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The Early History of Quantum Tunneling

Molecular spectra, electron emission from metals,
and alpha decay provided fertile ground in the
1920s for applying the new ideas of quantum
mechanics.

Eugen Merzbacher

Among all the successes of quantum mechanics as it evolved in the
third decade of the 20th century, none was more impressive than
the understanding of the tunnel effect--the penetration of matter
waves and the transmission of particles through a high potential
barrier. Eventually, five Nobel prizes in physics were awarded for
research involving tunneling in semiconductors and
superconductors and for the invention of scanning tunneling
microscopy. Tunneling occurs in all quantum systems. It is crucial
for nucleosynthesis in stars, and it may also have played an essential
role in the evolution of the early universe. From its beginning,
recounted here, quantum tunneling has remained a hot topic, with
myriad applications to this day.

In 1923, Louis de Broglie proposed that matter waves have a
wavelength inversely proportional to their velocity. It must have
been immediately realized that, in a manner analogous to optics, a
particle of energy E incident on a region of potential energy V enters
a refractive medium characterized by an index of refraction n that
varies inversely with the wavelength. It is given by

Ordinarily, when the particle energy E > V, so that n is real, the
medium is dispersive, but in classically inaccessible regions where E
< V and the kinetic energy is negative, the index of refraction is
imaginary. In optics, the penetration of light through a thin
reflecting metallic layer signals an imaginary index of refraction. A
related phenomenon, unaccounted for by the laws of geometric
optics, is the appearance of an evanescent light wave accompanying
total internal reflection at the interface of two transparent media. In
the less dense medium, the normal component of the propagation
vector is imaginary, and the wave amplitude is exponential rather
than oscillatory. If a second medium of higher refractive index is
within range of the evanescent wave, an attenuated portion of the
incident wave can be transmitted (a phenomenon termed frustrated
total internal reflection).

In analogy with light waves, matter waves presumably would also
penetrate and be transmitted through classically forbidden regions,
albeit with attenuated amplitude. A quantitative analysis of the
physical implications of this tunneling effect had to await Erwin
Schrödinger's wave mechanics and Max Born's probability
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Figure 1

interpretation of the quantum wavefunction. Transmission of
particles through a potential barrier of finite height and width is less
easily visualized in the Heisenberg-Bohr formulation of quantum
mechanics, which speaks of particles going over the top of the
barrier with transient violation of conservation of energy. In both
formulations, the language that permeates most descriptions of
quantum transmission through a potential barrier has the
anachronistic ring of Newtonian mechanics, with its underlying
assumption that a particle always moves in a continuous orbit.

By 1927, quantum mechanics was in place, and a new generation of
theoretical physicists went to work on its many applications in the
microscopic domain, from condensed matter to nuclear physics. The
history of the early days of the tunnel effect is set in a few centers of
theoretical physics--Göttingen, Leipzig, and Berlin, Germany;
Copenhagen, Denmark; Cambridge, both England and
Massachusetts; Princeton, New Jersey; and Pasadena, California--
with most of the active participants in their twenties or early
thirties. Before tunneling became the standard term for the
nonclassical transmission of particles through a potential barrier,1

the quantum mechanical process, either in German or English, was
often referred to as penetration of, or leaking through, a barrier (or
sometimes a potential hill).

Tunneling in atoms and molecules

Friedrich Hund (1896-1997) was the
first to make use of quantum
mechanical barrier penetration in
discussing the theory of molecular
spectra in a series of papers in 1927.
The first of these2 was submitted
from Copenhagen in November 1926,
acknowledging encouragement from
Niels Bohr and Werner Heisenberg
and support from the International
Education Board (IEB), founded in
1923 by John Rockefeller Jr. The
paper deals with an outer electron
(Leuchtelektron, or luminous electron, in Hund's words) moving in
an atomic potential with two or more minima separated by
classically impenetrable barriers (Schwellen, that is, sills or ridges).
As illustrated in figure 1, Hund was primarily concerned with
characterizing the electronic energy eigenfunctions in terms of the
quantum numbers for the limiting cases of united and widely
separated atoms, as the distance between the atoms is changed
adiabatically from zero to infinity. He explained the sharing of an
electron between the atoms represented by the potential wells--so
fundamental for an understanding of covalent chemical binding--
and discussed the distinction between classical orbits and quantum
mechanical wavefunctions.

