As a mineral collector, I was first captured by the innate appeal of beautiful crystals and mineral specimens. However, I soon became interested in how minerals form and the environments where they are found. For field collectors, such information is critical to success in finding specimens. It wasn’t until I was a geology student that I realized that this interest in how and where minerals form is the basis for the study of rocks and rock-forming environments.

Those minerals that make up the vast majority of rocks are appropriately called the rock-forming minerals. Of the roughly four thousand known minerals, only a handful fall into this category. This may seem surprising, but it is a simple outcome of the abundance of different elements in the earth. More than 99 percent of the earth is made of only eight elements (O, Si, Al, Fe, K, Na, Ca, and Mg). Thus, the majority of minerals and the rocks that they form are composed of some combination of these elements. For example, because O and Si are the two most abundant elements in the mantle and crust (O = 46 percent and Si = 28 percent of the crust by weight), it is not surprising that most igneous rocks are made of silicate minerals. In terms of abundance, the vast majority of minerals in igneous rocks are olivines, pyroxenes, amphiboles, micas, feldspars, and quartz; they compose the common rock types such as peridotite, basalt, gabbro, andesite, granite, and so forth.

There are, of course, rocks whose mineralogies do not follow the norm. These rock types are exotic in comparison to "normal" types. Moreover, not only does their formation usually involve uncommon chemical and physical processes that make them of great interest to scientists, but their unusual mineral assemblages also make them interesting to mineral collectors. Two igneous examples are carbonatites and kimberlites. In another unusual class of igneous rocks we find iron oxides (ilmenite, magnetite, or hematite) and apatite as the major constituents. There are several different types of rocks with this basic mineralogy, including nelsonites and Kiruna-type deposits. The former is named for an unusual deposit in Nelson County, Virginia, and the latter for the Kiruna district in northern Sweden. Differences between nelsonites and Kiruna-type deposits include the Ti content of the iron oxides (thus the type of oxide in some cases) and the proportion of apatite in the rock, as well as their minor mineral constituents, associated rock types, geological setting, and probably their modes of formation.

Nelsonites have a characteristic high concentration of Ti, which results in the formation of ilmenite, Ti-rich magnetite, or both. They are also apatite rich, often with 30–50 percent of this mineral. In addition, they are usually associated with anorthosites* (intrusive igneous rocks that are almost entirely plagioclase feldspar, usually labradorite). Nelsonites are magmatic in origin. It is believed that the iron-titanium-phosphorous-oxide magmas from which they crystallize result from liquid immiscibility within a silicate magma, intense fractionation of some parent magma, or partial melting of Fe- and P-rich rocks in the earth’s crust (Philpotts 1967; Kolker 1982; Barton and Johnson 1996;)

*Anorthosites, such as the Nain Anorthosite in Labrador and the Ahvenisto Anorthosite in Finland, are some of the best sources of large labradorite specimens and are commonly used as decorative facings on the exteriors and interiors of buildings.

Figure 1. Fluorapatite, 5.3 cm high, Cerro Mercado, Durango, Mexico. Kerith Graeber specimen, Jeff Scovil photo.
In most cases where nelsonites are associated with anorthosites, there is good geological and experimental evidence that liquid immiscibility was the mechanism for generating the Fe- and P-rich magma. In this process the composition of some parent magma evolves to the point where it is chemically more stable to separate into two magmas, of very different compositions, rather than to remain as a single magma. The resulting two magmas are immiscible, meaning that they will not mix—similar to oil and water. Experiments show that, at high temperatures, large amounts of iron can dissolve readily in silica-rich melts, but as an iron-rich silicate magma is cooled, immiscible silica-rich and iron-rich liquids will separate (Philpotts 1967; Naslund 1983). In anorthosite rock suites, nelsonites are sometimes found with other rock types that are rich in iron oxides and apatite but have other major mineral constituents. One such example is oxide-apatite gabbronites that contain ilmenite ± magnetite, apatite, orthopyroxene + clinopyroxene, and plagioclase (Dymek and Owens 2001). These minerals may also be found in nelsonites but only in minor or trace amounts.

In this issue of Rocks & Minerals, Lupulescu and Pyle (page 242) describe the mineralogy of a Kiruna-type iron, phosphorus, rare-earth-element deposit in Mineville, New York (Buddington 1966; Foose and McLelland 1995). In contrast to nelsonites, Kiruna-type deposits have much lower Ti contents; thus, they contain magnetite or hematite but no ilmenite. They also exhibit variable amounts of apatite. The type deposit in Kiruna, Sweden, contains about 30 percent apatite (Nyström and Henriquez 1994), and the orebed at Mineville, New York, is about 50 percent apatite. Others have very small amounts of apatite. Geologically, they are usually associated with calc-alkaline to alkaline volcanic igneous rocks (Frietsch 1978; Naslund et al. 2000) and hydrothermally altered (metasomatic) or precipitated rocks. Many have coarse textural features that suggest a volcanic origin, but some investigators suggest that the iron oxides and apatite have hydrothermally replaced what were originally silicate volcanics, while retaining the original textures. Hence, the origin of Kiruna-type deposits has been controversial, with both magmatic and hydrothermal origins proposed (Frietsch 1978; Henriquez and Martin 1978; Nyström and Henriquez 1994; Barton and Johnson 1996; Rhodes, Oreskes, and Sheets 1999; Rhodes and Oreskes 1999). Different deposits show varying evidence for these two hypothesized mechanisms of formation, and ultimately it may be found that both can result in the same deposit type. Although commonly mined for iron ore, as was the Mineville deposit, Kiruna-type deposits are of significant economic interest for commodities other than iron. Many Kiruna-type deposits are also rich in Cu, Au, U, or REE (e.g., Hauck 1990; Einaudi and Oreskes 1990; Marikos, Nuelle, and Seeger 1990; Vivallo, Henriquez, and Espinoza 1993; Foose and McLelland 1995; Barton and Johnson 1996; Hitzman 2000). The orebody at Mineville, New York, is
particularly rich in REE, which reside in the apatite as well as in REE-minerals such as stillwellite-(Ce). For specimen production, one of the best known Kiruna-type deposits is that found at Cerro de Mercado, Durango, Mexico (Megaw 1999). Here, the iron oxide, apatite-rich rocks are hosted by volcanics (ryholitic air-fall tuffs of the Cacaria Formation [Lyons 1988]). The iron oxide precipitated as magnetite, but most has subsequently oxidized to form “martite,” a pseudomorphous replacement of magnetite by hematite. Although it has produced many nice martite specimens, Cerro de Mercado is famous for its abundant, gemmy, yellow-green apatite crystals. The crystals are usually sharp and lustrous and range in size from a few millimeters to more then 12 cm. Although the origin (magmatic or hydrothermal) of the Cerro de Mercado iron oxide deposit is under debate (e.g., Lyons 1988; Barton and Johnson 1996)—as is the case for other Kiruna deposits—there is a clear hydrothermal component to it, and the gemmy-yellow apatites from here are certainly hydrothermal in their origin, forming in open breccias where they can grow unrestricted.

ACKNOWLEDGMENTS

I thank Bob Cook, Kendall Hauer, Yun Luo, and Marian Lupulescu for their reviews of this manuscript and for their helpful suggestions.

REFERENCES


