What Is
Image
Processing?

The term image processing has become one of today’s hot-
test key words in the applied computer sciences. What
was once an expensive, time-consuming, and somewhat
unpredictable endeavor has ripened into a mature disci-
pline of its own. With the advent of inexpensive micro-
processors, dense memory devices, and special purpose
signal processing components, image processing has be-
come a valuable tool in a variety of applications.

Image processing, in its general form, pertains to the
alteration and analysis of pictorial information. We find in-
stances of image processing occurring all the time in our
daily lives. Perhaps the most common case is that of
eyeglasses. Corrective eyeglasses serve to alter observed
pictorial scenes in such a way that aberrations created by
the eye are compensated for by correcting the image be-
fore its contact with the eye. Another common case of im-
age processing is the adjustment of the brightness and
contrast controls on a television set. By doing this, we en-
hance the image until its subjective appearance to us is
most appealing. Even the water in a pond serves to alter
the form of an image. The reflected image is not only re-
versed, but often exhibits distortion due to the water’s mo-
tion. Probably the most powerful image processing system
encountered in everyday life is the one comprised of the
human eye and brain. This biological system receives, en-
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hances, dissects, analyzes, and stores images at enormous
rates of speed. Ironically, this system is taken more for
granted than any other. All these are examples of image
processing that are so commonly accepted that one rarely
thinks of them as anything unique.

Methods of Image Processing

In the pursuit of image processing as a discipline, the ob-
jective is to visually enhance or statistically evaluate some
aspect of an image not readily apparent in its original
form. This objective is carried out through the development
and implementation of the processing means necessary to
operate upon images. Fundamentally, three techniques of
implementing a process upon an image are available—one
that is optical and two that are electronic, analog and digi-
tal. Although the analog and digital techniques are both
electronic means, they differ considerably. Each of the
three methods is found in routine use with the particular
application defining the most practical approach to
implementing the process in need.

Optical processing, as implied, uses an arrangement
of optics to carry out a process. Eyeglasses are a form of
optical image processing. An important form of optical pro-
cessing is found in the photographic darkroom. For years,
photographers have enhanced, manipulated, and abstract-
ed images from one form to another, the object always be-
ing to produce a more favorable or appealing final print.
This classical form of image processing has been refined
through trial-and-error techniques, leaving today's photog-
rapher with a broad base of rules enabling quick and pre-
dictable results. The pioneers of the darkroom may
probably be considered to be the first to use defined image
processing techniques in their everyday work.

Analog processing of images refers to the alteration
of images through electrical means. Of course, the image
must be in an electrical form first. The most common ex-
ample of this is the television image. The television signal
is a voltage level that varies in amplitude to represent
brightness throughout the image. By electrically altering
this signal, we correspondingly alter the final displayed im-
age appearance. The brightness and contrast controls on a
television set serve to adjust the amplitude and reference
of the video signal, resulting in the brightening, darkening,
and alteration of the brightness range of the displayed im-
age.

Digital image processing is a form of image process-
ing brought on by the advent of the digital computer.
Allowing the precise implementation of processes, this
form provides the greatest flexibility and power for general
image processing applications. Within the digital domain,
an image is represented by discrete points of defined
brightness. Each point has a numeric location within the
image and a numeric brightness. By manipulating these
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values of brightness within the image, the computer is ca-
pable of carrying out the most complex operations with
relative ease. Furthermore, the flexibility in the program-
ming of a computer allows operations to be modified
quickly, a feature that optical and analog processing inher-
ently do not support.

The recent availability of sophisticated semiconductor
digital devices and compact powerful computers, coupled
with advances in image processing algorithms, has brought
digital image processing to the forefront. Because of this, a
new industry has been born. The prime products of this in-
dustry are computer hardware, software, and special pe-
ripherals developed to support the needs of digital image
handling and processing. This intense activity has led to
the development of digital image processing systems suit-
able in price and capability to be used in low-end applica-
tions previously denied the opportunity.

Digital Image Processing:
A Historical Evolution

The roots of digital image processing may be traced back
to the early 1960s. It was at this time that NASA was ener-
getically pursuing its lunar science program in an attempt
to characterize the lunar surface in support of the future
Apollo program. The Ranger program was established, in
part, to image the lunar surface, relaying the pictures to
Earthbound scientists for evaluation. After several previ-
ous Ranger missions during which the video equipment
failed to function, Ranger 7 transmitted several thousand
images back to Earth. These television images were taken
from their original analog electronic form and converted to
a digital form. Subsequent digital processing of these image
data was then carried out to remove various camera geo-
metric and response distortions. It was this processing of
Ranger 7 imagery that ushered the digital computer into
the world of image processing.

This initial work in digital image processing was done
at NASA’s Jet Propulsion Laboratory in Pasadena, Califor-
nia. NASA then continued this funding of research and de-
velopment in support of its other space programs.
Following the Ranger program was a series of planetary
exploration probes, all supported by digital image process-
ing. The Mariner project returned images from the planets
Mars, Venus, and Mercury. Project Surveyor soft-landed
cameras on the lunar surface. Pioneer 10 and 11 spacecraft
sent fly-by images of Jupiter and Saturn. The Viking space-
craft, equipped with cameras, landed on the surface of
Mars. More recently, two Voyager spacecraft encountered
the planets Jupiter and Saturn, and returned a wide range
of imagery aiding in the scientific studies of these planets.

In addition to NASA's planetary imagery, various oth-
er government agencies such as the United States Geologi-
cal Survey support various image processing activities.
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Earth-orbiting satellites such as LANDSAT, TIROS, NIM-
BUS, GOES, and a variety of military surveillance systems
return electronic Earth surface imagery on a day-to-day ba-
sis. Furthermore, their data are routinely processed at
ground receiving stations through various digital computer
systems prior to their use.

Good background on the origin and evolution of digi-
tal image processing is found in Further Reading/
References 1-3 and II-1.

Although the space program provided the initial impe-
tus and funding for the research and development of image
processing, the applications are not restricted to space im-
agery. Today, image processing is found in medical, factory
automation, and robotics control applications. The ever-de-
clining price and increasing availability of digital systems
for image acquisition and handling has brought high-power
processing capabilities to the user who once only dreamed
of such possibilities. The microcomputer revolution has
allowed the consumer to pursue various low-level comput-
ing activities. One such boom in the industry is in comput-
er graphics. Graphics may be thought of as the synthetic
generation of pictorial imagery. Of course, the next logical
step is to provide real-life imaging capabilities. The com-
puter is truly gaining the ability to see, making vision and
image generation the next man-machine interface.

One such application of a low-level imagery project is
that of the amateur radio satellite, OSCAR 9. This space-
craft, built by the University of Surrey, England, is to sup-
port a variety of scientific studies including Earth imaging.
Once the satellite becomes operational, images are to be
transmitted on standard amateur radio bands, allowing vir-
tually anyone to receive them. With low-level image han-
dling capabilities, the ham will be able to receive and
display these images in the comfort of his or her own
home. By the same token, simple image handling capabili-
ties also allow images to be transmitted from one individu-
al to another over standard telephone lines or on cassette
tapes. These endeavors, combined with industry support,
bring digital image processing to the level where average
individuals may pursue it.

In the following pages, the field of digital image data
handling and processing is introduced in a manner compre-
hensible to the interested individual. Image processing is
introduced, overviewing common techniques and imple-
mentations. Additionally, the basic electronic hardware is
discussed, giving a block-level idea of the methods
employed in handling and processing image data. The at-
tempt made here is to supply a practical introduction and
reference to the field of digital image processing,
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Digital Image
Processing:
The Basics

In this chapter, we explore the fundamental elements of
digital image processing. First, the field of image process-
ing is discussed in an operational context, where the vari-
ous reasons for using these techniques are laid out,
Following this, the processes for carrying out these opera-
tions are defined. Finally, the hardware system for
implementing the processes is overviewed. The purpose of
this chapter is to briefly introduce these subjects and serve
as a foundation for their use throughout this book.

Image processing is a field that encompasses & broad
range of capabilities. Any action that operates upon or
uses pictorial information falls within the discipline of im-
age processing. Two terms that will help in the comprehen-
sion of the field must be defined. An image operation i8
any action upon an image that is defined from an applica-
tion’s standpoint. When we speak of a particular opera-
tion, we are explaining what the desired result is to be. An
image process, on the other hand, defines how a given op-
eration is to be implemented. A process is a means of car-
rying out an operatior. These are two distinctly separate
concepts, analogous in many ways to the differences t{e-
tween computer software and hardware. We may now dis-
cuss image processing from both the operational and
processing viewpoint.

7
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Operational Breakdown

Three classes of image operations may be used to suitably
subdivide the field into manageable parts (see Figure 2-1).
They are: (1) image quality enhancement—operations that
subjectively or objectively modify the appearance, or qual-
ities, of an image; (2) image analysis—operations that pro-
duce numeric information based on an image; and (3)
image coding—operations that code an image into a new
form. By breaking down operations into these categories,
the study of image processing becomes more structured in
an applications sense. By exploring these three operational
areas of image processing, we set forth the groundwork for
studying the application and implementation of digital im-
age processing.

IMAGE QUALITY ENHANCEMENT

Image quality enhancement operations serve to enhance or
in some way alter the qualities of an image. The desired
result is an image of improved quality. The improvement in
the quality of an image is often subjective and is related to
the application as well as the judgment of the viewer. For
instance, one application may require the sharpening of an
image that appears blurred. Another application, however,
may defocus an image so that sharp details are eliminated,
making other features of the image more detectable. The
applications are different, making each viewer’s operation
appear contrary to the other's interest. In short, one view-
er's enhancement is another’s degradation.

The product of a quality enhancement operation is an
output image yielding a changed version of the original.
These enhancements may be applied to images that are in
some way degraded from what would be considered a
“good” image. Alternatively, “good” images may be en-
hanced to produce output images that show certain fea-
tures enhanced for easier viewing. In either case, the
qualities of the original image are altered in some way, af-
fecting the image’s appearance to the viewer.

Image quality enhancements may be either subjective
or objective. Subjective enhancements are used to make an
image more visually appealing and may be applied until an
image achieves this goal. Objective enhancement, however,

IMAGE PROCESSING
OPERATIONS
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corrects an image for known degradations and does not
necessarily attempt to make the image more appealing. An
example of objective quality enhancement is photometric
correction, which will be discussed in Chapter 5. For the
most part, we will discuss image quality enhancement in
the subjective enhancement context.

Image quality enhancement operations may be conve-
niently broken into two subclasses, contrast and spatial
enhancements. Contrast enhancements deal with the alter-
ation of brightness within an image. Blacks, whites, and
grays may be intensified or even suppressed, bringing out
facets that were hard to see in the original. Spatial en-
hancements modify the content of detail within an image.
Edges, for instance, may be accentuated, making viewing
more appealing. A wide variety of contrast and spatial en-
hancements allow the viewer flexibility in the total modifi-
cation or correction of an image.

The Human Visual System. When attempting the im-
provement of an image’s quality, a knowledge of the char-
acteristics of the human visual system is an important
prerequisite. All images are ultimately processed by the vis-
ual system prior to the viewer's mental perception of them.
An understanding of this fact not only helps us to define
an image processing operation for maximum effectiveness,
but also serves to indicate the limitations of the eye-brain
system itself.

The eye is a complex unit that converts visual infor-
mation into nerve impulses used by the brain to form a
perceived image. The major functional components of the
eye are illustrated in Figure 2-2. Light rays generated by a
scene are collected by the Jens and projected upon the sur-
face of the retina. The iris serves to control the amount of
light allowed to pass through the lens. The lens and iris
are both physically protected by the cornea.

The retina is composed of light-sensitive elements
known as rods and cones. On the order of 100 million of
these photoreceptors serve to translate light intensity to
nerve impulses. These impulses travel from the eye to the
brain through nerve fibers within the optic nerve. The
brain, in turn, deciphers the nerve impulse information to
form what we perceive as an image.

~\“‘\\\“\-\\
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Figure 2-2 The human eye.



