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Chapter Goal: To learn how to solve problems about 
motion in a straight line. Example: HYPERLOOP 

Chapter 2 Kinematics in One Dimension 

Slide 2-2 

Read “Application – HYPERLOOP” posted on course website! 
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Objectives for Friday’s (09/02) lecture 

•  Concept of instantaneous velocity and acceleration 

•  Given a Position-vs-time graph, determine the 
 Velocity-vs-time graph 

•  Given a Velocity-vs-time graph, determine the 
 Acceleration-vs-time graph 
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Motion in One Dimension* (Sec 1.6) 

*Note, in one dimension, we can drop the vector notation. 
Just the sign (+ or -) is adequate to inform us of direction.  

Motion along the s-axis (Q: why s?) 

s = 0 

object 
s 

s  = object’s position coordinate along the s-axis (can be +, -, or 0) 

   = object’s velocity along the s-axis (can be +, -, or 0) 

= object’s acceleration along the s-axis (can be +, -, or 0) 

Think of “s” as either x or y.  
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Motion in One Dimension (Sec 1.6 + 2.2 + 2.4) 
In Chapter 1, we introduced motion diagrams to describe motion. Now, we 
want to represent the motion as functions of time 

e.g. we may have something like this: 

t 

Note, these are graphs – not pictures. The object is still moving in one 
dimension along the s-axis. Our goal in Chapter 2 is to develop the 
mathematical relations between  

s (m) v (m/s) 

t t 

a (m/s2) 

Recap!   
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Motion in One Dimension (Sec 1.6 + 2.2 + 2.4) 
In Chapter 1, we introduced motion diagrams to describe motion. Now, we 
want to represent the motion as functions of time 

e.g. we may have something like this: 

t 

Note, these are graphs – not pictures. The object is still moving in one 
dimension along the s-axis. Our goal in Chapter 2 is to develop the 
mathematical relations between  

s (m) v (m/s) 

t t 

a (m/s2) 

Recap!   
s s 

vs, avg 

Steeper is  
faster! 

as, avg 
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Here is a position graph  
of an object: 
 
What is the object’s velocity  
from t = 1s to t = 2s? 
 

Whiteboard Problem 2.1: Find vs given s (simple case)  

Slide 2-48 

What is the object’s velocity from  
t = 2s to t = 4s? 

Simple case: Position-time graph is a straight line, a.k.a. Uniform Motion 

Steeper is  
faster! 

s 
vs, avg Apply 
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Which velocity-versus-time graph  
goes with this position graph? 
 

Stop to Think 2.2 in book: What if s(t) vs t is not a straight line? 
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Remember…Steeper is faster! 

s 
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Math Review Activity 

8 
y 

x 

For the triangle shown above, calculate  x and y: 

9 CHAPTER2_LECTURE2.1 



© 2013 Pearson Education, Inc. 

“Steeper is Faster” – let’s make this quantitatively precise 

“Steepness” of line = its “slope” 

Basic Trig Review 
In any right-angle triangle: 
tan      = opp / adj = slope 
sin      = opp / hyp 
cos      = adj / hyp 

tan  = sin   / cos  

θ

θ
θ
θ
θ θ θ
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“Steeper is Faster” – let’s make this quantitatively precise 

“Steepness” of line = its “slope” 

s 
vs, avg 

Slope of position-time graph 
gives the velocity! 

s 

t 

s 
t 
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“Steeper is Faster” – let’s make this quantitatively precise 
 
“Steepness” of line = its “slope” 

s 
vs, avg 

Slope of position-time graph 
gives the velocity! 

…and, because  

Slope of velocity-time graph gives the acceleration! 

s 

s 

t 

s 
t vs 

vs 

θ

(SEC 2.1 + 2.7) 

BUT…so far, we’ve only discussed straight-line s – t and v – t graphs. 
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General 1D Motion: Average velocity NOT useful!  

Average Velocity  between  

= slope of the line connecting points 1 & 3 

What if we want to know  
the velocity at a specific time, t1? 

 (e.g., that’s all a cop cares about!) 

To find the instantaneous velocity at t1  
we make Δt infinitesimally small (make t1 and t3 closer) 

Position vs time graph is NOT a straight line, a.k.a. Non-uniform Motion 

t3	  

s(t3)	  

t3	   t3	  –	  t1	  
s(t3)	  –	  s(t1)	  
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Non-Uniform Motion: Concept of Instantaneous velocity  

Motion diagrams and position graphs of an accelerating car: 

Q: What is the instantaneous velocity at time t ? 

vs ≡ lim
Δt→0

Δs
Δt

=
ds
dt

(instantaneous velocity) i.e., Slope of s(t) at point t  
= Derivative of s(t) at t 
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What kinds of derivatives will we need to do? 

Graphical: 

slope > 0 slope < 0 

slope = 0 Analytical: 

Others as we need them. 

x 

y 

x 
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Whiteboard Problem 2.2:  
Finding Velocity from Position Graphically 
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Suppose the position of a particle as a function of time is s = 2t2 m where t is in s. 
Plot the particle’s velocity as a function of time from t = 0 to 4 s.  

