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Chapter 15 Oscillations

Chapter Goal: To understand systems that oscillate with
simple harmonic motion.
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Oscillatory Motion

We began Physics 191 with the observation that:

“Everything Moves”

And our goal has been to analyze and understand this motion. Chapter 12 was
devoted to the observation:

“Some Things Rotate”

Now, in Chapter 14, we want to include the observation that:

“« . . ” Of course, a more technical
Some Thlngs nggle term than wiggle is oscillate!

For example, take a meter stick, hold one end firmly clamped to a table, and with
your other hand, push the other end down (not far enough to break it), and let it go.

This is an example of damped oscillatory motion which we will get to.

Most of this chapter is devoted to developing a simple model of oscillating systems,
Simple Harmonic Motion.

CHAPTER15_LECTURE15.1



Oscillatory Motion

= QObijects that undergo a repetitive motion back

and forth around an equilibrium position are """ L‘};:;ji‘j,‘fj,‘]‘fj’jjn‘.“.k““
called oscillators. ,»Tlxlr'r"‘;ll‘;tﬁg RO
= The time to complete one full cycle, or one [\ :
oscillation, is called the period 7. \ / \ /
= The number of cycles per second is called the
. Position
frequency f’ measured N HZ: . The motion is periodic.

l‘-' One cycle takes time 7.

1 1 Amplitude A
fz; or TZ; /\\/\i

1 Hz =1 cycle per second =1 s’!

Position
i This oscillation
. . ey e s & L is sinusoidal.
= Maximum displacement from the equilibrium m-'-"Ar;pliéﬂze;L‘
position is called the Amplitude A. \/ \/ t

Sine-Cosine Oscillation is very, very, very,
very Important for Music and Electronic
Industry b/c of Fourier Theorem.

Go to Wikipedia “Fourier Series”.
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Which oscillation (or oscillations) is SHM?

X

A.

D. A and B but not C.

E. None are.

X

X

AN N

AAA,
VV VYV
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Simple Harmonic Motion

Some abbreviations that | use all the time:

SHM = Simple Harmonic Motion
SHO = Simple Harmonic Oscillator

Important Question: In this context, what does Harmonic mean?

Mathematically, it means that the motion is describable in terms of Harmonic
Functions which are sines and cosines.

In the first three sections, your author introduces SHM from an empirical point of
view. He defines things like period, frequency, angular frequency, amplitude, the
relation to uniform circular motion, and energy considerations.

Read these sections carefully. I’'m going to jump ahead to the dynamics treatment
of SHM — since we know how to do Newtonian dynamics. After that, we’ll come
back to some of the basic ideas.

Why sine-cosine oscillations are important...

Fourier Theorem: You can build any arbitrary oscillation by superposing

(i.e., adding and subtracting) sine and cosine oscillations of different frequencies.
Go to https://en.wikipedia.org/wiki/Fourier series, and look at:

e Square-wave oscillation

e Triangle-wave oscillation




SHM Dynamics

A useful Model of SHM is a mass on a linear spring. There are many many others, but
we have worked with this system and know how to analyze it.

What happens when the
k mass is released?

It oscillates between +x

and —x. What force causes
T the mass to go back and
T forth?

frictionlesslsurface
x =20
(spring equilibrium position)

I
I
-L

Remember Hooke’s Law for the Spring:

So the spring always pushes

F:U < 0 fOI’ T > 0 or pulls the mass back to x=0,
—kx =

the equilibrium position
Fx >0 for z <0 of the spring.

F, =

This is known as a “Linear Restoring Force”. Linear because the force is proportional
to the first power of the displacement and restoring because the force always returns

the system to its equilibrium position.