Figure 2-3 Typical logarithmic curve, similar
to that of the eye’s light intensity response.

Figure 2-4 Step gray scale with equal
intensity steps.

Figure 2-5 )
Step gray scale with exponential intensity
steps {equal perceived brightness steps).
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Brightness

Blackildd
Black
111umination Intensity

White

What's interesting about the visual system is the way
in which the photoreceptors respond to light intensity
changes and interact with one another. With an under-
standing of these characteristics, we may better attack the
problem of what constitutes image quality enhancement.

The impulses generated by the photoreceptors are
then translated by the brain into perceived brightness. Re-
search in this area of the visual system has shown that the
relationship between impinging light upon a receptor and
perceived brightness is not a linear function. This means
that as the illumination intensity of a viewed object is
changed, the viewer will not perceive an equal change in
brightness. The actual response is logarithmic, appearing
as a curve similar to that shown in Figure 2-3. In the dark
regions, a slight illumination increase results in a large in-
crease in perceived brightness. On the other hand, the
same slight illumination increase in the bright regions
yields a small increase in perceived brightness. The loga-
rithmic response of the eye may be illustrated by Figures
9-4 and 2-5. In Figure 2-4, the brightness is incremented in
equal illumination intensity steps from black to white. As
we would expect from the graph in Figure 2-3, the dark re-
gions are clustered at the left. The equal steps in the bright
regions are virtually undetectable, making the entire right
side appear white. Figure 2-5, however, illustrates intensi-
ties that are incremented in exponential steps, counter-
acting the eye's logarithmic response. The net result is &
black-to-white transition that is perceived as happening in
equal, or linear, steps.

The bottom line of the eye's logarithmic response is
that sensitivity in the dark regions of a viewed scene is
much greater than that of bright regions. This is because a
change of equal intensity is perceived as a greater change
in a dark region than in a bright region. This is an impor-
tant fact to remember, for in the processing of an image
simple darkening of bright regions can bring out previously
undetectable detail.

' In addition to the logarithmic response characteristic,
interactions between photoreceptors cause important visu-
al phenomena to occur. Two, in particular, illustrate the
role of these interactions in the visual perception of bright-
ness. Qne effect, referred to as simultaneous contrast, 18
an illusion where the perceived brightness of a region is
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dependent on the intensity of the surrounding area. This
effect is shown in Figure 2-6. The two squares are of the
same intensity, but the one on the left appears brighter,
due to its darker background. (Conversely, the square on
the right appears darker because of its lighter background.)
The visual system apparently adjusts its brightness re-
sponse based on the average intensity of the viewed scene.
Since the left side has an overall darker average intensity
than the right side, the perceived brightness is increased.
(Likewise, the perceived brightness of the right side is de-
creased.) Hence, the difference in the apparent
brightnesses of the two squares becomes apparent.

A second phenomenon, known as the Mach band ef-
fect, causes sharp intensity changes to be accentuated by
the visual system. Figure 2-7 shows a sharp black-to-white
transition along with the plots of actual brightness and
perceived brightness change. The viewer sees a darker bar
just to the left of the transition. Similarly, a lighter bar ap-
pears just to the right. These under- and overshoots are an
artifact of the visual system. In fact, it turns out that with-
out these additions, the transition does not appear nearly
as sharp and crisp. The visual system actually adds these
edge enhancements, sharpening everything we view. Figure

Figure 2-7

(a) Mach band effect —a dark band

to the left and bright band to the right
of the brightness transition may be seen.

(b) Actual brightness plat.
White —

Actual Brightness

Figure 2-6 Simultaneous contrast —the two
squares are the same intensity.
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2.8 illustrates this effect upon a stair-step intensity in-
crease.

Intensity response characteristics may be combined
with photoreceptor interaction properties. The visual sys-
tem responds to transitions within a scene depending on
the amount of light intensity change present. Slowly vary-
ing transitions are detectable even when composed of only
small-intensity changes, whereas very minute transitions
must contain large-intensity changes before they are seen.
This means that highly detailed regions of an image com-
posed of subtle intensity changes may be rendered
undetected. Increasing the intensity change, or contrast,
can make these details visible. The visual system is most
responsive to scene details of high contrast,

These visual phenomena indicate complex processes
occurring within the human visual system. By using knowl-
edge of the system’s response and interactive characteris-
tics, we may better apply image processing operations,
yielding more natural contrast and spatial enhancements.

Contrast Degradations/Enhancements. Contrast degrada-
tions in an image are problems associated with poor
brightness characteristics. The term contrast deals with the
distribution of brightness within an image. An image may
be said to exhibit poor contrast if either low- or high-con-
trast attributes are apparent, neither of which are generally
considered visually appealing. When dealing with black-
and-white images, high contrast is present when an image
is composed primarily of dark black and bright white

Figure 2.8
(a} Mach ‘band effect seen in step gray scale.

{b) Actual brightness plot.
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{c) Perceived brightness plot.
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tones. Scene details are made up of harsh black-to-white
transitions rather than the more natural, smooth gray
tones. The appearance of a high-contrast image is that of
intense boldness. Low-contrast images, on the other hand,
are characterized by a washed-out look. Only middle gray
tones exist, with dark black and bright white tones virtual-
ly nonexistent. Scene details appear subdued, making the
viewing of such images difficult.

A well-balanced image of “good” contrast is com-
posed of gray tones stretching from the dark blacks,
through the grays, to the bright whites. Operations to cor-
rect an image of either low or high contrast are relatively
simple. The results of these operations are corrected im-
ages where the overall gray tone balance is restored to a
more natural distribution.

In contrast enhancement, simply achieving “good” im-
age contrast is not always the ultimate goal. These tech-
niques may further be used to make visible some aspect of
the image that was previously hidden. In this type of en-
hancement, a resulting image of very high contrast, or oth-
er characteristic, may be desired. The results of these
operations do not always yield aesthetically pleasing im-
ages but rather amplify some feature of interest.

Contrast enhancements are common image processing

operations used to alter the overall brightness qualities of
an image. They may be used to correct contrast deficien-
cies or to extract feature information not evident in the
original.
Spatial Degradations/Enhancements. Spatial degradations
in an image are problems associated with the presentation
of image scene details. The term spatial deals with the
two-dimensional nature of an image scene. An image may
be said to exhibit poor spatial qualities if detailed areas
are blurred or not well defined. Often edge details, such as
black-to-white transitions, may be blurred, not exhibiting
the sharp qualities generally associated with them. These
types of spatial problems may be corrected or at least im-
proved upon by relatively straightforward operations. The
results are images in which spatial detail is restored to
more accurately represent the detail of the original scene.

Additional spatial degradations include image noise,
such as “snow” in a television image. Image scene geomet-
ric distortions also fall in this category.

As in contrast enhancement, correcting an image to a
visually pleasing form is not always the pursued objective.
Sometimes it is desired to enhance spatial details to an ex-
treme, making object structure features more visible. Edge
enhancement, where only object edge details are high-
lighted, is a common enhancement processing task.

Spatial enhancements are used to alter the spatial de-
tail qualities of an image. They are often employed not
only for image degradation correction but also in the ex-
traction of object features not visible in the original.




IMAGE ANALYSIS

Image analysis operations produce nonpictorial results. In-
stead, the output is numeric or graphic information based
on characteristics of the original image, with the objective
of describing some aspect of the image and presenting the
results to the viewer. Image analysis operations serve to
describe image qualities, assisting in enhancement opera-
tions. Furthermore, descriptions of image scene features,
automatic scene object measurements, and pattern recogni-
tion are all common analysis operations.

The most common analysis operation encountered in
general image processing is that of the image histogram.
The histogram relates, in bar graph form, the brightness
distribution present in an image. Contrast information may
be readily obtained from this graph, allowing the appropri-
ate enhancement operation to be chosen. The brightness
and contrast measurement given by the histogram is in-
valuable when attempting to correct an image for these
degradations.

Aside from image quality measurements, analysis op-
erations are most prevalent in automatic control applica-
tions. Such wuses include the automatic dimensional
measurement and classification of parts fabricated on an
assembly line, automated security systems where certain
known violations are watched for within a live video im-
age, and remote sensing where aerial Earth images may be
broken into various geological categories and tabulated for
resource studies.

IMAGE CODING

The final class of image processing operations is that of
image coding. These operations serve to reduce the amount
of information necessary to describe an image. Two types
of coding exist. The first codes an image in such a way
that no information is lost. The reconstruction of the origi-
nal image may be obtained uniquely from the coded ver-
sion. The second codes an image into an abridged form.
An example of abridged image coding would be to break
the image into primitive subparts, or structures, coding
only the location and orientation of each piece. While the
s'econd approach yields a considerably larger data reduc-
tion factor, the reconstructed image will often be far from
an exact representation of the original. The choice of the
coding scheme to be used is determined, as usual, by the
application.

.Reasons for using image coding lie particularly in the
applications of image transmission and storage. Both make
use of a limited medium and are therefore made more effi-
cient through coding techniques. For instance, coding im-
ages into reduced forms allows either more image data to
be transmitted in a given period of time or more to be
stored in a given segment of a storage device. Image cod-
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ing relates directly to conservation of equipment resources,
particularly in bulk applications.

Processing Classification

The act of carrying out a computational operation is called
a process. More specifically, the term frame process refers
to an operation applied to an image frame, where image
frame is simply a term used to denote an image in its en-
tirety. All image processing operations may be said to be
implemented through the use of a frame process. In the
most general case, a frame process would be written in
software and executed by a computer having access to the
image data.

Previously, we broke the general field of image pro-
cessing into three operational categories. The categories—
quality enhancement, analysis, and coding—served to iso-
late these primary endeavors of research and application
in such a way that each could be handled as a separate
area of study. Although each plays a major role, we are
primarily interested in quality enhancement. This is be-
cause most all images processed undergo some sort of
quality enhancement either prior to or following other ap-
plied processes.

Because image quality enhancement operations are so
popular, the most attention has been given to them. Image
processing systems tend to support the enhancement oper-
ations to a higher level than the others. Also, since a fixed
set of enhancements are often carried out on large se-
quences of related images, the speed with which the opera-
tion is carried out becomes of interest. For this reason,
image processing systems often incorporate special-pur-
pose hardware that allow the fast execution of certain
families of enhancement operations.

In digital image processing, two processes are broken
out of the general class of frame processing to be handled
by high-speed hardware. These subsets are known as point
and group processes. They serve to implement contrast
and spatial enhancements, respectively. Furthermore, point
processes are comprised of two parts—single image and
dual image. The single image process allows standard con-
trast enhancements, while the dual image process adds the
capability of combining multiple images. This overall pro-
cess breakdown is illustrated in Figure 2-9.

IMAGE FRAME
PROCESSES

|

POINT GROUP
PROCESSES PROCESSES

SINGLE DUAL
MAGE INAGE

Figure 2.9 Process breakdown
of image processing operations.



Figure 2.10 Basic image processing system.
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Implementation of point and group processes in spe-
cial-purpose hardware allows the image quality enhance-
ments to Dbe handled expediently. Because of the
predominant use of these operations, the overall image
processing system throughout is increased as a result,

Generally, when speaking of a frame process, we are
referring to a process other than the defined point or group
process subsets. Using this premise, all image processing
operations may be implemented through the use of one of
four processes. The two point processes along with the
group process provide for the bulk of image quality en-
hancements and are handled by high-speed hardware pro-
cessors. The remaining operations involving other quality
enhancements along with image analysis and coding are
handled through the use of frame processes. Frame pro-
cesses are generally executed through software programs
by a host computer.

Part II of this book develops the above processing
concepts. The reader will ultimately be armed with the
knowledge to configure and execute image operations
based on the requirements of a particular application.

The Processing System

A digital image processing system is a collection of hard-
ware devices providing the digitization, storage, display,
and processing of digital images. It is this system that
yields the means of implementing a process upon a stored
image. Figure 2-10 illustrates the common structure of a
general purpose system.