The third paper of Hund's series on molecular spectra3 was
completed in Copenhagen and submitted from Göttingen in May
1927. Hund assumed the separability of the electronic motion from
the vibration and rotation of the atoms, an approximation later
made quantitative by Born and Robert Oppenheimer. He discussed
the dynamics of the constituent atoms of a molecule and noted the
omnipresence of reflection-symmetric potentials with classically
impenetrable barriers. As shown in Hund's first paper, the
stationary states for such potentials are even (symmetric) or odd
(antisymmetric) functions of the relative coordinates that link the
particles. The superposition of the even ground state and the odd
first excited state (labeled 0 and 1 in figure 1b) yields a
nonstationary state that shuttles back and forth, or tunnels, from
one classical equilibrium position to the other. The beat period or
reciprocal tunneling rate, T, is approximately given by
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Figure 2

Here t = 1/n is the period of oscillation in one of the harmonic
potential wells when the atoms are far apart, and V is the height of
the barrier between the wells. The exponential dominates the beat
period; its argument, V/hn, approximately equals the product of the
width of the potential barrier (or the interatomic distance) and the
effective wavenumber for penetration into the classically forbidden

region, k  = (2mV)1/2/ .

Assuming a typical infrared
vibration period of t = 1/3 ´  10-13

s, Hund tabulated the beat or
shuttling period T  for a range of
values of V/hn and displayed its
extreme sensitivity to relatively
small variations in the barrier
height (see figure 2). He showed
that transitions between chiral
isomers--optically active left-

handed and right-handed molecular configurations--are
extraordinarily slow and improbable for biological molecules, a
conclusion that he found reassuring. (In contrast, the ammonia
molecule is an example of a system for which T  is comparable to t,
and the beats are observable: The molecule's inversion spectrum
falls in the microwave region.)

Tunneling into the continuum

While Hund worked out the tunnel effect for a system with only
bound states and recognized its relevance for chemical binding and
molecular dynamics, he did not consider barrier penetration for
unbound states, with continuum energy eigenvalues. The next
chapter in the tunneling story had to be the penetration of a barrier
in the energy continuum. In 1927, in Cambridge, England, Lothar
Nordheim (1899-1985) published a paper on the thermionic
emission of electrons from a heated metal and the reflection of
electrons from metals.4 Also assisted by IEB funding and
acknowledging Ralph Fowler (1889-1944), Nordheim applied wave
mechanics to Arnold Sommerfeld's electron theory of metals, which
assumes an ideal Fermi gas for the electrons. He calculated the
electron wavefunction across a steep potential rise or drop--a model
for the surface barrier that confines electrons within a metal--and
showed that, for particle energies near the top of the barrier, either
reflection or transmission can occur with finite probabilities,
although classically there would be only one or the other. The
models he used for the potential U are all rectangular, composed of
sections of constant height as sketched in figure 3. Nordheim's
analysis is nowadays found in every quantum mechanics textbook.
He estimated that, for energies in the electron volt range, the
transmissivity for a thin barrier is negligible unless the barrier is no
more than a few atoms thick, and he therefore thought that
tunneling would be of little physical importance. However, he and
Fowler soon realized that the emission of electrons from a metal in
a strong electric field could be understood as a consequence of
barrier penetration.

In the meantime, Oppenheimer
(1904-67) published in The
Physical Review of January 1928
a lengthy and important paper,
submitted in August 1927 while he
was a National Research Fellow at
Harvard University, that notably
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lacked any figures and
acknowledgments.5 Using an early
version of Paul Dirac's bra-ket
notation and delta-function normalization for the continuum energy
eigenfunctions, Oppenheimer combined in his article three different
topics, all related to the continuous portion of the energy spectrum
of hydrogen (also called aperiodic orbits or states, as a reminder of
their character in classical mechanics).