Important Point: Anytime you have a linear restoring force, you have
simple harmonic motion.  ¢japreris LEcTURELS 1 /




SHM Dynamics: Obtaining the Equation

Free Body Diagram for m: We know how to do this:
yl Y. Fy,=n—w=ma, =0
Fx — —k‘gp A > N =w = 11 g (Nothing real interesting here.)
X
—@ Y F, = —kx = ma,
—> A, = ——X [(Isthis constant acceleration?)
m

So, to describe the motion of the block, we have to solve:

d?x k

- —— 7 (What kind of animal is this?)

A R

This is a second-order linear differential equation for the function x(t).

What do most people do when they’re faced with a differential equation?
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SHM Dynamics: Solving the Equation
d?x k

—_—  — T
dt? m

So, our task is to solve the differential equation:

First: What is a differential equation?

“A differential equation is a mathematical relation between a function
and some of the function’s derivatives.”

Second: What does it mean to solve a differential equation?

“Solving the differential equation means that you find the function
that satisfies the relation.”

Third: The mathematically sophisticated way to solve a differential equation is to:

Guess a function!

Fourth: Then you can plug your guess into the differential equation and see if it’s correct.

Fifth: If our guess works, how do we know it’s the only solution?

Mathematicians have proved the Unigueness Theorem which says that
“linear differential equations have only one unique solution.” So if our
guess WorkS, it’s the Only solution. CHAPTER15_LECTURE15.1 9




SHM Dynamics: Solving the Equation

So, for our equation, we are looking for a function x(t) d2£€ k
whose second derivative is the negative of the function = = —
times some constants. dt m

And, we remember from calculus that trigonometric functions have this property, i.e.

For a =constant, — sinaz = acosaz
dz
d :
and, = cosaz = —asinaz
z

So, here is our guess for the function that obeys the differential equation:

x(t) = Acos(wt + ¢p)

where: A, w, and ¢g are constants that we have to determine.

What are these constants trying to tell us? A is in m, wis in rad/s, f, is in rad.

By the way, in our guess, there’s a cosine; where’s the angle?

There really isn’t one. This is an example of using trig functions because

of their oscillating nature. There’s more to trig functions than right triangles. 10
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a e F/m SHM: Mass oscillating on a spring
2
d xte) = — k %) v’
e =
dt*

. Y /
const. hat makes wt have
units of racd,ans

/
x(¢) = A cos(wt+4)

1 E CONSTANT
const, P"M;.g '
ma.ku RuS have INITIAL PHASE

A'ke LHS AAGUMENT oF
CosIinNE S
k REFERRED TO

As Tue' PHASE
ANGLE"

frictionless
surface

b ——

I T
- _
>
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a e F/m SHM: Mass oscillating on a spring
2
d xte) = — k %) v’
e =
dt*
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WB Problem 1: What is win SHM of mass-spring?

Show by direct substitution that our guess:

x(t) = Acos(wt + ¢p)

is a solution of the differential equation:

d?x k
—_—  ——T
dt? m

You should also show what the constant w is.

k

For x(t) a solution, must have W — —
m

Next up....what is the constant ¢, 777

CHAPTER15_LECTURE15.1
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Plonk our_quess inte 2% ovder DE:  WB1 Solution
d [Acos(ut + ﬁ,)] = Al-smiwt+g,) (W)
dt T - WA Sm (wt-&ﬁ.)

C\ [A cas (wt +¢.\J cL - WA sm (wt' +¢°]
der dt
S - wA cos(wb + @) = LHSof D.E.

Rysof D.E. 2 - _’L_Aco’s'(ut- +4,)
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SHM - Initial displacement and Phase constant ¢,

= Remember, SHM is simple
harmonic motion.

= |n figure (a) an air-track glider is
attached to a spring.

= Figure (b) shows the glider’s
position measured 20 times every
second.

= SHM: x(t)=Acos(wt+¢, )
Att=0,x(t=0)=x =Acosq,
So...Initial Phase ¢, =cos™ (x, / A)

CHAPTER15_LECTURE15.1

(a)

Oscillation

.
o

WWW

Air track

.
.
o

The point on the
object that is

measured

| |

L)

|
Stadrt measurement at t = 0.