The first order of business in any image processing
system is to digitize an image. Most general-purpose sys-
tems will accept standard television video signals as in-
puts. The input device is normally a video camera imaging
the scene of interest, whether live or a photographic print.
The act of digitizing converts the analog electrical form of
the video image into a digital form that may be stored in a
digital memory device. Once the image exists in digital
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memory, we are able to freeze it for subsequent display
and processing.

“The display of an image residing in memory is accom-
plished by repetitively reading the digital image data out to
a display subsystem. Here, image data are reconverted to
the standard television format and displayed on a televi-
sion monitor. Once an image is brought into the image
memory it is continuously displayed on the monitor.

The overseer of the image processing system is the
host computer system. The host controls the system, decid-
ing when to digitize, display, and process an image. The
host also serves as the user’s interface to the system. The
host system, through the host computer interface, has di-
rect access to the image memory such that it may carry out
image processing tasks. Additionally, the host may transfer
image data to and from long-term storage devices such as
magnetic disk or tape. For small image processing systems,
the host is often a microcomputer.

The final element of the digital image processing sys-
tem is that of a high-speed image processor. Although the
host computer has the ability to carry out any definable
process upon a stored image, its speed of execution can be
relatively slow. It becomes desirable to implement com-
mon image processes in hardware so that their execution
time is reduced to a minimum. As mentioned earlier, the
point and group processes are frequently handled in hard-
ware. These processes allow the user the ability to modify
image contrast and spatial attributes, as well as combine
multiple images in an expedient manner. Since quality en-
hancement operations are most commonly used, added
hardware can greatly augment the performance of the im-
age processing system.

Part 1II of this book explores the basic configuration
and design of the components of a general image process-
ing system. Assuming reasonable skills in digital circuit de-
sign, the reader will gain the knowledge to configure and
design a basic system.



The Digital
Image

Digital image processing, by definition, operates upon pic-
torial information of a digital form. The conversion of every
day images into this form is the most preliminary operation
to occur prior to digital processing. Images of interest may
be derived from a variety of sources: photographs, televi-
sion, radar, scanning infrared detectors, acoustics, or X-
rays—the list is virtually endless. No matter what the ori-
gin, however, the image must ultimately be placed into a
format that the digital processor understands.

In general, digital image processing is carried out on
standard television format images, because of the wide-
spread standardization and acceptance throughout several
related industries. In addition, almost any image may easi-
ly be converted to this format. From this point on we will
assume all our processing to be carried out on standard
black-and-white television images, with only brief depar-
tures to consider the differences in processing color im-
ages.

Let us now explore the terms, conventions, and for-
mat of the digital image.

Forming a Digital Image

A typical black-and-white photograph is composed of
shades of gray spanning from black to white, and is known
as a continuous tone image. This means that the various
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fpigure 3-1 Conversion from
continuous tone to digital image.

Figure 3.2 The discrete pixel
Nimbering convention.

Lines

Sampler

Continuous Digital Image
Tone Image

shades of gray blend together with no disruption to faith-
fully reproduce the elements of the original scene. The digi-
tal image processor, on the other hand, must work with
discrete pieces of data on a one-by-one basis. To convert
our continuous tone image to a digital image we must chop
it into individual points of information. This *chopping” is
referred to as digitizing or, more properly, sampling, be-
cause we are taking samples of the brightness of the pho-
tograph at specific locations within jt. Each sample is
given a numeric value based on its brightness, ranging
from black through the grays to white. Additionally, each
sample is assigned coordinates describing its location  :
within the image. A sample is often referred to as a picture 7
element, or pixel, because of its representation of a ;
discrete element of the digital image.

An image is digitized into a square grid of pixels,
each of which is labeled with a pair of coordinates—one
defining the column that it is in and one the row. Column
numbers range from 0, al the left-most side, to n, where n
is the number of columns in the image. Likewise, rows are
assigned numbers from 0, at the top-most side, to m where
m is the number of rows in the image. As an example, the
pixel with coordinates (200, 150) resides at the crossing
point of column 200, row 150. To make better sense and (as
we will see later) to conform more with television stan-
dards, the row coordinate is referred to as the //ine number
and the column the pixe/ number in that line. This sampled
image numbering convention is illustrated in Figure 3-2.
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Our image has now been divided into individual,
discrete points of information. Furthermore, each point has
a defined location within the image, its coordinates, and a
brightness value associated with it.

When dealing with the digitization of an image, there
is always the question of how good the representation is
when compared with the original. We define the limita-
tions of the digitization process with the term resolution.
Resolution is the separation of something into its basic
subparts. In image processing, resolution may be broken
into two definite types, spatial and brightness, with a third
type, frame rate, playing a role not directly related to the
visual appearance of an image.

~Spatial Resolution

The term spatial refers to the concept of space, in our case
a two-dimensional space. Our two-dimensional object is an
image with a fixed height and width. When we speak of
spatial resolution, we are describing how many pixels our
digital image is divided into. Simply put, the finer this reso-
lution is, the closer we approach the spatial appearance of
the original image.

« Optimally, we wish to digitize an image such that no
information is lost in the translation from the original im-
age to the digital image. This means that a properly
displayed digital image will be identical to the original to
an observer. In order to better understand the criteria for
establishing the necessary number of samples required in a
digital image, we must introduce the concept of spatia/ fre-
guency. Any image contains scene detail in varying de-
grees. For example, details may range from the minutely
detailed hairs on a person’s head to the smoothly varying
shades in the contours of the face. In quantifying this visu-
al detail, we speak of spatial frequency or the rate at
which brightness of an image changes from dark to light.

As an example of spatial frequency content in an im-
age, let us examine the details present in Figure 3-3. If we
look at a single line of the image as it crosses through
varying details of the scene, the brightness of the scene en-
countered on the left half of the highlighted line is found to
be erratic. These rapid changes in brightness are said to
contain high spatial frequency. On the right side of the
line, however, slowly varying shades of gray are observed.
This portion is said to contain low spatial frequency. We
must remember that when looking at a line of image we
are actually only considering one-dimensional spatial fre-
quency components. Spatial resolution takes into account
the rate of change of brightness in an image going from left
to right as well as top to bottom.

To make a decision about the necessary sampling
rate needed to properly resolve an image, we use the clas-
sical Nyquist Criterion, also known as the Sampling Theo-




Figure 3-3
(a) A scene of varying spatial frequency de-
tail.

(Tree Leaves) (Smooth Side of House)
HIGH SPATIAL FREQUENCY LOW SPATIAL FREQUENCY
white b~
Brightness

Black

Position

(b) Brightness plot along highlighted line.

_rem. This theory tells us in mathematical terms that to

fully represent the rate of brightness change, or detail, in

. an original image we must sample it at a rate at least
. twice as high as the highest spatial frequency of the detail.

In other words, if a particular detail in an original image
varies from dark to light within a certain distance, our
samples, or pixels, must be fine enough so that two of
them fall upon the detail itself. It is also true that it be-
comes useless and wasteful to sample an image at a rate
any faster than twice its maximum spatial frequency con-
tent. This may be further refined to say it is wasteful to

. sample at a rate faster than twice that of the finest detail

wished to be resoived in the digital image. Some applica-
tions do not require that all details be present in the digi-
tized image. Keep in mind, though, that once an image is
digitized with a limit on the sampling frequency, the lost
detail is gone forever.

At this point, we are ready to discuss spatial resolu-
tion of a digital image. The name of the game here is to
take an image from a source, such as a photograph, and
break it into enough discrete pixels so that the eye can de-
tect no difference between the digitized image and the
original. Figure 3-4 shows an image digitized to various
spatial resolutions. The 32 line X 32 pixel image shows ob-
vious coarseness where detail has been lost by the pixel
“blocking” effect. As spatial resolution increases, the im-
age looks more and more natural. A television, in fact, has
485 visible lines per image and the equivalent of roughly
380 pixels per line. Viewing the picture from a reasonable
distance makes it difficult for the viewer to see any lines
at all. However, up close, the lines are clearly visible. The
chosen spatial resolution of a digital image must take into
account three factors—the detail in the original to be seen
in the digital image, the displayed size of the digital image,
and the viewer's distance from it. As a rather gross exam-
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Figure 3-4
(a) Image of 256 x 266 spatial resolution.

(c) 64 x 64.

ple, digitization of an image for use in a movie requires on
the order of a 4,000 line X 7,500 pixel image so that when
displayed on a standard movie screen, considerably en-
larged from the original, the viewer does not see the indi-
vidual pixel composition.

The distance that an image appears from its observer
directly determines how much scene detail will be visible.
For instance, a photograph held twelve inches from an ob-
server will show considerably more detail than when held
five feet away. Therefore, as the display-observer distance
is increased, spatial resolution in the image may be de-
creased. Looking at the images in Figure 3-4, we see that
the visible pixel “blocking” effect diminishes as the images

are pulled farther and farther away from the eye. The dis-

play-observer viewing geometry is depicted in Figure 3-5.
As the distance is doubled, so may the size of the ob-
served display increase without any detectable spatial de-
tail loss to the observer.

In practice, it is sometimes prohibitive to actually im-
plement the spatial resolution required by the above con-
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{b) 128 x 128.

(d) 32 x 32.




Figure 3-5 The display-observer
viewing geometry.

4 3 2 1 0
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siderations. This is because storage of the image in
computer memory becomes unmanageable, while increased
computational time required to process the image becomes
undesirable. So, as in most endeavors, we are faced with a
tradeoff, image resolution presented to the observer versus
computer memory storage space and processing time.

It has become somewhat of a standard among image
processor equipment manufacturers to chose a spatial res-
olution of 512 X 512 to be compatible with television for-
mats. You will note that a resolution of 512 X 512 and not
485 X 380 is selected. This is because 512 is an even pow-
er of 2, a number convenient to the computer and digital
processing hardware world. It should be noted that other
resolutions are also common. 1024 X 1024 is often found in
high-resolution applications where high detail must be re-
solved accurately within an image. On the other hand, 256
X 256 is quite acceptable for general use in education, ma-
chine process control, hobby, and many other applications.
Ongce again, an image of any of these spatial resolutions is
acceptable to the viewer when observed from an appropri-
ate distance. All images appearing in this book are 256 X
256.

There is one other topic worth mentioning with regard
to spatial resolution, the concept of a/iasing. The phenome-
non of aliasing has to do with the erroneous representation
of original-image, high-frequency detail within the digitized
image. Aliasing appears when the Nyquist Criterion is vio-
lated for a given spatial frequency present in the original
image. This occurs when a detail within a scene has a spa-
tial frequency greater than half the sampling frequency. In
‘this case, the detail is said to be undersampled. The high-
frequency detail ends up being translated to a lower fre-
quency because some of the brightness transitions are
missed in the sampling process. This is illustrated in Figure
3-6. When aliasing occurs, moiré patterns may appear in
the digitized image. Unless an image of very repetitive
high-frequency detail is undersampled, though, the effect of
aliasing may generally be disregarded.
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e e Figure 3.6 The aliasing effect
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Brightness Resolution

The second resolution concerning digital images is that of
brightness. As covered in the previous section, every pixel
represents the brightness of the original image at the point
of its sampling. The concept of brightness resolution is
concerned with how accurately the digital pixel brightness
compares to the original brightness at the same location in
the image.

The digitizing process samples the original image at
predetermined grid locations. Each sample brightness is
then converted to an integer numeric value; this is known
as quantization. The quantization operation converts an
analog brightness level at a sample point to a numeric val-
ue within a certain accuracy tolerance, or brightness reso-
lution. This process is carried out by an Analog-to-Digital,
or A/D, converter and will be discussed in Chapter 6.

In quantizing the brightness of a pixel, we must first
define to what accuracy the conversion will be made. For
instance, conversion to a three-bit binary number allows
each pixel to be represented by one of eight brightness lev-
els. These levels are represented digitally by the binary
numbers 000, 001, 010, 011, 100, 101, 110, and 111, spanning
in brightness from black to white. The eight levels of
brightness comprise what is called a gray scale, or in this
case, the three-bit gray scale. Clearly evident in the three-
bit gray scale, shown in Figure 3-7, are the eight distinct
levels of brightness. Each brightness is easily discernable
by the eye. Figure 3-8 shows an image quantized to bright-
ness resolutions from one to six bits. Figure 3-9 breaks an
image of six-bit brightness resolution into separate “bit-
plane” images, illustrating the impact of each bit on the
overall image.