Whiteboard Problem 2.3: A little calculus 

Slide 2-47 
17 CHAPTER2_LECTURE2.1 

(SEC 2.2) 



© 2013 Pearson Education, Inc. 

§  Imagine a competition between a 
Volkswagen Beetle and a Porsche 
to see which can achieve a velocity 
of 30 m/s in the shortest time. 

§  The table shows the velocity of 
each car, and the figure shows the 
velocity-versus-time graphs. 

§  Both cars achieved every velocity 
between 0 and 30 m/s, so neither 
is faster. 

§  But for the Porsche, the rate at 
which the velocity changed was: 

Acceleration – the final ingredient in Kinematics 

Slide 2-63 
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Acceleration is the Rate of Change of Velocity 

Just as vs(t) is the slope of the s(t)-curve,  
the acceleration a(t) is the slope of the vs(t)-curve! 

Average Acceleration between  

Instantaneous Acceleration at t  

= slope of the tangent line to vs(t) at point t 

= instantaneous rate of change of  

Acceleration, like velocity (and displacement), is a vector quantity  
and has both magnitude and direction. 
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Whiteboard Problem 2.4 
A particle moving along the x-axis has its position 
described by the function:  
 
where t is in seconds. 
At t = 2 s what are the particle’s 
(A)  position? 

(B)  velocity? 

(C) acceleration? 
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Which velocity-versus-time graph 
goes with this acceleration graph? 

Similar to Stop-to-think 2.4 in book 

Slide 2-92 
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1D Motion: Displacement, Velocity, Acceleration 

 
Velocity vs at time t is the slope (or derivative) of the s-t curve at 
time t 

 
Acceleration as at time t is the slope (or derivative) of the vs-t curve 
at time t 

 
So, given the displacement as a function of time, i.e., the s-t curve, 
we can find the velocity and acceleration at any instant. 
 
How about the reverse? Given the acceleration and velocity 
curves, can we determine the displacement?  
 

vs ≡
ds
dt

as ≡
dvs
dt

What we’ve learnt so far… 
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How to get Position from Velocity (Simple case) 

We’ve seen how to get velocity from position:   

How do we get position from velocity? This is something you do everyday: 

v = constant 

At time      , you’re at                  ; you drive until                  ; how far did you go? 

What does this look like on a graph? 
23 CHAPTER2_LECTURE2.1 

(SEC 2.3) 



© 2013 Pearson Education, Inc. 

How to get Position from Velocity (Simple case) 

If you have velocity for some time, you accumulate position. In calculus, we 
call this accumulation, integration. 
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How to get Position from Velocity – General case 

How do we compute integrals? 

Easy for regular shapes, what about more complex velocity graphs? 

25 CHAPTER2_LECTURE2.1 

(SEC 2.3) 



© 2013 Pearson Education, Inc. 

§  The integral may be interpreted graphically as the total 
area enclosed between the t-axis and the velocity curve. 

§  The total displacement ∆s  
is called the “area under  
the curve.” 

Finding Position From Velocity 
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§  Suppose we know an object’s position to be si at an 
initial time ti. 

§  We also know the velocity as a function of time between 
ti and some later time tf. 

§  Even if the velocity is not constant, we can divide the 
motion into N steps in which it is approximately constant, 
and compute the final position as: 

§  The curlicue symbol is called an integral. 
§  The expression on the right is read, “the integral of  

vs dt from ti to tf.” 

Finding Position from Velocity 

Slide 2-54 
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Example 2.5 Finding Displacement from 
Velocity 

Slide 2-58 
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Example 2.5 The Displacement During a 
Drag Race 

Slide 2-59 
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How to get  Velocity from Acceleration - General 

As you might guess, we get the velocity from the acceleration in a similar way 
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Important Concept 

•  Acceleration is the derivative (slope) of velocity 
•  Velocity is the derivative (slope) of position 

•  Conversely position is the integral (area under v(t) curve) of velocity 
•  Velocity is the integral (area under a(t) curve) of acceleration 
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§  Taking the derivative of a function is equivalent to finding 
the slope of a graph of the function. 

§  Similarly, evaluating an integral is equivalent to finding 
the area under a graph of the function. 

§  Consider a function u that depends on time as u(t) = ctn, 
where c and n are constants:  

§  The vertical bar in the third step means the integral 
evaluated at tf minus the integral evaluated at ti. 

§  The integral of a sum is the sum of the integrals. If u and 
w are two separate functions of time, then: 

A Little More Calculus: Integrals 
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Reminder of integral-evaluation 
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Whiteboard Problem 2.5 (Chapter 2, Problem 31) 

The below graph shows the acceleration vs time graph of a particle 
moving long the x-axis.  Its initial velocity is vx0 = 8.0 m/s at t0 = 0 s.  
What is the particle’s velocity at 4.0 s? 
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Whiteboard Problem 2.6 
Three particles move along the x-axis, each starting with v0x = 10 m/s at 
t0 = 0 s. Find each particle’s velocity at t = 7.0 s.   
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Quiz 1 (09/02) 
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