{eq:ct}{{1.11}{16}} \@writefile{toc}{\contentsline {paragraph}{Projecting a continuous population}{16}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.4.2}Deriving the time derivative}{16}} \@writefile{lof}{\contentsline {figure}{\numberline {1.7}{\ignorespaces Projecting continuous populations with different $r$.}}{17}} \newlabel{fig:cont}{{1.7}{17}} \newlabel{eq:6deriv}{{1.12}{17}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.4.3}Doubling (and tripling) time}{17}} \newlabel{eq:dbl}{{1.16}{18}} \@writefile{toc}{\contentsline {paragraph}{Creating a function for doubling time}{18}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.4.4}Relating $\lambda $ and $r$}{18}} \citation{Gotelli2001} \@writefile{toc}{\contentsline {subsubsection}{Units}{19}} \@writefile{toc}{\contentsline {subsubsection}{Converting between time units}{19}} \@writefile{toc}{\contentsline {section}{\numberline {1.5}Comments on Simple Density-independent Growth Models}{19}} \citation{Malthus:1798qf} \@writefile{toc}{\contentsline {section}{\numberline {1.6}Modeling with Data: Simulated Dynamics}{20}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.6.1}Data-based approaches}{21}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.6.2}Looking at and collecting the data}{21}} \@writefile{lof}{\contentsline {figure}{\numberline {1.8}{\ignorespaces Observations of Song Sparrows in Darrtown, OH (http://www.mbr-pwrc.usgs.gov/bbs/). }}{22}} \newlabel{fig:AllSS}{{1.8}{22}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.6.3}One simulation}{23}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.6.4}Multiple simulations}{24}} \newlabel{fig:OneSim}{{1.9a}{26}} \newlabel{sub@fig:OneSim}{{(a)}{a}} \newlabel{fig:TenSim}{{1.9b}{26}} \newlabel{sub@fig:TenSim}{{(b)}{b}} \@writefile{lof}{\contentsline {figure}{\numberline {1.9}{\ignorespaces Simulated population dynamics with $R$ drawn randomly from observed Song Sparrow counts.}}{26}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {A single simulation}}}{26}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Ten simulations}}}{26}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.6.5}Many simulations, with a function}{26}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.6.6}Analyzing results}{27}} \@writefile{lof}{\contentsline {figure}{\numberline {1.10}{\ignorespaces Exploratory graphs of the distributions of the final simulated population sizes.}}{28}} \newlabel{fig:EDA.N}{{1.10}{28}} \@writefile{lof}{\contentsline {figure}{\numberline {1.11}{\ignorespaces Quantile-quantile plot used to compare $\qopname \relax o{log}R$ to a $t$-distribution. Scaling \texttt {logOR} in this case means that we subtracted the mean and divided by the standard deviation. A histogram performs a similar service but is generally less discriminating and informative.}}{30}} \newlabel{fig:QQR}{{1.11}{30}} \citation{Cohen:2003eu} \citation{Cohen:2003eu} \@writefile{toc}{\contentsline {section}{\numberline {1.7}Summary}{31}} \@writefile{toc}{\contentsline {section}{Problems}{31}} \newlabel{prob:means}{{1.1}{31}} \newlabel{prob:cont.dbl}{{1.2}{31}} \newlabel{prob:cont.dbl}{{1.3}{31}} \newlabel{prob:help}{{1.4}{31}} \@setckpt{Chap01/Chapter01}{ \setcounter{page}{32} \setcounter{equation}{19} \setcounter{enumi}{5} \setcounter{enumii}{0} \setcounter{enumiii}{0} \setcounter{enumiv}{0} \setcounter{footnote}{19} \setcounter{mpfootnote}{0} \setcounter{part}{1} \setcounter{section}{7} \setcounter{subsection}{0} \setcounter{subsubsection}{0} \setcounter{paragraph}{0} \setcounter{subparagraph}{0} \setcounter{figure}{11} \setcounter{table}{0} \setcounter{chapter}{1} \setcounter{theorem}{0} \setcounter{prob}{4} \setcounter{merk}{0} \setcounter{pp@next@reset}{0} \setcounter{parentequation}{0} \setcounter{float@type}{4} \setcounter{KVtest}{0} \setcounter{subfigure}{0} \setcounter{subfigure@save}{2} \setcounter{lofdepth}{1} \setcounter{subtable}{0} \setcounter{subtable@save}{0} \setcounter{lotdepth}{1} \setcounter{FancyVerbLine}{2} }