We must pay attention to the number of levels of
gray available to the brightness quantizer. As seen, the
lower brightness resolution images allow the quantization
to be visible to the eye. Increasing the number of bits rep-
resenting brightness expands the gray scale so that it RSN :
blends together more undetectably. For each added bit in  Figure 3-7 The 3-bit gray scale.
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Figure 3-8
{a) Image of 6 bit = 64 gray levels res. {b) 5 bit = 32 gray levels.

{c) 4 bit = 16 gray levels. (d} 3 hit = 8 gray levels.
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Figure 3.9
{a) Image bit planes, bit 6 (most significant
bit). (b) Bit 5.

{c) Bit 4. {d) Bit 3.
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the conversion, the brightness resolution of the gray scale
is doubled.

Referring back to the two-bit image in Figure 3-8, we
see the effect of the phenomenon known as contouring-
Contouring occurs because of limited quantization—all
pixels are allowed to fall within one of only four
brightnesses. The continuous tone quality of the original is
limited, making areas of the digital image abruptly change
from one gray level to another, where the change was
gradual in the original. Where resolution entered into de-
tail representation in the spatial domain, it is contouring
effects that are to be minimized by appropriate resolutiom
in the brightness domain.

Before making the final decision of how many bits to
assign to the gray scale, we must touch on the response
characteristics of the eye. As we saw in Chapter 2, the ey e
is much more sensitive to intensity changes in dark regions
of an image than in bright regions. The eye responds loga-
rithmically to intensity change. This means that contouring
may be visible in dark areas of a digitized image when not
evident in lighter areas. For this reason, it is often benefi- .
cial to quantize brightness on a logarithmic scale rather =
than a linear scale. This means that the dark, or low-
brightness areas, will be represented by more gray levels,
leaving the high-brightness areas represented by fewer.

The logarithmic gray scale buys us the ability to place
finer brightness resolution in the low end of the gray scale,
where the eye is most sensitive to intensity change. In ef-
fect, we have linearized the response of the eye by making
the gray scale logarithmic.

Image processor equipment manufacturers have ger-
erally adopted 8-bit logarithmic gray scales to represerit
digitized images. The 8-bit quantization assures no detect-
able change from one gray level to an adjacent one, where
logarithmic quantization takes advantage of the response
characteristics of the eye. For low-end user applications
such as amateur radio, computer hobbyism, and some ma-
chine process control, 6-bit, 4-bit, and even lower gray
scales are often acceptable. Additionally, linear quantizax—
tion is often not a drawback for these uses. Because of the
difficult hardware implications, we will limit our discus-
sions in this book to an 8-bit linear gray scale.

Frame Rate

A more subtle form of resolution manifests itself in the irm-
age processor hardware display of digital images. With the
normal display mode being that of a television-type device, 2
we are interested in the rate at which the image is v
updated, known as frame rate. Commercial television up-
dates its image entirely, using a technique calleq
interlacing, every 1/30 of a second with little flicker oy~
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servable to the viewer. Reducing flickering in a displayed
image is important when viewer fatigue is of concern.

The use of standard television monitors is common in
image processing, where the frame update rate of 30 times
per second produces little distraction to the viewer. Be-
cause of this, most image processing equipment is designed
around the commercial television standard. The standard
calls for refreshing the displayed image in an /nterlaced
format every 1/30 of a second. Interlacing gives the im-
pression to the observer that a new frame is present every
1/60 of a second.

High-end image processors will often raise the frame
rate to 1/100 of a second. The result is a rock-steady image
display. This requires the use of higher-speed image memo-
ry and special-purpose display monitors. We will dwell on
the standard 1/30 of a second interlace scheme. This ap-
proach is more conventional, especially when dealing with
a standard television camera input, as we will.

Interlacing, frame rate, and spatial and brightness res-
olutions are discussed in Chapter 6, where the standard
television video format is overviewed.




The
Histogram

Image analysis operations deal with the generation of nu-
merical descriptions of various image characteristics. An
important class of these operations is used in the analysis
of image degradations prior to enhancement. In particular,
contrast attributes of an image are of major interest, giving
a good overall quality assessment. A tool, known as the
image histogram, gives us a concise, easy-to-read measure
of this important parameter. In general terms, a histogram
is defined as a frequency distribution graph of a set of
numbers. Our special version is the gray level histogram,
giving us a graphical representation of how many pixels
within an image fall into the various gray level boundaries.

A histogram appears as a graph with “brightness” on
the horizontal axis from 0 to 255 {for an 8-bit gray scale),
and “number of pixels” on the vertical axis. To find the
number of pixels having a particular brightness within an
image, we simply look up the brightness on the horizontal
axis, follow up the graph bar and read off the number of
pixels on the vertical axis. Since all pixels must have some
brightness defining them, adding the number of pixels in
each brightness column will sum to the total number of
pixels in the image.

The histogram gives us a convenient, easy-to-read
representation of the concentration of pixels versus bright-
ness in an image. Using this graph we are able to see im-
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mediately whether the image is basically dark or light and
high or low contrast. Furthermore, it gives us our first clues
as to what contrast enhancements would be appropriately
applied to make the image more subjectively pleasing to an
observer.

Contrast/Dynamic Range Indication

A term often used in describing an image of any sort is
contrast. We intuitively understand contrast to mean how
dull or sharp an image appears with respect to gray tones.
Contrast in an image is clearly illustrated in the histogram.
Low contrast appears as a mound of pixel brightnesses in
the gray scale leaving other gray regions completely unoc-
cupied. High contrast shows up as a bimodal histogram
where two peaks exist at the outer brighiness regions. We
see that by “reading” the histogram, contrast parameters
become evident, allowing us to further pursue the correct
contrast enhancement approach. A well-balanced image is
generally characterized by medium, or “good” contrast.

Dynamic range is a measure of how wide the occu-
pied portion of the gray scale is. For instance, a mound of
pixels falling between gray values 50 and 100 (within a
range of 0 to 255), with none in the other regions, indicates
a small dynamic range of brightness, whereas a wide gray
scale distribution shows large dynamic range. An image
with small dynamic range does not occupy all the avail-
able spread of gray values; the image has really only been
quantized to a gray scale comprised of the occupied range.
This indicates low brightness resolution along with low
contrast. Large dynamic range generally implies a well-bal-
anced image except if it is a bimodal distribution, in which
case the image is high contrast. Three common histograms,
along with their original images, are illustrated in Figures
4-1 through 4-3.

Figure 4-1
(a) Low contrast/low dynamic range image. (b} The histogram.
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Figure 4-2
(a) High contrast/high dynamic range image. (b) The histogram.

Figure 4-3
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It should be noted that natural images generally are
characterized by wide dynamic range and medium con-
trast. However, this is not always the case. It just may be
the attributes of the original scene that dictate departures
from a well-balanced image. Often, though, even if the
original had low contrast or low dynamic range, a correct-
ed version will be more appealing to the viewer.

Manipulation Effects

In dealing with the image degradations evidenced by the
histogram, we will now touch on basic histogram manipu-
lation, which will be discussed in more detail in Chapter 5.
Two modifications are commonly implemented: histogram
sliding and histogram stretching. These operations are
meant to redistribute the histogram so that contrast and

{a) Good contrast/high dynamic range image. {b) The histogram.
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ijnamm range may be enhanced. Given the low contrast
image and histogram of Figure 4-1 we see that the pixel
gray scale distribution is clumped in one area of the grap{L
Not only is low contrast indicated here, but also low dy-
namic range. By sliding the “clump” to the left and then
stretching it out to the right we effect a higher contrast and
wider dynamic range. This makes the image belter bal:
anced and more natural as a result. ’

The sliding operation is simply the addition or sub-
traction of a constant brightniess to all pixels in the image.
A pixel of brightness 20 attains a brightness of 30 when 10
is added. Doing this to every pixel effectively slides the en-
tire graph to the right by 10 gray levels. The basic effect of
sliding is a lightening or darkening of the image.

Histogram stretching is the multiplication of all pixels
in the image by a constant value. A histogram, with all
pixels residing in the left half, will be spread out to vccupy
the entire gray scale range when multiplied by a constant
of 2. This operation stretches the contrast and dynamic
range of an image.

There exists an interesting point concerning the
stretching of a low dynamic range image. In an image in
which the histogram shows all pixels falling in the left half,
only half of the gray levels are actually used. Although the
image appears dark, we may stretch the histogram to make
the distribution span the entire range. Dynamic range is in-
creased—which is desired—but there are still only half the
number of allowable gray levels occupied. (Remember.
there were only half to begin with) Where the original
pixels fell, the original brightness resolution ‘'was main-
tained, but the image appeared dark. Now the stretching
operation has stretched the original gray vilues to twice
the range by skipping every other gray value in the case of
multiplying by two. We have not lost brightness resolution,
merely redistributed the original information.

Object Classification

Elementary classification of objects within an image scene
is somelimes feasible through histogram analysis. The
beach scene, illustrated in Figure 4-4, is primarily com-
posed of four basic elements—white water, sky, calm wa-
ter, and rocks. Each of the elements tend to be comprised
of gray levels different from one another. What we are
able to do is carry out a classification of scene objez.cts
based on their gray level compositions. Looking at the im-
age histogram, the four regions of gray level concentration
are seen as distinct peaks separated by valleys. For clagsi-
fication, the histogram may be broken into the four gray
level regions, each labeled for the objects represvente:d. Us-
ing a simple pixel point process (to be covered in Chapter
5), we may generate an image where only four gray levels
appear, each representing one of the four classified ob-
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{b) The histogram broken into four
brightness classes.

Figure 4-4
(a) Originat beach scene.

Rocks Water Sky 32:3
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(¢) The original scene classified by use of
four gray levels. (d) Class 1-—white water. (e) Class 2—sky.

(f} Class 3 —calm water. {g) Class 4 —rocks.
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jects. Furthermore, four independent images may be gener-
ated, each highlighting the objects of one classification
category.

Like all processing of data, there is a drawback, or
undesirable artifact, to this technique. Objects in a scene
may be composed of gray level regions that overlap, ob-
jects will then have portions that fall in another’s classifi-
cation. Additionally, unclassified areas may have pixels
spanning the gray scale. Those pixels are then improperly
classified as belonging to certain object groups.

The histogram object classification operation is basic.
It works best on simple scenes with objects that have dis-
tinctly different gray scale occupancies. However, in cer-
tain applications, the simplicity of this technique may be
exactly what is called for.




D)l

Picture
Operations

We touched on various processing fundamentals in Chap-
ter 2. Remember that all operations of inierest to us fell
within four process categories: point processing with one
image, point processing with two images, group processing,
and frame processing. These categories—though broad in
an applications sense—each relate to a fundamental opera-
tion, with the exception of frame processing, which is
meant to classify various functions not included in point or
group processing.

Throughout this chapter, reference to Image Opera-
tion Studies will be made when appropriate. These studies
are compiled in Part [V, “Processing in Action,” and are
provided to consolidate the image operations introduced in
this chapter. It should be noted that the processing tech-
niques presented here are not meant to represent an ex-
haustive study of image processing capabilities. Rather,
they represent an overview of the most commonly used
processes. The hope is that the reader will become suffj-
ciently stimulated to gain any required depth in the field
through additional studies, Good references to these topics
include Further Reading/References I-1 through I-8.

In Chapter 3, a pixel within an image was spatially
located by its line and pixel coordinates. Using the Carte-
sian coordinate system, the pixel coordinate is represented
by x and the line coordinate by y. For instance, the pixel
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located at the crossing point of line number 25 and pixel
number 125 is denoted by the coordinates (125, 25). We
take this convention a bit farther in this chapter, for we
must now discriminate between input and output images.

