Chapter Goal: To learn how to solve problems about motion in a plane.

Human males can throw more than 3X faster than adult male chimps. Why? How? Read “Slinging our way to the top of the foodchain” posted on the course website.

Which fountain soars out the farthest?
Two Dimensional Kinematics (Sec 4.1)

Trajectory - Picture or movie of the object’s motion in real space

Basic Equations:

\[\vec{v}(t) = \frac{d\vec{r}(t)}{dt} \quad \text{and} \quad \vec{a}(t) = \frac{d\vec{v}(t)}{dt} \]

These equations of motion are extremely simple, but their application can be tricky!

Do not confuse these graphs with trajectories!
We also learned about Vector Components!

Like Conceptual Question 4.1 at end of chapter 4

This acceleration will cause the particle to

a. Speed up and curve upward
b. Speed up and curve downward
c. Slow down and curve upward
d. Slow down and curve downward
e. Move to the right and down
f. Reverse direction
Sec 4.1

\[\vec{v}(t) = \frac{d\vec{r}(t)}{dt} \quad \text{and} \quad \vec{a}(t) = \frac{d\vec{v}(t)}{dt} \]

Extending velocity to multiple dimensions: an acceleration may change the magnitude and/or direction of the velocity!
Section 4.2

Projectile Motion

Projectile motion is two-dimensional motion under the influence of only gravity.

![Diagram of projectile motion with initial speed, launch angle, and parabolic trajectory.]

Projectile motion follows a *parabolic trajectory* characterized by the initial speed and the launch angle.

You’ll learn to calculate how high and how far a projectile travels.
Baseballs, tennis balls, Olympic divers, etc. all exhibit *projectile motion*.

A **projectile** is an object that moves in two dimensions under the influence of *only* gravity.

Projectile motion extends the idea of free-fall motion to include a horizontal component of velocity.

Air resistance is neglected.

Projectiles in two dimensions follow a **parabolic trajectory** as shown in the photo.
Sec 4.2

Shown is the motion diagram of a basketball, with 0.5 s intervals between frames.

x-motion vs. t

y-motion vs. t

Chapter 4_Lecture1
Note! Neglecting air resistance,
1) v_x stays the same throughout!
2) velocity is not zero anywhere!
3) acceleration is not zero anywhere!
4) final velocity is same as initial

The magnitude and direction of \vec{A} are found from the components. In this example,

$$A = \sqrt{A_x^2 + A_y^2} \quad \theta = \tan^{-1} \left(\frac{A_y}{A_x} \right)$$

The components of \vec{A} are found from the magnitude and direction. In this example,

$$A_x = A \cos \theta \quad A_y = A \sin \theta.$$
The start of a projectile’s motion is called the \textit{launch}.

The angle θ of the initial velocity v_0 above the x-axis is called the \textit{launch angle}.

The initial velocity vector can be broken into components.

\[
 v_{0x} = v_0 \cos \theta \\
 v_{0y} = v_0 \sin \theta
\]

where v_0 is the initial speed.
Note! Neglecting air resistance,
1) v_x stays the same throughout!
2) velocity is not zero anywhere!
3) acceleration is not zero anywhere!
4) final velocity is same as initial
Constant Acceleration (2D case)

Sec 4.2

For projectiles: \(a_x = 0 \), \(a_y = g \) downward
A heavy ball is launched exactly horizontally at height h above a horizontal field. At the exact instant that the ball is launched, a second ball is simply dropped from height h. Calculate the time taken by each ball to hit the ground in terms of h and other known constants. Which ball hits the ground first?
A hunter points his rifle directly at a coconut that he wishes to shoot off a tree. It so happens that the coconut falls from the tree at the exact instant the hunter pulls the trigger. Consequently,

A. The bullet passes above the coconut.
B. The bullet hits the coconut.
C. The bullet passes beneath the coconut.
D. This wasn’t discussed in Chapter 4.
A hunter in the jungle wants to shoot down a coconut that is hanging from the branch of a tree. He points his arrow directly at the coconut, but the coconut falls from the branch at the *exact* instant the hunter shoots the arrow. Does the arrow hit the coconut?

- Without gravity, the arrow would follow a straight line.
- Because of gravity, the arrow at time t has “fallen” a distance $\frac{1}{2}gt^2$ below this line.
- The separation grows as $\frac{1}{2}gt^2$, giving the trajectory its parabolic shape.

![Diagram showing the trajectory of a projectile with and without gravity.](Image)
A hunter in the jungle wants to shoot down a coconut that is hanging from the branch of a tree. He points his arrow directly at the coconut, but the coconut falls from the branch at the exact instant the hunter shoots the arrow. Does the arrow hit the coconut?

- Had the coconut stayed on the tree, the arrow would have curved under its target as gravity causes it to fall a distance $\frac{1}{2}gt^2$ below the straight line.
- But $\frac{1}{2}gt^2$ is also the distance the coconut falls while the arrow is in flight.
- So yes, the arrow hits the coconut!
Projectiles 1 and 2 are launched over level ground with the same speed but at different angles. Which hits the ground first? Ignore air resistance.

A. Projectile 1 hits first.
B. Projectile 2 hits first.
C. They hit at the same time.
D. There’s not enough information to tell.
Projectiles 1 and 2 are launched over level ground with different speeds and at different angles. Which hits the ground first? Ignore air resistance.

A. Projectile 1 hits first.
B. Projectile 2 hits first.
C. They hit at the same time.
D. There’s not enough information to tell.
A batted ball is launched at 45° and just clears a fence 15 m higher than the launch point and 20 m away.

a) Find the launch speed and time required for the ball to reach the fence.

b) Is the ball on the way up or down when it clears the fence?
Whiteboard Problem 4.3

A punter kicks a football such that it leaves his foot at a speed of 22 m/s at an angle of 40° with respect to the ground. The returner has positioned himself 60 m from the kicker. How fast (average speed) must the returner run to catch the ball before it hits the ground?
Whiteboard Problem 4.4: Challenge problem

An archer standing on a 15^0 slope shoots an arrow 20^0 above the horizontal, as shown. How far down the slope does the arrow hit if it is shot with a speed of 50 m/s from 1.75 m above the ground?
In one contest at the county fair, seen below, a spring-loaded plunger launches a ball at a speed of 3.0 m/s from one corner of a smooth, flat board that is tilted at a 20° angle. To win, you must make the ball hit a small target at the adjacent corner, 2.50m away. At what angle should you tilt the ball launcher?