Dis};placement att=0is the
Initial displacement x,,

Turninglg

: |
point |

* .
",
........

(2

X

x 1s measured from

the equilibrium
position where
the object would
be at rest.

The motion
is sinusoidal,
indicating

SHM.

The motion is symmetrical about the
equilibrium position. Maximum distance
to the left and to the right is A.
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SHM / Circular Motion: Important insight into® !!

= Figure (a) shows a “shadow @ Light from projector
movie” of a ball made by l I l \ l I J
projecting a light past the umtable
ball and onto a screen. e

. . of ball

= As the ball moves in uniform
circular motion, the shadow " Ball
moves with simple harmonic ShAdON 1 G reen

. >

m0t|0n " Oscillation of ball’s shadow

= The block on a spring in |
flgure (b) moves Wlth the (b) Simple harmor{m moflon of block
same motion. M\/\/\N\/\/\/\/\ﬁ
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Important insight into @ ... continued. And ¢, !

Link BETWEEN ROTATIDNAL MoTioN

% & OseLlATORY moTioN |
or g’
== . ffeq;heo\'
Link Berween AnGuiarR SPEED \‘Ln‘ﬁ
, 4— AnGuiar FREQuENCY il
—_— -{: -_— X=tA
IR b c N E'<\X0
> 0;1 ¢ x=0
——C i
—_—
— 8 “— x=-A
wmass rokah’ shadow
tn & eivele @ oscillahing wp
radius A edou.m writh
la
with :';‘?e:d:o Ou\a u.lav fve:lu.emj
T = Tiwme ‘od = Tiwme riod-Lor
fof I ‘?Gmu'hon { jcul' OSd”i'o"\
of v’otxh'j yness °f osc lra.+‘n_5
Shadow

++
osaiakhons/fsec

= | - Hof
JC = 7,-‘ Freiuemj é‘c’;, cec =

~ cselllad
of rofating PN
AT - W o= W
T

W= 2Mf ﬁn;':;:';:i;tti?w

Freguenu

Unrs: T (secs); £ (57 or Hz) ; w (rads™)
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y .Angle at time 7 is
< b= wt + @,
Initial position of
particle att = 0

The initial x-component of the
particle’s position can be anywhere
between —A and A, depending on ¢,

Let’s watch a video...
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SHM: The Basics

The differential equation:

d?x k
—_— = — 27
dt? m

The model:

The solution:

(Note: be careful using these

.Clj‘(t) = A COS(wt -+ ¢0) equations in your calculator.
dil? The argument of the sine and
- : cosine is in radians, and your
U(t) o dt = —Aw Sln(wt + ¢O) calculator has to be set
to radians.)

A = Amplitude

W=/ % — angular frequency [%]
f = frequency [Hz = cycles/second] =

27
T = Period [s] = &+ = 2T

- w
CHAPT’éRlS_LECTURElS.l 18



SHM: The Basics

L If the block is pulled to

\ | xr = +A and released from
‘ ‘ | ¥ rest at t = 0, then
| x A = the amplitude and ¢¢ = 0.

+A

x =0 r

z(t) = A cos(wt)

The position oscillates

/TN /" \ ""ﬁ"""t' between +A with

_A-

NS TN/ 2T\/  period T

v(t) = —Aw sin(wt
(t) (___)_ _______ The velocity oscillates

T between +wA with

\j t period T

CHAPTER15_LECTURE15.1 19



Whiteboard Problem 2: # 15-2

Will help with HW problems 6, 11
2. | An air-track glider attached to a spring oscillates between the
10 cm mark and the 60 cm mark on the track. The glider com-
pletes 10 oscillations in 33 s. What are the (a) period, (b) fre-
quency, (c) angular frequency, (d) amplitude, and (¢) maximum
speed of the glider?
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oz I ¢ ST——
% P A = 25 ewm
[ .: r'l ‘ 0rQ.2fm
1oem i “nma) T= 3:35¢c.
2 few TR trem — ¥ 1 sec S