An input image is defined as an image that is used as
data to be processed. Any resulting image is referred to as
an output image. So in calling out the coordinates of an im-
age pixel, a prefix of either 7 or O is used to denote input
or output image. Where multiple input images are used in
an operation, a subscript may be appended to the I prefix.

The general case flow diagram of an image process-
ing operation is depicted in Figure 5-1. Input images are
denoted by I(x,y) and I,(x.y). In an operation requiring a
single input image, no subscript need be used. The output
image, if present, is denoted by O(x.y}. This basic diagram
provides the fundamental representation of all image pro-
cessing operations.

A typical image processing system possessing reason-
able image quality representation may be based on an im-
age resolution of 256 X 256, quantized to 8 bits. We will
dwell on these resolution parameters throughout the pro-
ceeding development of topics.

*%i
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IMAGE
PROCESS
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Numerical Information

Input Images

Pixel Point Processing/Single Image

Pixel point processing is the most fundamental class of im-
age processing operations. Used primarily in contrast en-
hancement operations, the pixel point process is a simple
yet invaluable tool. Point processes allow the alteration of
pixel gray scale occupancy. On a one-by-one basis, the
gray level of each pixel in the input image is modified, of-
ten by a mathematical or logical relationship, to a new val-
ue and placed in the output image at the same spatial
location. All pixels are handled individually. For instance,
the pixel at coordinates I(x,y) in the input image is modi-
fied and returned to the output image at coordinate O(x,y)-
With this in mind, we note that point operations process
pixel brightness attributes with no action on spatial attri-
butes. Spatial processing, as we will see later, is handled
by pixel group and frame processing.

Figure 5-1 The image
operation flow diagram.




Figure 6.2
{a) Original image.

(b} Complemented image.

40 Ppicture Operations

The general equation for a point process is given by
the equation

Ooxy) = Mll(xy)]

where M is the mapping function. 1t is implied that all
pixels in the input image are operated upon. This means
that the brightness of an output pixel residing at coordi-
nates (x,y) is equal to the brightness of the input pixel at
coordinates (x,y) after being modified by the function M.
We refer to the function M as the mapping function be-
cause it maps input brightnesses to output brightnesses.

As an example, suppose that we wish to make a neg-
ative image from a positive one. Here, just like a photo-
graphic negative, the blacks in the input image will become
white, the whites black, and the grays in between take on
their respective negative gqualities. This operation, often re-
ferred to as the complement image operation, does prove
useful. As we learned, the eye responds better to slight
changes in contrast in dark regions of an image than in
light regions. With this process. slight contrast changes in
the bright areas in the input image, normally undetectable,
are transformed into the dark regions in the output image
where they now become visible.

Figure 5-2 illustrates this operation along with the
mapping function. By locating the input pixel gray level on
the map's horizontal axis, moving up to the map point and
across to the vertical axis, we acquire the respective out-
put gray level. As expected, black (0) maps to white (255)
and vice versa. All of the intermediate gray levels are cor-
respondingly mapped, yielding the final complemented im-
age. Image Operation Study #5 provides additional insight
into this operation.

The uses for point processing are vast. As mentioned
in the previous chapter, histogram manipulation is carried
out by a point process. This class of point processes is re-

(c) The complement
operation mapping function.
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ferred to as contrast enhancement, Another operation
known as photometric correction, deals with the correction
of problems caused by photosensor incongruencies. One
such use corrects spacecraft image sensor nonlinearities
caused by size and weight constraints. The artist may
make use of point processing when developing silkscreen
overlays, graphics, and glass etching masks.

Point processing is a simple but truly fundamental ele-
ment of digital image processing. No matter what type of
operation is employed upon an image, some form of point
processing is probably involved, even if it is used to simply
clean up undesired artifacts left behind by another process.

CONTRAST ENHANCEMENT

We discussed histogram sliding and stretching in Chapter
2: now we will fully describe the uses and effects of these
operations.

The first thing we do is generate a histogram of the
image to be processed. This charted pixel gray level distri-
bution of an image will often tell us immediately where the
“sore’” spots are. These troubled areas are expressed in
terms of contrast and dynamic range of the distribution.
Referring back to Figures 4-1 though 4-3, we see histograms
of images with varying qualities—low contrast/low dy-
namic range, high contrast/high dynamic range, and good
contrast/high dynamic range. These are the types of histo-
grams most frequently encountered. By sliding and stretch-
ing the histograms, we may make an image of poor
contrast quality quite respectable.

Contrast enhancement is a point process involving
the addition, subtraction, multiplication, or division of a
constant value to every pixel within the image. The histo-
gram is useful in determining the operations to be
employed and in measuring the accomplishments after-
ward.

Figure 5-3 illustrates an image progressing through the
contrast enhancement process. We see the original image
histogram displaying a mound of gray levels occupied in
the center. The image appears low in contrast. The en-
hancement of increased contrast may be accomplished by
first sliding the mound of gray levels down to the dark
area of the histogram. We do this by subtracting 60 from
each pixel’s brightness, using a point process with the ap-
propriate map. The resulting image yields no more con-
trast; we have simply relocated the pixel brightness range
so that the darkest pixels of the original are now actually
full black. Now comes the stretching. To make the mound
stretch the full range of grays we must multiply every
brightness by 2. Black (0) remains 0, because 0 X 2 =0. A
pixel of brightness 10 becomes 20, and so forth, to the
maximum-valued pixel in the input image of 120 increasing




(b} The histogram.
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(c) Histogram slide map.
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{f} Histogram stretch map.

{g) Image after histogram stretch.

(h) Histogram after stretch.
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to 240. 240 is virtually the limit of the 256-level gray scale.
Again, a pixel process is used to effect the stretch. Our im-
age now appears well balanced with good contrast charac-
teristics. The final histogram shows the same. These
contrast enhancement operations are further discussed in
Image Operation Studies #2, #3 and #4.

All images may be operated on in the above manner
to acquire histograms that appear well balanced. But what
if the desired result is that of high contrast? Many times
production of an image of obtuse appearance is desired in
order to make some attribute clearer. In short, the subjec-
tive criteria on which an image is judged good or bad are
based on its intended application.

Some images are very low in contrast as a function of
their origin, such as a scene with poor lighting. An exam-
ple of this is a low-light-level original in which only a few
gray values separate background from object. Figure 5-4
shows an image of a road sign taken under these undesir-
able lighting conditions. In order to read the lettering clear-
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Figure 5-4

(a) Original low-contrast, dark image.

(¢} Qutput image with sign
lettering highlighted.
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(b} Binary Contrast Enhancement map.

ly, we may implement what is known as a binary contrast
enhancement operation. The mapping function illustrates
that all pixels of brightness less than that of the chosen
threshold brightness will be set to black (0), and those
above will be set to white (255). By choosing the correct
threshold value, we may force the lettering to go to white
and the background to black. This is possible because in
the original, the letters appear slightly brighter than the
background. The processed image is characterized by
sharply highlighted lettering appearing on a black back-
ground. Image Operation Study #1 discusses this opera-
tion in greater depth.

It is important to realize that contrast enhancement,
like any image operation, does not have an absolute
“goodness” quality for which we always aim. Different ap-
plications see contrast enhancement as meaning different
things, depending on what the user wishes to ultimately
see in the processed image.

PHOTOMETRIC CORRECTION

In any system of image gathering and display, we encoun-
ter certain degradations which are based on the equipment
used. These degradations come in the form of photometric
and geometric distortions. Photometric distortions relate to
brightness response incongruencies of a sensor device.
Geometric distortions are spatially oriented. Ideally, the
system should produce an image identical to the original
scene with no degradations added. However, using avail-
able equipment, some distortions will occur, although they
may be slight. Often space flight imaging equipment is pur-
posely not optimized for low distortion due to size and
weight considerations. In such a case, the idea is to char-
acterize the degradations before flight and correct them as
image data are received on the ground. Spacecraft move-
ment may cause geometric smearing but if the distortion is
well characterized, correction is often simple. Geometric
corrections will be covered under frame processing.

The word photometric refers to the properties of light
intensity response. In this case, we are concerned with the
intensity response characteristics of a sensor device to illu-
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mination. Photometric correction, therefore, deals with the
correction of sensor illumination response deficiencies. An
important word here is correction. This is not an enhance-
ment as previously defined, but a correction based on fac-
tual knowledge of the distortion,

Though this process holds true for correcting degrada-
tions induced by any photosensor or display device, we
will dwell on the spacecraft example. A spacecraft image
sensor is generally comprised of a solid-state photosensor
device, like a photo-diode, that converts light intensity to a
voltage level. The voltage level, in turn, represents a
sensed brightness gray level. The device is scanned hori-
zontally, sweeping out lines of image data, while scanning
vertically to sweep the entire frame. Of interest to us are
the intensity response parameters of the photosensor de-
vice—if the light impinging the surface of the device dou-
bles in brightness, does its output voltage level double? A
typical photosensor device response may be similar to that
seen in Figure 5-5. Using this curve we note nonlinearities
where the response deviates from a straight line. To cor-
rect this effect, we use a mapping function that counteracts
the bad effects by mapping the curved response back to a
linear response.
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(a) Typical photosensor response curve. sensor response nonlinearities.

We may further extend this operation to correct im-
age data being sent to a display device in order to com-
pensate for display distortions. For instance, a television
monitor (or the like) may not produce a brightness on the
screen, at any one point, linearly related to the driving
voltage representing the point. These degradations, once
characterized, may be corrected before sending the image
to the monitor much in the same way as sensor correction
was done.

ART APPLICATIONS

Today’s graphic artist has at hand the power of image pro-
cessing, with point operations playing a major role. These
processes offer the ability to alter gray scale attributes.
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Once photographic darkroom techniques, they may now be
done quickly, repeatedly, and without chemicals, greatly
increasing flexibility. Silkscreen mask generation is one
such application.

Silkscreen prints are generally comprised of several
colors—say four—all overlaid with one being the back-
ground color. To produce the overlay masks, the artist may
strip all but the two high-order brightness bits from each
pixel’s gray level. This leaves a four-gray-level image. Each
gray level represents what each overlay will look like. To
generate an overlay, one gray level is selected and set to
white while all other pixels assume black. By doing this
four times, once for each gray level, the overlay masks are
generated. Photographing the display monitor each time al-
lows transposition to the silkscreen medium itself. Of
course, with simple point processing, an endless variety of
other interesting effects are at the hand of the inspired art-
ist.

Pixel Point Processing/Dual Image

We have seen how point operations work on single im-
ages; let us now apply this technique to image pairs. In-
stead of mapping pixel brightness from one image to an
output image, we now map two pixel brightnesses, one
from each of two input images, into an’ output image.
Again, we are talking with regard to point processes which
implies each pixel is handled independently.

The mapping function for dual images becomes some-
what more involved than that of single images. With 8-bit
input pixels, each may take on one of 256 different
brightnesses. Since each pixel in an input pair is indepen-
dent, we have a total of 256 X 256 different possible input
combinations being mapped into 256 possible output gray
levels. The map for this type of function must be displayed
in three dimensions and, unlike the single-image point
map, is not easily interpreted. For this reason, we general-
ly work in terms of a combination function. This name is
appropriate because it refers to the way in which the two
input images are combined. Our dual image point process
equation is of the form

Oxy) = L(xy) & L(x.y)

where [,(x,y) and Lfxy) represent the two input images.
The symbol & is used to denote the combination function.
As before, it is implied that all pixels in the images are op-
erated upon.

Combination functions include mathematical and logi-
cal operators such as +, —, X, /, AND, OR and EXclusive
OR. We now have the ability to add, subtract, multiply, di-
vide, AND, OR, and EXclusive OR image pairs, opening an
additional world of point processing. For instance, dual-im-




Figure 5-6
(a) Original image #1.

age addition operations are used for frame averaging in the
reduction of random picture noise. Addition may also be
used for the simple superimposing of two images; this is
depicted in Figure 5-6. Subtraction techniques yield the
ability to subtract out consistent background patterns and
detect object motion from frame to frame. More on these
operations may be found in Image Operation Studies #17,
#18 and #19.

