
Solutions to HW9, Chapters 6 & 7 
NOTE! The problems in masteringphysics.com had their numbers altered slightly for 
each individual student. The solutions below use the same numbers as those used in the 
book for that problem!  
6.46.  Model:  We will represent the bullet as a particle. 
Visualize:  
 

 

Solve:  (a)  We have enough information to use kinematics to find the acceleration of the bullet as it stops. Then 
we can relate the acceleration to the force with Newton’s second law. (Note that the barrel length is not relevant 
to the problem.) The kinematic equation is 

2 2
2 2 5 20
1 0

(400 m/s)2 6.67 10  m/s
2 2(0.12 m)
vv v a x a
x

= + Δ ⇒ = − = − = − ×
Δ

 

Notice that a is negative, in agreement with the vector a
r

 in the motion diagram. Turning to forces, the wood 
exerts two forces on the bullet. First, an upward normal force that keeps the bullet from “falling” through the 
wood. Second, a retarding frictional force kf

r
 that stops the bullet. The only horizontal force is k,f

r
 which points 

to the left and thus has a negative x-component. The x-component of Newton’s second law is 
5 2

net k k( ) (0.01 kg)( 6.67 10  m/s ) 6670 N 6700 NxF f ma f ma= − = ⇒ = − = − − × = ≈  
Notice how the signs worked together to give a positive value of the magnitude of the force. 
(b)  The time to stop is found from 1 0v v a t= + Δ  as follows: 
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6.49.  Model:  We assume that Sam is a particle moving in a straight horizontal line under the influence of two 
forces: the thrust of his jet skis and the resisting force of friction on the skis. We can use one-dimensional 
kinematics. 
Visualize:  
 



 
 

Solve:  (a)  The friction force of the snow can be found from the free-body diagram and Newton’s first law, 
since there’s no acceleration in the vertical direction: 

2
G k k(75 kg)(9.80 m/s ) 735 N (0.10)(735 N) 73.5 Nn F mg f nµ= = = = ⇒ = = =  

Then, from Newton’s second law: 

2thrust k
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F fF F f ma a
m
− −= − = ⇒ = = =  

From kinematics: 
2

1 0 0 1 0 m/s (1 687 m/s )(10 s) 16.9 m/sv v a t= + = + . =  

(b)  During the acceleration, Sam travels to 
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After the skis run out of fuel, Sam’s acceleration can again be found from Newton’s second law: 

2net
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−= − = − ⇒ = = = −  

Since we don’t know how much time it takes Sam to stop: 
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0 m /s (16.9 m/s)2 ( ) 145 m
2 2( 0.98 m/s )
v vv v a x x x x
a
− −= + − ⇒ − = = =

−
 

The total distance traveled is 2 1 1( ) 145 m 84 m 229 m.x x x− + = + =  
Assess:  A top speed of 16.9 m/s (roughly 40 mph) seems quite reasonable for this acceleration, and a coasting 
distance of nearly 150 m also seems possible, starting from a high speed, given that we’re neglecting air 
resistance. 

 

 

 



6.50.  Model:  We assume the suitcase is a particle accelerating horizontally under the influence of friction only. 
Visualize:  
 

 
 

Solve:  Because the conveyor belt is already moving, friction drags your suitcase to the right. It will accelerate 
until it matches the speed of the belt. We need to know the horizontal acceleration. Since there’s no acceleration 
in the vertical direction, we can apply Newton’s first law to find the normal force: 

2
G (10 kg)(9.80 m/s )  98.0 Nn F mg= = = =  

The suitcase is accelerating, so we use kµ  to find the friction force 

k k (0.3)(98.0 N) 29.4 Nf mgµ= = =  
We can find the horizontal acceleration from Newton’s second law: 

2k
net k

29.4 N( ) 2.94 m/s
10 kgx x

fF F f ma a
m

=∑ = = ⇒ = = =  

From one of the kinematic equations: 
2 2 2 2
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v vv v a x x x x
a
− −= + − ⇒ − = = =  

The suitcase travels 0.68 m before catching up with the belt and riding smoothly. 
Assess:  If we imagine throwing a suitcase at a speed of 2.0 m/s onto a motionless surface, 0.68 m seems a 
reasonable distance for it to slide before stopping. 