In the third section of the paper, Oppenheimer dealt with the
ionization produced by exposing the electron in a hydrogen atom to
a uniform electrostatic field (that is, a linear voltage drop).
Following Dirac's lead, Oppenheimer developed a version of time-
dependent perturbation theory, including what we now call Fermi's
Golden Rule for transition rates, and calculated perturbation matrix
elements between discrete energy eigenstates of the unperturbed
hydrogen atom and the continuum energy eigenstates of an electron
in a linear potential. The continuum wavefunctions have analytic
expressions in the form of Bessel or Hankel functions of fractional
order, all well known from George Watson's famous mathematical
treatise.6 Even if the energy is below the maximum of the potential
energy curve, the matrix elements are nonzero, because the
wavefunctions overlap in the classically inaccessible region. Rather
than speaking of tunneling or barrier penetration, Oppenheimer
used the phraseology of perturbation theory, with its transitions
between stationary states.

Oppenheimer's discussion of the physics is sophisticated and
provides a three-dimensional treatment instead of a one-
dimensional approximation. However, he expanded the
wavefunction of the system in terms of linearly dependent
unperturbed energy eigenfunctions, which thus raises questions
about his interpretation of the expansion coefficients as probability
amplitudes. Still, after many computational approximations, he
arrived at a transition rate that has the correct exponential
dependence on the electron energy and the barrier parameters, in
qualitative agreement with the available results of measurements. In
a short communication submitted to the Proceedings of the
National Academy of Sciences on 28 March 1928 from Caltech,
Oppenheimer applied his calculations to Robert Millikan's
experiments on field emission from cold (that is, unheated) metals.7

Also in March 1928, Fowler and
Nordheim submitted their paper
on electron emission in intense
electric fields to the Proceedings
of the Royal Society.8 Referring
to Oppenheimer's work, the
authors commented that "the
calculation can be shorn of
irrelevancies and made so much
simpler that it is worth while
attacking the problem de novo."

They gave an exact treatment of the transmission of conduction
electrons through a 1D triangular barrier, shown in figure 4,
representing the application of a uniform static electric field
perpendicular to the plane surface of a conductor. As in equation 2,
the rate for transmission through the triangular barrier is controlled
by an exponential. In the exponent is the expression

where W is the kinetic energy of the conduction electrons inside the
metal, C is the height of the potential barrier at the metal surface,



and F is the electric force experienced by the emitted electrons. The
two factors on the left-hand side are the maximum effective wave
number under the barrier and the width of the barrier penetrated by
the conduction electrons. The dependence of the cold-emission
current on the field strength F/e and on the work function C - W
was found to be consistent with experiments. In the absence of a
field, there is zero transmission, and the current increases
dramatically at high field strengths. Fowler and Nordheim also
estimated the effect of including thermionic emission and of more
realistic, less abruptly discontinuous potentials. Here they applied
Harold Jeffreys's 1924 pre-wave mechanics version of the WKB
method (sometimes called the JWKB method).

The rotationally induced dissociation of a diatomic molecule from
an excited state, observed through the broadening of infrared
spectral lines, was first interpreted by Oscar Rice (1903-78) as a
manifestation of tunneling from a potential "valley" through a
"mountain" into the "plains." In a 1930 paper submitted to The
Physical Review when he was a National Research Fellow in Leipzig
and had consulted with Heisenberg, Felix Bloch, and Hendrik
Kramers,9 Rice treated the theory of this breakup and stressed the
analogy with alpha decay, in which the tunnel effect had scored its
greatest triumphs.

Tunneling in nuclei

Roger Stuewer has given a full historical account of George Gamow's
theory of alpha decay.10 Gamow (1904-68) popularized the story in
his entertaining memoirs, My World Line,11 and we have reports as
well from other physicists who witnessed the remarkable events in
1928. Over the years, the history of Gamow's theoretical discovery
has become colorfully embellished, because the mischievous Gamow
never made it easy to separate fiction from fact. It appears, however,
that he almost immediately saw an opportunity for applying
quantum mechanics to the nucleus, when, on arriving in Göttingen
from the Soviet Union, he read Ernest Rutherford's 1927 article in
the Philosophical Magazine about the puzzle surrounding Hans
Geiger's 1921 experiments on scattering alpha particles from
uranium.