Pixel Group Processing

Pixel point processing allowed image gray-scale occupancy
modification and image combination, which are both im-
portant image processing tools. What point operations did
not allow was the spatial modification of scene detail
within an image. Everything was handled pixel by pixel,
with no interest in adjoining pixels. It turns out that when
operating on any one particular pixel, adjoining pixels can
give valuable information concerning brightness trends in
the area being processed. These brightness trends open
doors to the world of spatial filtering.

Earlier, the concept of spatial frequency was men-
tioned. Spatial frequency is the term used to define two-di-
mensional frequency. An image is said to be composed of
many basic frequency subcomponents, ranging from high to
low, Where rapid brightness transitions are prevalent, we
have high spatial frequency. Slow transitions represent low
frequency. Wherever a sharp edge is present—say, a tran-
sition from white to black within a one pixel distance—the
highest frequencies in the image are found. Making use of
this information, we may generate output images showing
only the high-frequency or low-frequency components, a
class of image processing known as spatial filtering. Addi-
tional spatial filtering operations make it possible to gener-
ate images that show only where individual sharp
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(b) Original image #2.

(c) Pixel-by-pixel addition of both images.
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transitions occur. These processes ultimately yield image
edge detection and enhancement.

In dealing with spatial filtering, we talk about the
spatial convolution operation. Convolution is a mathemati-
cal method used in signal analysis. Although the operation
is mathematically complex, we may discuss it in an intu-
jtive, pictorial manner. Spatial convolution is the method
we use to calculate what is going on with the pixel
brightnesses around the point of processing. As in point
processing, we move across the image, pixel-by-pixel, plac-
ing a result at the same location in the output image as we
are in the input image. It is the calculation that is different.
The output pixel brightness becomes dependent on a group
of pixels surrounding the pixel in which we are interested.
By taking information about the center pixel's neighbors,
we are able to calculate spatial frequency activity in the
area and therefore are capable of making discretionary de-
cisions regarding the area’s spatial frequency content. Let
us see how spatial convolution is carried out.

For every pixel in the input image, we calculate a val-
ue for the output image pixel by calculating a weighted av-
erage of it and its surrounding neighbors. The average is
formed from a group of pixels, called a kernel, around, and
including, the center pixel being processed. The dimen-
sions are that of a square. The kernel may have the dimen-
sions 1 X 1, which is the trivial case giving simply a point
operation, 2 X 2, 3 X 3, and so on. The operation is said
to increase in degrees of freedom, the larger the kernel
size. This means that the flexibility of the spatial filter is
increased by taking into account more neighboring pixels
in the calculation. The accepted general-purpose kernel
size is 3 X 3. This is because enough freedom is main-
tained and yet computation time is minimized.

The term weighted average is best described by first
considering a conventional nonweighted average. As with
any averaging of numbers, we add the numbers together
and divide by the number of terms in the average. This
gives us a single number based on the information present
in all the numbers in the operation. For a 3 x 3 kernel, we,
would add the 9 pixel brightnesses together and divide the
result by 9. A weighted average, on the other hand, is
formed by attaching a multiplicative weighting factor to
each term in the average. By altering these weighting fac-
tors, or convolution coefficients, certain pixels will have
more or less influence on the overall average. In fact, cor-
rectly selecting the proper weighting coefficients allows us
to carry out high and low pass image filters along with a
variety of edge enhancement filters.

The mechanics of spatial convolution are fairly
straightforward. In carrying out a 3 X 3 kernel convolu-
tion, nine weighting coefficients are defined and labeled A
through I This array of coefficients is called the convolu-
tion mask. Every pixel in the image is evaluated with its
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eight neighbors, using this mask, to produce a resultant
pixel value to be placed in the output image. A graphical
representation of the operation is shown in Figure 5-7. The
mask is placed over each input pixel. The pixel and its
eight neighbors are multiplied by their respective weighting
coefficients and summed. The result is placed in the output
image at the same center pixel location. This operation
ocurs for each pixel in the input image; in our case, 256 X
256 = 65,536 times. Each operation requires nine multipli-
cations and nine additions. As we can see, a full image
convolution requires on the order of a half-million multipli-
cations and additions—not a quick process. Chapter 7 will
show how special-purpose image processing hardware can
drastically reduce this computational time.
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Research in image processing has yielded a variety of
convolution masks for use as standard processing func-
tions. Actually, the masks and the convolution process it-
self are no more than an application of standard
mathematical functions in /inear system theory. The math-
ematical foundations of linear system theory may be found
in most texts dealing with electrical signal analysis. We
will now review commonly used convolution masks and
discuss how they work to effect our end goals in image
processing.

SPATIAL FILTERING

The term spatial filtering implies the separation of frequen-
cy components within a two-dimensional base of data, or
in our case, an image. The frequency components are spa-
tial frequencies which relate to the rapidity of change in

Figure 5-7 Spatial convolution
calculation flow for pixel #5.



Figure 5.8
{a) Original image.

{b) Low pass filtered image.
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gray levels over a certain spatial distance. Implementing a
high pass filter will accentuate high-frequency details,
leaving low-frequency details attenuated as a result. A low
pass filter has the inverse effect. Edge enhancement opera-
tions are additional spatial filters with special edge detec-
tion properties. Since these filters play an important role in
edge enhancement, they will be covered separately in the
following section.

A spatial low pass filter has the effect of passing, or
leaving untouched, low-spatial-frequency components of an
image. High-frequency components are attenuated, leaving
them virtually absent in the output image. A common low
pass convolution mask is comprised of all nine coefficients
having the value of 1/9:

1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

Two aspects are immediately evident—the coefficients
sum to 1 (9 x 1/9 = 1) and they are all positive numbers.
These two facts hold true for all low pass filter masks. Fig-
ure 5-8 illustrates a low passed image.

To gain an intuitive feeling for how the low pass filter
works, we may discuss the convolution output values as
the mask is passed over regions of an image having differ-
ent spatial frequency characteristics. If each pixel in a 3 X
3 group has the same brightness value, the result will be
that of the constant pixel value. This correlates with the
fact that there is a spatial frequency of 0 in the neighbor-
hood—no gray level change at all. A frequency of 0 is the
lowest possible and, of course, would be expected to be
passed by the low pass filter unchanged. If the pixels in a
neighborhood change rapidly from white to black every
other location, the calculated output pixel value will be
that of the average of all nine input values. As the mask
moves over all pixels in a high-frequency area, they are re-
placed by their group averages, producing an output image
that removes the high-frequency details. The visual effect
is that of blurring. So we see that the output image is relat-
ed to spatial frequency of the input image, slow-changing
areas are left unchanged or changed slightly where fast-
changing areas get averaged out to yield only the slow-
changing aspects.

If we were to pass the low pass mask over an area
with a single pixel width line having a constant back-
ground pixel brightness, we would expect the line to be
blurred. This is because the line represents a high spatial
frequency content. In fact, a sharply defined line actually
is composed of frequency components spanning the spec-
trum of low to high frequencies. As the mask is moved
over the line, pixels are replaced by the average of the
bright line pixels and the constant background pixels. We
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expect the resultant value to be somewhere between the
two. The line becomes blurred into the background. Only
the low-frequency components of the line remain at the
end of the entire image convolution. The low pass filter is
further discussed in Image Operation Study #6.

The low pass image filter becomes intuitively clear
with a little studying. By running the mask over regions of
varying details, we see the results corresponding with the
passing of low-frequency details and the blocking of high-
frequency details. All masks may be analyzed in this same
intuitive manner.

Low pass filtering reduces high-frequency detail in an
image. The effect is a mellowed, or slightly blurred, image.
Low pass filtering allows analysis of low-frequency details
of an image without the disruption of high-frequency de-
tails. It also plays an important role in the unsharp mask-
ing enhancement operation, discussed in Image Operation
Study #9.

The high pass filter has basically the opposite effect
of the low pass filter. It accentuates high-frequency spatial
components while leaving low-frequency components un-
touched. A common high pass mask is comprised of a 9 in
the center location with —1s in the surrounding locations:

-1 -1 -1
-1 g -1
-1 -1 -1

We note that the coefficients add to 1 and, furthermore,
smaller coefficients surround the large positive center coef-
ficient. A high passed image is illustrated in Figure 5-9.

The fact that the high pass mask contains a large pos-
itive coefficient in the center surrounded by smaller coeffi-
cients gives us a clue as to its operation. It tells us that the
center pixel in the group of input pixels being processed
carries a high weight whereas the surrounding ones act to
oppose it. If the center pixel possesses a brightness vastly
different from its immediate neighbors, the surrounding
pixel effect becomes negligible and the output value be-
comes a brightened version of the original center pixel.
The large difference indicates a sharp transition in gray
level, and we would expect the high-frequency content
transition to be accentuated in the output image. On the
other hand, if the surrounding pixel brightnesses are large
enough to counteract the center pixel's weight, the ultimate
result is based more on an average of all pixels involved.

It may be interesting to note that if all pixels in a 3 X
3 group are equal, the result is simply the same value. This
is equivalent to the low pass filter's response over con-
stant regions. What this means is that this high pass filter
does not attenuate low-frequency spatial components.
Rather, it emphasizes high-frequency components while
leaving low-frequency components untouched.

Figure 5-9
(a) Original image.

{b) High pass filtered image.
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High pass filtering of an image adds accentuation to
the edges, or transition areas, within it. This effect often
gives the viewer a more pleasing image. Additionally, de-
tails muted by the background and low-frequency noise
become apparent where they may have been barely visible
in the original. Both high and low pass filter functions also
fill important roles when used in conjunction with point
processes. More on the high pass filter may be found in
Image Operation Study #?7.

EDGE DETECTION/ENHANCEMENT

Enhancement of edges in an image is an operation used in
feature extraction, an important class of image processing.
The operation basically reduces an image to display only
its edge information. This information is then used for fea-
ture, or object, recognition by high-level algorithms. Addi-
tionally, a useful enhancement operation is carried out by
adding the edge enhanced image back to the original using
a dual image point process. The result is a crisper image
displaying sharper edge detail.

Edge enhancements may be implemented through
spatial filtering. Three particularly useful filters are found
to be quite common in many image processing tasks. They
are known as shift and difference, gradient and Laplacian.
All three enhancements are based on the slope of pixel
brightness occurring within a pixel group. To further define
the term s/ope in an image context, think of the brightness
of each pixel as being represented by a height coming out
from the page toward the observer (see Figure 5-10). We
see an image mound rather than the standard gray tone
representation; the brighter the pixel, the higher the
mound. By measuring the slope of the mound within any
given pixel group, we have a value for how steep the in-
cline is. A large value corresponds to a steep slope and
means a large change in gray level. A small value indi-
cates small slope which is equivalent to a small change in
gray level. Since edges are, by definition, sharp brightness
changes, large slopes indicate the presence of an edge.

The simplest edge enhancement operation is the shift
and difference method. This procedure allows us to extract
horizontal and vertical edge information. By shifting an im-
age to the left by one pixel and then subtracting it from the
original, vertical edges become apparent. On a pixel-by-
pixel basis, we subtract the horizontal neighbor, giving a
value of their brightness difference, or slope. Of course, a
large difference is yielded by two adjacent pixels of great-
ly varying brightnesses. The result is an image appearing
as an embossing (see Figure 5-11).

The analogous horizontal edge enhancement is
implemented by shifting the image upward by one pixel
and carrying out the subtraction. Since the success of all
enhancements is evaluated subjectively, this edge enhance-
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ment technique often proves valuable. The shift and differ-
ence operation may be carried out using a dual image
subtraction process or a group process. Image Operation
Study #10 discusses this operation in more depth.

The gradient operation forms a directional edge en-
hancement. Using a 3 X 3 kernel, eight gradient images
may be generated from an original. Each highlights edges
oriented in one of the eight compass directions—N, NE, E,
SE, S, SW, W, and NW. Figure 5-11 illustrates an East di-
rectional gradient. The mask oriented for the East direction

is given.

