
Solutions to HW17, Chapters 9 and 10 
NOTE! The problems in masteringphysics.com had their numbers altered slightly for 
each individual student. The solutions below use the same numbers as those used in the 
book for that problem!  

9.33.  Model:  Model the suitcase as a particle, use the model of kinetic friction, and use the work–kinetic energy 
theorem. 
Visualize: 
 

 
 

The net force on the suitcase is net kF f= .
rr

  
Solve:  The work–kinetic energy theorem gives 
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Inserting the given quantities into the expression for the coefficient of kinetic friction gives 
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Assess:  Friction transforms KE of the suitcase into thermal energy. In response, the suitcase slows down and 
comes to rest. Note that the coefficient of friction does not depend on the mass of the object, which is reasonable. 
9.59.  Model: The box starts from rest. 
Visualize:  Use the work–kinetic energy theorem 
 

 
Solve:  First compute the total work done on the box during the launch. 
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Now use the work–kinetic energy theorem. 

21
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Assess:  The friction decreased the launch speed only a bit. 



A couple weird fonts below where they try and indicate a vector symbol…ignore ‘em. 
9.71.  Model:  Model the lawnmower as a particle and use the model of kinetic friction. 
Visualize: 
 

 
 

We placed the origin of our coordinate system on the lawnmower and drew the free-body diagram of forces. 
Solve:  The normal force ,n

r
 which is related to the frictional force, is not equal to GF .

r
 This is due to the presence of 

F .
r

 The rolling friction is r r r r,  or /f n n fµ µ= = . The lawnmower moves at constant velocity, so net 0F = .
rr

 The 
two components of Newton’s second law are 
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Thus, the power supplied by the gardener in pushing the lawnmower at a constant speed of 1.2 m/s is P F v= ⋅ =
r r  

cos (24 9 N)(1 2 m/s)cos(37 ) 24 WFv θ = . . ° = .  
10.51.  Model:  We will use the spring, the package, and the ramp as the system. We will model the package as 
a particle. 
Visualize: 
 
 

 
 

We place the origin of our coordinate system on the end of the spring when it is compressed and is in contact 
with the package to be shot.  
Model:  (a) The energy conservation equation is  

1 g1 s1 th 0 g0 s0 ext
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Using 1 1 0 m,y = . th 0 JEΔ =  (the frictionless ramp), 0 0 m/s,v = 0 0 m,y = 30 cm,xΔ =  and ext 0 J,W =  we get  
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(b) How high can the package go after crossing the sticky spot? If the package can reach 1 1 0 my ≥ .  before 
stopping 1( 0),v =  then it makes it. But if 1 1 0 my < .  when 1 0,v =  the package does not make it. The friction of 
the sticky spot generates thermal energy 

2
th k( ) (0 30)(2 0 kg)(9 8 m/s )(0 50 m) 2 94 JE mg xµΔ = Δ = . . . . = .  

The energy conservation equation is now 
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1 1 th2 2 ( )mv mgy E k x+ + Δ = Δ

 
If we set 1 0 m/sv =  to find the highest point the package can reach, we get 

( )2 2 21 1
1 th2 2( ) [ (500 N/m)(0 30 m) 2 94 J]/[(2 0 kg)(9 8 m/s )] 0 998 my k x E mg= Δ −Δ = . − . . . = .

 
The package does not make it. It just barely misses. 

10.54.  Model:  Assume an ideal spring, so Hooke’s law is obeyed. Treat the physics student as a particle and 
apply the law of conservation of energy. Our system comprises the spring, the student, and the ground. We also 
use the model of kinetic friction. 
Visualize:   We place the origin of the coordinate system on the ground directly below the end of the compressed 
spring that is in contact with the student. 
 

 
Solve:  (a) The energy conservation equation gives  

1 g1 s1 th 0 g0 s0 ext
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Since 1 0 10 m,y y= =  1 e,x x=  0 0 m/s,v =  80,000 N/m,k =  100 kg,m =  and 1 0( ) 0 5 m,x x− = .  
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(b) Friction creates thermal energy. Applying the conservation of energy equation once again: 
2 g2 s2 th 0 g0 s0 ext
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With 2 0 m/sv =  and 2 sin(30 ),y s= Δ °  the above equation is simplified to 

21
k 0 1 02sin (30 ) ( )mg s n s mgy k x xµΔ ° + Δ = + −

 
From the free-body diagram for the physics student, we see that G cos(30 ) cos(30 )n F mg= ° = ° .  Thus, the 
conservation of energy equation gives 

21
k 0 1 02[ sin (30 ) cos(30 )] ( )s mg mg mgy k x xµΔ ° + ° = + −

 
Using 100 kg,m = 80,000 N/m,k = 1 0( ) 0 50 m,x x− = . 0 10 m,y = and k 0 15,µ = .  we get 
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Assess:  2 sin(30 ) 16 m,y s=Δ ° =  which is greater than 0 10 my = .  The higher value is due to the 
transformation of the spring energy into gravitational potential energy. 