The dilemma that Rutherford confronted was stark: Scattering
experiments with alpha particles from radioactive thorium C´
(nowadays known as polonium-212) confirmed the validity of the
repulsive Coulomb potential in uranium up to a height of at least
8.57 MeV. On the other hand, uranium-238 was known to emit
alpha particles of less than half that energy (4.2 MeV), which posed
a conundrum if the particles had to pass over the top of the
Coulomb barrier to emerge from the nuclear interior. The tortured
theories that had been proposed to account for this paradox
vanished almost overnight when Gamow, on 29 July 1928, and,
independently, Ronald Gurney (1898-1953) and Edward Condon
(1902-74), on the next day, submitted their quantum mechanical
explanations based on the tunnel effect. Publishing in the Zeitschrift
für Physik,12 Gamow thanked Born for his hospitality in Göttingen,
and his friend N. Kotschin for help with some tricky integrals.
Gurney and Condon published their first note in Nature,13 followed
by a longer exposition in The Physical Review in February 1929;14

both papers were sent from Princeton University. A poignant
personal account by Condon of Gurney's underappreciated role in
proposing the quantum theory of alpha decay was published
posthumously.15 (For more on Condon's own life, see Jessica
Wang's article, "Edward Condon and the Cold War Politics of
Loyalty," in Physics Today, December 2001, page 35.*)

The new quantum mechanical theories could account for two
important features of alpha decay: Because probabilities occur
naturally in quantum mechanics, it became easy to understand the



Figure 5

Figure 6

observed statistical character of alpha radioactivity, with its constant
transition rate (as in the Golden Rule of perturbation theory) and
exponential decay; and the theories yielded a functional relationship
between the decay rate (or the nuclear half-life) and the energies of
the emitted alpha particles that was in semiquantitative agreement
with experiment.

The three theoreticians who solved the puzzle posed by radioactive
alpha-particle emission at surprisingly low energies were familiar
with the earlier work of Oppenheimer, Nordheim, and Fowler, and
patterned their calculations on those models. Gurney and Condon
also cited Hund's work as a precursor. They even carried out a
calculation now well known to students of quantum mechanics: If a
particle is in the ground state of a harmonic oscillator potential,
what is the probability of finding it outside the classically allowed
region? (Answer: 15.7%.)

Gurney and Condon as well as Gamow recognized that a stationary
state with sharp energy, as in bound-state problems or in the time-
independent method for calculating scattering cross sections, is
inadequate to predict the decay process. The continuity equation for
the probability density r and the current density j,

does not permit a stationary state to
represent a current of particles that
is only outgoing from an interior
region. Yet the three authors also
understood that the smallness of
the decay constant compared with
the nuclear energies implies a very
small current and an alpha-particle
state that is nearly stationary. They
all drew on the experience with simple rectangular 1D potential
barriers, such as in figure 5, for which exact results for transmission
rates could be obtained.

In the nuclear case, the strong
attractive forces inside the nucleus-
-still of mysterious origin in 1928--
and the external Coulomb repulsion
combine to form the potential
barrier. Sketched in figure 6, this
barrier was, of course, quite unlike
a rectangular barrier or even the
triangular barrier of figure 4 used
for field emission, and the
calculation had to be appropriately
modified. The critically important

exponent in the formula for the transmission coefficient was
expressed as the phase (or action) integral in units of Planck's
constant,

where the limits r1 and r2 are the inner and outer classical turning
points for an alpha particle with energy E. The integral was an
obvious generalization of Hund's formula and of Nordheim's result
for a rectangular barrier, but it also had a more rigorous
justification in the theory of the WKB approximation, familiar to the



Figure 7

theorists from Gregor Wentzel's 1926 paper.16 Gurney and Condon
evaluated the integral graphically, but Gamow--although averse to
complex mathematical analysis--produced an excellent analytic
approximation. The resulting formula for the transmission
coefficient, or barrier penetrability,

for a particle of charge Z1e emitted with final velocity v from a
nucleus of atomic number Z2, defines the Gamow factor G.