-1 1 1
-1 =2 1
-1 1 1

Note that the coefficients add to 0. This means that as the
mask passes over a region of the image having a constant
brightness, a result of 0 is produced. Of course, this repre-
sents a brightness slope of 0, which is exactly what a re-
gion of constant brightness has.

Using the East mask, a transition from dark to light,
going left to right, will be accentuated. This is because a
positive East brightness slope exists. Brightness slopes in
other directions sum to a negative value, which is forced to
0, or black. The response of the gradient operation for a
one-dimensional edge is seen in Figure 5-12. Where the
gradient generates negative results, the output value is set
to 0, since negative brightnesses are undefined. The gradi-
ent image appears black wherever the original image
brightnesses are constant. Edges with the correct direction-
al orientation in the original image are seen as white. Ad-
ditional discussion of the gradient operation along with
masks for all eight directional enhancements may be found
in Image Operation Study #11.
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Figure 5-10 Pixel brightness
represented by height, illustrating the
concept of brightness slope.



Figure 5-11
(a) Original pattern image.

(f) Original image of bridge.

{b) Vertical shift and difference edge (c) East direction gradient

enhancement. edge enhancement.

(g) Vertical shift and difference edge en- (h) East direction gradient edge
hancement.

enhancement.

The Laplacian edge enhancement is an omnidirection-
al operation, highlighting all edges regardless of their ori-
entation. This operation is based on the rate of change of
the brightness slope within a 3 X 3 pixel group. The com-
mon Laplacian mask is comprised of an 8 in the center lo-
cation with —1s in the surrounding locations.

-1 -1 -1
-1 8 -1
-1 -1 -1

The coefficients add to 0 and, as in the high pass filter
mask, negative valued coefficients surround the large posi-
tive center coefficient. Figure 5-11 illustrates a Laplacian
edge enhanced image.

The Laplacian enhancement generates sharper peaks
at edges than does the gradient operation. Any brightness
slope, whether positive or negative, is accentuated, giving
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Lapiacian edge enhancement. (e) Horizontal line detect.

aplacian edge enhancement. (j} Horizontat line detect.

the Laplacian its omnidirectional quality. In the human vis-
ual system, the eye-brain system applies a Laplacian-like
enhancement to everything we view. Because of this, a
natural sharpening of images may be achieved by adding a
brightness scaled Laplacian enhanced image to the origi-
nal. The results of this procedure often produce a natural-
looking sharpened image with subjectively pleasing quali-
ties.

The Laplacian image appears black wherever the
original brightnesses are constant or linearily changing.
Edges made of nonlinear brightness transitions are
highlighted as white. The Laplacian operation is discussed
in additional depth in Image Operation. Study #12.

The above methods for edge enhancements play a
major role in machine vision. Whether the application is
automated assembly-line material inspection or feature
recognition, these processes are the first used to condition
the raw images. Before a computer can actually attempt a
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Figure 5-12 Response characteristics
of the gradient and Laplacian edge
enhancement operations.
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recognition process, though, the image must generally be
further processed. One such operation is the binary con-
trast enhancement, discussed earlier. Another operation of-
ten found useful is a line segment enhancement. A line
enhancement operation emphasizes line segments within
the image.

Figure 5-11 on pp. 54-55 illustrates an image pro-
cessed by the horizontal line segment enhancement opera-
tion. The mask for this operation is given.

-1 -1 -1
2 2 2
-1 -1 =1

Again, the coefficients add to 0. This tells us that constant
brightness regions of the original image will become black
when processed. Only line segments are left highlighted.

In factory process control applications, binary con-
trast enhancement is often evoked following the line seg-
ment enhancement. The ultimate result is an image more
intelligible to computer object-recognition algorithms. More
on line segment enhancement operations is found in Image
Operation Study #13.

We have covered a section of image processing deal-
ing with the enhancement of images based on brightness
trend information within a 3 X 3 pixel group. Masks for
these processes may be altered or entirely redefined to ef-
fect the user's end result. Especially powerful is the combi-
nation of point processing with group processing. The
operations covered represent the most-used functions and
serve as an introduction to the inner workings of group
processing.
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Frame Processing

Frame processing is the term given to the collection of im-
age processing operations that do not fall within the con-
fines of point or group processing. Frame processes
encompass a wide variety of algorithms, each as different
from another as point processes were from group process-
es. Because of this diversity, processing hardware within
an image processing system rarely includes the capability
of handling some, if any, frame processes. Instead the job
is usually left to the host computer to be carried out in
software. The actual processing implementation of these
processes will be discussed in Chapter 7.

As would be expected, all image analysis and coding
operations fall under the category of frame processing. Nei-
ther of these classes of image processing operations may
be handled by the point or group processes. A common ex-
ample of image analysis frame processing is that of the
histogram, discussed in Chapter 4.

Frame processes are often time consuming, yet serve
as useful and necessary functions for a variety of image
processing applications. Three commonly used operations
are overviewed here—geometric operations, image trans-
forms, and data compression. Additionally, an operation
known as the median filter is discussed in Image Opera-
tion Study #8.

GEOMETRIC OPERATIONS

Geometric operations, as applied to images, provide for the
spatial reorientation of pixel data within an image scene.
Pixel data from an input image may be transformed into
new spatial locations, as defined by a geometric algorithm,
producing a resulting image of altered characteristics. Geo-
metric operations are often employed in image processing
as a primary or ancillary function to processes from the
point or group classes.

Three basic geometric processes allow for the sizing,
orientation, and movement of images. They are image scal-
ing, rotation, and translation. These operations permit the
user to do simple pixel spatial transformation.

All geometric operations are performed by moving
pixels from their original spatial coordinates in the input
image to new coordinates in the output image. The general
equation for these operations is

I(xy) —> Ox".y")

where (x’,y') are the transformed coordinates of the pixel
brightness originally located at coordinates (x,y). Each geo-
metric operation is, therefore, defined by a coordinate
transform equation that defines the new x' and y’ output
coordinates for an input pixel at (x,y).

Image scaling deals with the enlarging and shrinking
of an image or portion of an image. The general coordinate
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Figure 5-13
{a) iImage magnification by factor of 2.

(b) Image shrinkage by factor of 2.
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transform equations for this function is given by the equa-
tions

x' = Sx and
y =5y

where x and y are the coordinates of the input pixel being
processed, x’ and y’ are the new output pixel coordinates
and S is the scaling factor. S acts to modify the coordi-
nates of the pixel brightness at (x,y) rather than the pixel
brightness itself, as did the mapping function, M, in point
processing. The scaling factor dictates the amount of mag-
nification or demagnification to occur, For example, S = 2
represents a magnification of 2, where S = 1/2 would be a
magnification of 1/2, or a shrinkage by a factor of 2. Figure
5-13 illustrates image magnification and shrinkage.

To see how the formula works, let us follow it
through for a magnification of 2 applied to a 2566 X 256 im-
age. A pixel is retrieved from the input image at coordi-
nates (x,y)—say location (67,67). The scaling factor acts to
multiply both x and y by 2, yielding (x'y’) equal to
(134,134). The original pixel brightness taken from location
(67.67) in the input image is, therefore, placed at location
(134,134) in the output image. Continuing the process
across the input image line, we ultimately arrive at the
pixel residing at (127,67). Applying the scaling factor, S, to
the coordinates gives (254,134) as the new output coordi-
nates. Incrementing to the next input pixel, (128,67), the
scaling will yield output coordinates of (256,67)—out of
range for a 256 X 256 output image. The processing of line
67 is complete. The pixel coordinates in line 67 have been
expanded from between 0 through 127 to 0 through 254, a
magnification of two. The analogous process happens on a
line-by-line basis. In all, the pixel coordinates from pixel
(0,0) to (127,127) are mapped to form a new output image
&g the entire 256 X 256 image frame.

The obvious question is what happens to the odd
.....s and pixel locations in the output image, since nothing
is directly mapped into them? Since we have effectively
mapped a 128 X 128 image into a 256 X 256 image, there
is no valid pixel information to be placed in the odd loca~
tions. To make the output image more appealing, however,
the pixel to the immediate left is usually replicated into the
odd pixel location. Likewise, the line of pixels above an
odd line is replicated into the odd line below. The reduc-
tion in spatial resolution is the natural artifact of doing a
magnification. In each axis, we have expanded half the
pixel data into a full frame.

Image shrinking follows the same principles as magni-
fication. In a shrinking by a factor of 2(S = 1/2), the input
image of size 256 X 256 will be mapped into an output im-
age of size 128 X 128.
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Scaling serves a variety of purposes in image process-
ing. It may be used to simply crop a scene before further
processing is evoked. For image composition, it allows sev-
eral input images to be size adjusted before they are as-
sembled into a final output image collage using a dual
image point process image addition. Also, image registra-
tion between two input images in a dual point process may
utilize the scaling operation. Image scaling is discussed fur-
ther in Image Operation Study #14.

Image rotation provides the user with the ability to
rotate images about a center point. The coordinate trans-
form equations are

x' = xcosf + ysind and
y' = —xsinf+ ycosé

[

where x and y are the input image pixel coordinates, x
and y’ are the new output pixel location, (x',y’), and 6 rep-
resents the angle of clockwise rotation of the image about
the image center point. A 8 of angle 0 to 360 degrees may
be specified, allowing the rotation of an image through any
required angle. Figure 5-14 illustrates an image rotated
through an angle of 330°.

The mathematics behind the rotation algorithm is an
application of basic trigonometry. The derivation of the
equations may be found in almost any text dealing with
the subject. The center point of rotation is the center of the
image and must therefore be defined as the pixel coordi-
nate origin for this operation. Pixels then have the coordi-
nates —127 to 128, going across the image from left to right.
Likewise, lines from top to bottom have the coordinates
—127 to 128. For the sake of following the process through,
we will use the simple example of & = 90°. We calculate
gin 80° = 1 and cos 90° = 0. The equations boil down to x’
= yand y' =—x. So plugging in the input pixel coordi-
nates of (127,87), for example, yields the resulting output
image coordinates of (67,—177). Applying the spatial trans-
formation to all pixels within the input image will yield an
output image rotated by 90°.

A concern in image rotation comes up when rotating
an image by an angle that is not a multiple of 90°. As we
saw in the example, the 90° rotation maps pixels one for
one from the input to output image. This also holds true for
180° and 270° rotations for the sinf and cosé terms will be
either 1 or 0. When rotating through an angle that is not a
multiple of 90°, however, we have sind and cos terms that
are fractional. As a result, the calculated output pixel coor-
dinates rarely are integer numbers. So where does the
pixel brightness go if (x’,y’) are not integer numbers? There
are two ways to handle the problem. One is to place the
pixel brightness at the nearest pixel location. This tech-
nique tends to turn straight lines into jagged lines when ro-
tated, sometimes causing results disturbing to the viewer.

Figure 5.14 330° Image rotation.
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Figure 5-15 Pixel location interpolation.
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A second technique is called interpolation. A pixel falling
between locations in the output image will always be
somewhere in between four valid pixel locations. One form
of interpolation divides the total pixel brightness into parts
to be placed at the four valid pixel locations. The bright-
ness division is determined by the distance that the
transformed input pixel falls from each of the four output
pixel locations. Since other pixels are also mapped to frac-
tional pixel locations in the output image, there may be up
to four input pixels contributing some brightness to any
one output pixel location. Figure 5-15 shows this interpola-
tion scheme.
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Image rotation is used for many of the same reasons
as scaling. The user is simply allowed an additional meth-
od of geometric manipulation for whatever reason may be
appropriate. Image Operation Study #15 further discusses
geometric rotation.

The last basic geometric operation is that of image
translation, allowing the up-and-down, side-to-side move-
ment of an image. The coordinate transform equations for
image translation are given by the equations

x' = x + T, and
y=y+T,

where x and y comprise the input pixel coordinates, x’ and
y' form the output coordinates and 7, with T, define the
translation in the x and y directions. An input pixel is
shifted side to side by the number of pixels indicated by T,
while the shift up and down is specified by 7,, thereby
effecting the translation. All the input pixel coordinates are
shifted by the amounts given by 7, and 7.

