QUIZ 7, PHY 191 B, Red, Friday, Oct 21, 2016 (20 pts) [see both sides of sheet!] SHOW WORK CLEARLY OTHERWISE ZERO CREDIT!!

Question 1: Dr. Evil has tied a skier of mass 40 kg to a spring of force constant $k=8440 \mathrm{~N} / \mathrm{m}$ at the top of a frictionless incline as shown below. The spring is compressed initially by 1 m and her height above the ground while tied (position A in figure) is 10 m . The skier manages to untie herself and simultaneously release the spring so that she hurtles down the incline. At point B she jumps on to the back of her stationary friend (mass $=60 \mathrm{~kg}$). Together they glide off to safety over the frictionless flat surface with a velocity v_{B}.
a) $5 \mathrm{~m} / \mathrm{s}$
b) $6 \mathrm{~m} / \mathrm{s}$
c) $7 \mathrm{~m} / \mathrm{s}$
d) $8 \mathrm{~m} / \mathrm{s}$

a) What is her speed just before her "collision" with her friend?
(7pts)

USE C.O,M.E. to find her speed V
just be fore collision, then use C.O.L.M.
te find v_{B}.

$$
\begin{aligned}
& \text { C.0.m.E. for "HER" between (A) \& (B): } \Delta K+\Delta U_{g}+\Delta U_{e q}=O \\
& \left(\frac{1}{2} m v^{2}-0\right)+(-m g h)+\left(-\frac{1}{2} k x^{2}\right)=0 \Rightarrow \frac{1}{2}(40) v^{2}=40(9.8)(10)+\frac{1}{2}(8440) 1^{2} \\
& \Rightarrow V=20.2 m y s
\end{aligned}
$$

Other answers: Blue $17.5 \mathrm{~m} / \mathrm{s}$
Green: $21.3 \mathrm{~m} / \mathrm{s}$
b) What is the value of v_{B} ?

Now use C, O, L, M, for her collision:

$$
p_{i}=p_{f} \Rightarrow 40(20.2)=(40+60) v_{B} \Rightarrow v_{B}=8 \mathrm{mys}
$$

Other answers: Blue $7 \mathrm{~m} / \mathrm{s} \quad$ Green $8.5 \mathrm{~m} / \mathrm{s}$

Question 2: Two masses, of mass $2 m$ and m, are hung on strings of the same length. Mass $2 m$ is released from a height $H=1.5 \mathrm{~m}$ above its free-hanging position and has an elastic collision with the mass m.

a) What is the speed of the mass $2 m$ just before collision with the stationary mass? (4pts)

Use C. O. M. E. to find velocity of $2 m$ just before collision. Let's call this velocity $v_{\text {before }}$. The ball $2 m$ descends by H, so its loss in PE $(2 m) g H$ must equal its gain in $\mathrm{KE} 1 / 2$ $(2 m) v_{\text {before }}{ }^{2}$ (we get this by a straightforward consideration of $\Delta K+\Delta U=W_{n c}$ where $W_{n c}$ is zero).

$$
(2 m) g H=1 / 2(2 m) v_{\text {before }}{ }^{2}, \text { which means } g H=1 / 2 v_{\text {before }}{ }^{2} \text {, or } v_{\text {before }}=\sqrt{2 g H}=
$$

$5.4 \mathrm{~m} / \mathrm{s}$
Other answers:
Blue $4.4 \mathrm{~m} / \mathrm{s}$
Green $6.3 \mathrm{~m} / \mathrm{s}$
b) What is the height h to which the mass m rises after the collision? ($\mathbf{6} \mathbf{~ p t s)}$

Use C. O. L. M. to find velocity of m just after elastic collision. Let's call this $v_{\text {affer }}$.
$v_{\text {after }}=\left(\frac{2(2 m)}{2 m+m}\right)(5.4)=7.2 \mathrm{~m} / \mathrm{s}$
Now use C. O. M. E. again, just as in part (a) above, to find the height to which m rises after the collision. A straightforward consideration of $\Delta K+\Delta U=W_{n c}$ where $W_{n c}$ is zero yields $m g h=1 / 2 m v_{\text {affer }}{ }^{2}$, which means $g h=1 / 2 v_{\text {affer }}{ }^{2}$, or $h=\frac{v^{2}}{2 g} \approx 2.7 \mathrm{~m}$
Other answers:
Blue 1.8 m
Green 3.6 m