10.72.  Model:  Assume an ideal spring that obeys Hooke’s law. There is no friction, hence the mechanical 
energy g sK U U+ +  is conserved. 
Visualize: 
 

 
 

We have chosen to place the origin of the coordinate system at the point of maximum compression. We will use 
lengths along the ramp with the variable s rather than x. 
Solve:  (a)  The conservation of energy equation 2 g2 s2 1 g1 s1K U U K U U+ + = + +  is 
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This gives the quadratic equation: 
2 2 2 2(125 N/m)( ) (49 kg m/s ) 196 kg m /s 0

1 46 m and 1 07 m (unphysical)
s s

s
Δ − ⋅ Δ − ⋅ =

⇒Δ = . − .  
 

The maximum compression is 1.46 m which rounds to 1.5 m. 
(b) [See next page for simpler solution by Samir!!] We will now apply the conservation of mechanical energy to 
a point where the vertical position is y and the block’s velocity is v. We place the origin of our coordinate system 
on the free end of the spring when the spring is neither compressed nor stretched. 
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mv2 + mgy + 1
2

k(Δs)2 =
1
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mv1
2 + mgy1 +
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mv2 + mg(−Δs sin30° ) + 1
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1
2

k(Δs)2 − (mg sin30° )Δs + 1
2

mv2 − mg sin30° (4.0 m) = 0  

To find the compression where v is maximum, take the derivative of this equation with respect to   Δs:  

  

1
2

k 2(Δs) − (mg sin30° ) + 1
2

m 2v dv
dΔs

− 0 = 0  

  
Since 

dv
dΔs

= 0 at the maximum, we have  

  Δs = (mg sin30° )/k = (10 kg)(9.8 m/s2 )(0.5)/(250 N/m) = 19.6 cm  



The last line of the solution to part (b) above can be written down by physical reasoning (same 
reasoning we used to solve Whiteboard problem 09/10-11 in class (in Lecture9_10_2 posted on 
Oct 21, slides #10 and 11) see course schedule: 

The block continues to slide down with an increasing speed even after striking the spring, just that now the 

increase in speed is not as rapid. The acceleration of the block down the slope, before striking the spring, 

was gsin300, and the force causing this acceleration was mgsin300. After striking the spring, the net force 

down the slope is Fnet = mgsin300 – kx, where x is the compression of the spring, and the net acceleration 

down the slope, using F = ma, is a= Fnet/m = gsin300 – kx/m. The block continues to speed up, even though 

a decreases (because of the increasing magnitude of x and therefore kx), and only begins to slow down 

when a  becomes negative. Thus, the maximum speed is attained precisely when a = 0! That happens when   

gsin300 – kx/m = 0, i.e., when x = mgsin300 / k = 19.6 cm (same as long-winded math soln on previous pg!) 

10.73.  Model:  Assume the spring to be ideal that obeys Hooke’s law, and model the block as a particle. 

Visualize:  We place the origin of the coordinate system on the free end of the compressed spring which is in 
contact with the block. Because the horizontal surface at the bottom of the ramp is frictionless, the spring energy 
appears as kinetic energy of the block until the block begins to climb up the incline. 
 

 
 

Solve:  Although we could find the speed 1v  of the block as it leaves the spring, we don’t need to. We can use 
energy conservation to relate the initial potential energy of the spring to the energy of the block as it begins 
projectile motion at point 2. However, friction requires us to calculate the increase in thermal energy. The energy 
equation is 

2 21 1
2 g2 th 0 g0 ext 2 2 k 0 e2 2 ( )K U E K U W mv mgy f s k x x+ + Δ = + + ⇒ + + Δ = −

 
The distance along the slope is 2/sin(45 ).s yΔ = °  The friction force is k k ,f nµ=  and we can see from the free-
body diagram that cos(45 )n mg= ° .Thus 
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Having found the velocity 2,v  we can now find 3 2( )x x d− =  using the kinematic equations of projectile 
motion: 
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  3 2 0 s and 1 168 st t− = .  And…finally, 
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