For example, with T, = 10 and 7, = —20, an input
pixel at location (127,67) will be mapped to the location
(127 —20, 67+10), or (107,77), in the output image. When
applied to all pixels in the input image, the net result will
be an image moved to the right 10 pixels and up 20 pixels.
Figure 5-16 shows a typical image translation.



Translation may be combined with scaling and rota-
tion, netting the user the capability of total geometric im-
age manipulation. This kind of image manipulation is
useful in corrective geometric processing of many image
scenes as a prelude to other operations. See Image Opera-
tion Study #16 for more on image translation.

A type of geometric transformation commonly used to
correct spatially distorted images is known as rubber sheet
transformation. This process may be thought of as working
with an input image printed on a sheet of rubber. The rub-
ber is then stretched and pinned down at selected points
so that the original image is geometrically contorted to ef-
fect a desired end result. This type of geometric correction
finds a variety of uses, for instance, spatial correction for
an image sensor, an operation parallel to photometric cor-
rection.

In an image sensor, there often exists some sort of
spatial nonlinearity. This type of distortion is manifested
as spatial bulges or contractions acting to distort the
sensed image. These nonlinearities are usually slight and
cause no problem to the user of the images. However, in
certain applications—spaceborne imaging, for instance—
weight and size constraints may force the design of an im-
age sensor to be less than perfect. In these cases, the use
of a rubber sheet transformation may be needed.

The basic approach to implementing a rubber sheet
transformation is to define the mapping of input pixel loca-
tions to output pixel locations. This can be done with a
massive spatial look-up table directly mapping input pixels
into their new output locations. Implementing such a pro-
cess can be very time consuming. Instead, we use a more
general approach, still retaining a large degree of freedom
in the definition of the transformation. Taking the rubber
sheet image, we envision what areas of the image are to
be stretched and to what degree. The stretching is then
thought of as being carried out by pinning points of the
sheet down. These points are called control points. By
mathematically defining where the control points are locat-
ed and what degree of stretching is to occur between them,
we are able to calculate the input-to-output pixel transfor-
mation. Interpolation, as seen before, must also be used
since the mapping will generally not be one to one.

The rubber sheet transformation idea may be extend-
ed to include the correction of viewing geometry problems
and some sensor movement induced problems. Say, for ex-
ample, an image is taken of the flat surface of an object at
a perspective other than perpendicular to the surface
plane. The resulting image is distorted in that square coor-
dinate points on the surface appear quadrilateral in the im-
age. By mapping the points of the imaged quadrilateral
area into a square, we may recover the view of the area as
it would have appeared in a perpendicular imaging ar-
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Figure 5-16 Image translation —64 pixels
up, 50 pixels to right.




Figure B-17 Rubber sheet transformation
of quadrilateral area to square area.

/Transformed Perpendicular View

| Perspective View

/ of Surface

rangement. Figure 5-17 illustrates this transformation. Like-
wise, mapping into another desired perspective angle is
possible. Getting more involved is the perspective alter-
ation necessary in correcting an image of a planetary ob-
ject. In this case, the spherical curvature of the imaged
surface must also be accounted for.

Some image sensor movement problems, as encoun-
tered in spacecraft, may also be handled by a rubber sheet
transformation. In an imaging device that has a line of light
sensors—common in Earth mapping satellites—we may ex-
perience sensor movement during the accumulation of
enough lines to compose an entire image frame. This effect
may, in some cases, yield an image of rectangular dimen-
sions where the actual object area covered was square.
We may use rubber sheet transformation to stretch out the
shorter dimension of the rectangle and derive the original
geomelry of the object. Adding in movement that is not
along the imaging axis adds to the complexity of this pro-
cess.

All of the rubber sheet corrections reduce to straight-
forward mathematical models as long as the geometric dis-
tortion is precisely defined before processing commences.
In the sensor spatial nonlinearity correction, the distortion
may be characterized by imaging a square grid and deriv-
ing the proper equations to map whatever the sensor out-
put image is into the original square grid pattern. From that
point on, the geometric correction map will remain the
same regardless of what is imaged. Likewise, as long as a
spacecraft's movement is well defined and viewing per-
spective is known, the associated corrections pose no ma-
jor difficulty.

We have discussed a variety of geometric corrections
available to the user as needed. By picking and choosing
the appropriate process or combination of processes, we
have the flexibility to enhance geometrically poor images,

}naking them more useful than they were in their original
orm.
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TRANSFORMS

The discussion on spatial frequency content of an image
allowed us to see that a scene is composed of varying spa-
tial frequency components. Group processing operations
then provided the ability to accentuate or attenuate certain
frequency components of the image, depending on the coef-
ficients used in the convolution mask—for instance, high
and low pass filtering. Very powerful operations, known as
frequency transforms can be used to give a pictorial view
of the spatial frequency component breakdown of an im-
age. Additionally, these transforms may aid in the specific
filtering of undesired components.

An image scene is composed of two-dimensional spa-
tial frequency components. These frequencies have varying
orientation—horizontal, vertical, etc——and are defined as
having an amplitude and phase. It may be further stated
that an image may be broken into these frequency compo-
nents and then reconstructed from their subsequent sum-
mation.

A frequency transform gives us the ability to trans-
form an image from the spatial domain to the spatial fre-
quency domain and back again. Applying a frequency
transform to an image yields a new image displaying the
array of spatial frequencies, and their amplitudes and
phases, present in the original image. The frequency image
displays the presence of frequency components in an origi-
nal image by the brightness of points at respective loca-
tions. Horizontal frequency is defined along the x-axis and
vertical frequency along the y-axis. The brightness of a
point in the image corresponds to the amplitude of the fre-
quency component represented by the point’s coordinates.
Using this frequency domain image, we may easily analyze
the spatial frequency content of an image.

Image filtering may be carried out in the frequency
domain in a more intuitively straightforward manner than
convolution in the spatial domain. To remove a particular
frequency band from an image, we may simply set the cor-
responding area of that frequency image to zero, which re-
moves those frequency components, and transform the
frequency image back to the spatial domain. The drawback
is in the two transforms that must be executed. Not only
are these operations extremely computationally intensive
in a time sense, but the cumulative mathematical errors
can sometimes lead to problems.

The execution of a low pass filter on an image using
the frequency transform method rather than spatial convo-
lution proceeds as follows. A frequency transform is
performed on the input image, yielding a spatial frequency
image. The frequency image is then multiplied by a fre-
quency mask image where the desired low-frequency com-
ponents are equal to 1 and all others to 0. The resulting
image is identical to the original frequency image in the
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low-frequency region, but zero elsewhere; there are no
longer any high-frequency components in the frequency im-
age. This image is then inverse frequency transformed
back to the spatial domain where we are left with a low
passed version of the original image. High pass filtering is
handled similarly by multiplying the frequency image by a
mask image with the desired high-frequency regions equal
to 1 and the low regions to 0. Of course, the frequency
mask image may take on values other than just 0 and 1. By
selecting appropriate numbers, the degree of frequency ac-
centuation and attenuation may be controlled.

A great power of frequency transform filtering is the
ability to do highly selective frequency filtering. For exam-
ple, an image with a periodic noise, appearing as bands
across the image, will have a frequency image with bright
spots at the locations in the frequency domain where the
noise frequency exists. By multiplying the frequency image
by a mask that ““zeros” the bright spot (thereby performing
a band rejection filter at that frequency), the resulting spa-
tial domain image will be devoid of the noise bands. An
artifact of the filtration will be that any good image data
comprised of the filtered spatial frequency will also be
lost. However, the narrow frequency filtering allowed by
the transform method will produce minimal disturbance to
the rest of the image.

Frequency transforms come in a variety of forms. The
distinguishing differences are the conventions used in
which spatial frequencies are broken down inte compo-
nents. Although the exact transform type to be used is
dependent on the application, the most common ones en-
countered are the Fourier, Hadamard, and Haar trans-
forms. Derivations and applicability of these and other
transforms may be found in texts dealing with signal pro-
cessing and analysis.

Frequency transforms as applied to image processing
can prove to be useful and sometimes invaluable tools.
They are also time consuming, computationally intensive
operations, generally leading to expensive implementation.
Transforms are rarely supported on board image process-
ing systems; they are most often handled by a host com-
puter with fast numerical computation capabilities.

DATA COMPRESSION

Images of even moderate size are comprised of large
amounts of data. Because of the ever-increasing desire to
transmit and store images, it is common to code the data
into a form less space consuming, thereby allowing speedi-
er transmission or denser storage. There are numerous
techniques currently employed to handle this type of cod-
ing, some more useful than others, depending on the appli-
cation. Image data compression falls in the important class
of image coding operations.




Picture Operations 65

In an image of a natural scene, there will tend to be
redundant information. When properly processed, this in-
formation may be reduced to a simpler form, producing an
image requiring less data needed to describe it. To see
this, we examine an image (such as Figure 3-3) from left to
right along a single line. Gray levels go up and down. Ex-
cept for areas composed of high spatial frequencies, these
levels tend to change slowly or even remain constant over
substantial lengths. Often, the majority of a line may be
the same gray level. Using this knowledge, we may employ
techniques of image coding that can be quite effective in
the reduction of data necessary to reconstruct an original
image. Two such methods in common use serve as goad,
easy-to-understand introductions to the area of image data
compression. They are run-length coding and differential
pulse code modulation, or DPCM.

Run-length coding may be implemented in a variety
of ways; we will look at one method. On a line-by-line ba-
sis, we start at the beginning of a line. The brighiness of
the first pixel is noted. Traveling across the line, we count
the number of subsequent pixels of the same brightness.
When a different brightness is encountered, we place in
the coded image file the constant brightness of the first
group of pixels and how many there were. The process
then repeats itself. For instance, if there were 53 pixels of
the same brightness in the first group, they will be coded
into two 8-bit binary numbers. The first number represents
the brightness and the second represents the number of
pixels in the length. The 53 8-bit pixels have been coded
into two 8-bit numbers, a substantial data reduction.

Of course, if the brightness of pixels is changing ev-
ery pixel location across the line, the run-length method
will require twice the data storage of the original image it-
self. Remember, each time a brightness change is encoun-
tered, two 8-bit numbers are required to characterize the
previous group of constant pixels, even if that group is
only one pixel long. Modifications to the run-length algo-
rithm may further enchance its characteristics, making it
more efficient in high spatial frequency areas of an image.

A second coding method of interest is differential
pulse code modulation, or DPCM. Instead of working with
the principle that there will be long lengths of constant
pixels, we assume that any adjacent pixel will tend to be
near in brightness to its horizontal neighbor. As we travel
across the line, the coded image file is loaded with the dif-
ference in brightness from one pixel to the next. Assuming
that this change is never to be more than, say, eight gray
levels, the coded change value need only be three bits
long. Instead of storing the absolute brightness value of all
pixels in an image, we simply store the change in bright-
ness as we go from one pixel to the next. For 8-bit pixels;
this technique represents an across the board data reduc-
tion of (8 — 3)/8 = 63%.




66 Picture Operations

An artifact of this coding technique shows up when
the change in brightness from one pixel to the next is larg-
er than eight gray levels. The DPCM method may require
several pixel distances to settle in on the correct pixel
brightness value after encountering a sharp change. The ef-
fect of this phenomenon manifests itself as an apparent
horizontal low pass filtering of the image. By increasing the
number of bits used to describe the pixel-to-pixel differ-
ence, this effect may be minimized. However, the improve-
ment comes at the cost of data reduction efficiency.

Image coding techniques are far ranging. Often the al-
gorithm to be used will be dependent on the type of im-
ages to be coded. For instance, both of the above methods
work well except when dealing with images comprised
largely of high-frequency components.

Implementation of image coding may often be han-
dled in hardware as a final step in some sort of processing
before the image is to be transmitted or stored. For gener-
al-purpose processors, however, the task is left to the host
computer to be carried out in software.