6.56.  Model:  The box will be treated as a particle. Because the box slides down a vertical wood wall, we will 
also use the model of kinetic friction. 
Visualize:  
 

 
 

Solve:  The normal force due to the wall, which is perpendicular to the wall, is here to the right. The box slides 
down the wall at constant speed, so 0a =

rr  and the box is in dynamic equilibrium. Thus, net 0.F =
rr

 Newton’s 
second law for this equilibrium situation is 

net push( ) 0 N cos45xF n F= = − °  

net k push G k push( ) 0 N sin 45 sin 45yF f F F f F mg= = + °− = + °−  



The friction force is k k .f nµ=  Using the x-equation to get an expression for n, we see that 

k k push cos45 .f Fµ=  °  Substituting this into the y-equation and using Table 6.1 to find k 0.20µ =  gives, 

k push pushcos45 sin45 0 NF F mgµ  ° + °− =  
2

push
k

(2.0 kg)(9.80 m/s ) 23 N
cos45 sin45 0.20cos45 sin45

mgF
µ

⇒ = = =
°+ ° °+ °

 

7.12.  Model:  We treat the two objects of interest, the block (B) and steel cable (C), like particles. The motion 
of these objects is governed by the constant-acceleration kinematic equations. The horizontal component of the 
external force is 100 N. 
Visualize: 
 

 
 

Solve:  Using 2 2
1 0 1 02 ( ),x x xv v a x x= + −  we find 

2 2 2(4 0 m/s) 0 m /s 2 (2 0 m)xa. = + . ⇒ 24 0 m/sxa = .  
From the free-body diagram on the block: 

2
on B C on B B C on B( ) ( ) ( ) (20 kg)(4 0 m/s ) 80 Nx x x xF F m a F∑ = = ⇒ = . =  

Also, according to Newton’s third law B on C C on B( ) ( ) 80 Nx xF F= = .  Applying Newton’s second law to the cable 
gives 

2
on C ext B on C C C C( ) ( ) ( ) 100 N 80 N (4 0 m/s ) 5 0 kgx x x xF F F m a m m∑ = − = ⇒ − = . ⇒ = .  

 

 

 

 

 

 

 

 



7.34.  Model:  The two blocks form a system of interacting objects. We shall treat them as particles.  
Visualize:  Please refer to Figure P7.34. 

 
 
Solve:  It is possible that the left-hand block (block L) is accelerating down the slope faster than the right-hand 
block (block R), causing the string to be slack (zero tension). If that were the case, we would get a zero or 
negative answer for the tension in the string. Newton’s first law applied in the y-direction on block L yields 

L L G L L L( ) 0 ( ) cos(20 ) cos(20 )yF n F n m g∑ = = − ° ⇒ = °  
Therefore 

2
k L k L L( ) ( ) cos(20 ) (0 20)(1 0 kg)(9 80 m/s )cos(20 ) 1 84 Nf m gµ= ° = . . . ° = .  

A similar analysis of the forces in the y-direction on block R gives k R( ) 1 84 Nf = .  as well. Using Newton’s 
second law in the x-direction for block L gives 

L L R on L k L G L L R on L L( ) ( ) ( ) sin(20 ) 1 84 N sin(20 )xF m a T f F m a T m g∑ = = − + ° ⇒ = − . + °   
For block R, 

R R G R L on R R R L on R( ) ( ) sin(20 ) 1 84 N sin(20 ) 1 84 NxF m a F T m a m g T∑ = = ° − . − ⇒ = ° − . −  

Solving these two equations in the two unknowns a and L on R R on L ,T T T= ≡  we obtain  

22 12 m/sa = .   and  

0 61 NT = . .  
Assess:  The tension in the string is positive, and is about 1/3 of the kinetic friction force on each of the blocks, 
which is reasonable. 