1 00sC llahuns

_ | = L -0303H2
b) ‘F - '—l: 33 -/
T(0-33) = |04 rads
¢) wse JTI‘-F = (

d) Az 025w

- w m (wt +¢°)
&) v =? [VEwAsR I

|Vmax | When St (w6 +6,)1

' |—uA‘ — EJA:Q'Q"‘!)(O'“:{
CHAPTER15_LECTURE15.1 = 0. q76 M,:



Energy and SHM

Since the spring force is a conservative force, the mechanical energy of SHM
is conserved:

1 1
F=K+U, = §m112 + §ka}2 — constant

Both the kinetic and potential energies change with time, but their sum
is constant. The above expression is for any time. There are two special times
that give us two valuable equations for the total energy:

Atz =4A4,0=0 :{Ez%k/ﬁ]

At =0,v = tupax = TAw = E = 2mo,, = smA%w?
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SHM Energy Plots

Mechanical energy is conserved in Simple Harmonic Motion

Energy U, = %kx2
E=K+U, \
_I : o
A / ey +A
K=E-Us=3%kA*— Jka? =3

+ A are called the turning points
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Whiteboard Problem 3: # 14-16

A 200 g mass attached to a horizontal spring oscillates at a
frequency of 2.0 Hz. Atz = 0's, the mass is at x = 5.0 cm and
has v, = —30 cm/s. Determine:

a. The period. b. The angular frequency.
c. The amplitude. d. The phase constant.
€. The maximum speed. f. The maximum acceleration.

g. The total energy. h. The position at ¢t = 0.40 s.
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w%ﬁB wz0.1kq; £ =2H>

_ums Sireds’
/a)‘l'z = 085S b) W= QTI'

¢) A?  x(t=o): 0-0F= Amw@m 2 005z Acosg]
| v(t=e)s -0 3 --wA:m(,hﬂ‘ P =0 3"‘“”5"”‘@
267:\: 2un kenowns

‘E= °'°59'"~! Az 9 ~0:3=-12'87 (o .08)smPBo
P “"o 'Oﬂk' ““°

| ) = - 0 ‘“45'“:
j S ﬂ' o os' (lz 57) —

€) Viax = MOX Srced I—MAM‘

12.57( 0-0f5u) = 0:69bmis

Lpxt bt = LA <[t mVa L (o)) (0-696)
q) E— x4 L mvt = L e

= 0.04EST
h) X (€7 A Fcas ot +,r.,) (0-05 Jeas(12:57x 04 4 0.4YS)= 0 03 T2
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Whiteboard Problem 4: # 14-41

41. Il A 300 g oscillator has a speed of 95.4 cm/s when its displace-

ment is 3.0 cm and 71.4 cm/s when its displacement is 6.0 cm.
What is the oscillator’s maximum speed?

Hint! Note the problem only specifies “speed”, never the velocity.
Which SHM formulas deal with the speed, not velocity?
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Whiteboard Problem 4: # 14-41

41. II" A'300 g oscillator has a speed of 95.4 cm/s when its displace-

ment 18 3.0 cm and 71.4 cm/s when its displacement is 6.0
What is the oscillator’s maximum speed? £_ = n kxt+ LmvY)
Hint! Note the problem only specifies “speed”, never the Iel’c.n =

Which SHM formulas deal with the speed, not velocity?

V] = 0-9suws @ X< o-o3m) e
[Vl = ONY ws @ X = 0:0bm
Rt f;nd Kk él Cﬁ“"hj E.,."@ Jem W) Era® Gem
(0 3)(0 ﬁ\'q)+ k (v o) INCY 3Xo'nq)+' k(ooG)

=? k: Uy us u/,..,
PLlonk m'ro BiTher OF Evqr eqns § quate o d MV
$(0-3) (0- 95w+ £ (44 42) (0-03")= L(o- 3V

g VMX; '.Ql'ﬂ,;
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