The alpha decay rate l is
proportional to the exponential
function e-2G, with a prefactor that
depends on the alpha-particle
wavefunction inside the nucleus
and has only a minor influence on
the energy dependence of the decay
rate. As shown in figure 7, the
tunneling theories of 1928
reproduced remarkably well the
empirical relationship, established
by Geiger and John Nuttall in 1912, between the decay rate and the
energy of the emitted alpha particle, and at last provided firm
evidence for the validity of quantum mechanics in the nuclear
domain.

Many theoretical derivations of alpha decay have subsequently
found their way into the literature. Most assume that the alpha
particle is somehow preformed inside the nucleus and can be
treated as existing in a nearly bound state before being emitted. The
methods used can be sorted into a few categories:

With his strong physical intuition, Gamow assumed a quasi-
stationary state solution of the Schrödinger equation; he
allowed for a small imaginary contribution to the energy and
a correspondingly small source term in the continuity
equation that expresses conservation of probability. That
strategy gave a good approximation for the decay rate. As a
solution of the time-dependent Schrödinger equation, the
quasi-stationary and nearly bound decaying state represents
a wavepacket that models the decay process.

Gurney and Condon applied a less consistently quantum
mechanical treatment to the problem. They reasoned that in
the classically accessible regions--inside the nucleus and
outside the barrier--the alpha particle could be supposed to
perform periodic and aperiodic classical motions,
respectively, although the discrete energy of the nearly bound
alpha-particle state should in principle be determined by
quantum mechanics. In their first announcement in Nature,
Gurney and Condon concluded, "Much has been written of
the explosive violence with which the a-particle is hurled
from its place in the nucleus. But from the process pictured
above, one would rather say that the a-particle slips away
almost unnoticed."

A fundamentally more consistent method is to construct a
wavepacket that is initially confined to the inside of the
nucleus. This nonstationary state is a superposition of a
narrow band of truly stationary states, with energies centered
around an almost discrete quasi-bound state and extending

over a narrow range of energies with width of order G  = l.
As time progresses, the stationary states that make up this
wavepacket interfere to produce precisely Gamow's decaying



state, with a wavefront that spreads out from the nucleus. It
was soon realized that the decay can also be pictured as the
final stage in the scattering of a sharply defined wavepacket
with a mean energy that corresponds to a narrow, and thus
long-lived, resonance.

As an alternate approach, it is natural to apply a version of
first-order time-dependent perturbation theory to the
problem. This treatment is akin to Oppenheimer's theory of
field ionization of an atom and thus subject to the same
criticism. Born developed the theory along these lines in
1929, regarding the decay as a transition between a discrete
stationary state and a set of continuum states.17 The
characteristic exponential energy dependence of the decay
rate arises in this theory from the transition matrix elements
between stationary-state eigenfunctions that extend into the
classically forbidden region and overlap there.

In summary, quantum mechanics explains alpha decay as a
resonance phenomenon, represented by wavefunctions with large
amplitude inside and small amplitude outside the nucleus. Between
the sharp, narrow resonances lie extended energy regions that
correspond to an exponential attenuation of the external
wavefunction continued smoothly under the potential barrier. At
those energies, alpha-particle scattering is essentially Coulombic
without significant modification by the nuclear forces.

Before the advent of quantum mechanics, Rutherford had devised
an ad hoc explanation for the emission of alpha particles from
heavy nuclei based on the assumption that two electrons could
attach themselves to a helium nucleus and then get stripped off once
the particle has passed out of the parent nucleus. In a similar vein,
the cold emission of electrons from metal surfaces exposed to an
electric field had been attributed by the leading experimentalists--
especially Millikan--to some unusual quality of the conduction
electrons, which would be distinct from the electrons that leave the
metal surface in thermionic emission. In both instances, wave
mechanics provided a straightforward, unifying, and convincing
account of the observed phenomena.

Contrary to the popular view of quantum mechanics, the tunnel
effect reveals smoother and more continuous features than the
abrupt behavior found in the corresponding classical description.
Between 1926 and 1929, the theoretical developments described
here proved unequivocally--if any such demonstration was still
needed--that there could be no substitute for quantum mechanics,
with its astonishing explanatory power in the microscopic domain.

I owe thanks to Hans Frauenfelder, who suggested this study, and
to Harry Lustig, Peter Price, and Roger Stuewer for their valuable
help.
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