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We demonstrate, to the best of our knowledge, a first accurate empirical model for reflectance measurements from
highly turbid media over the full range of incident angles, i.e., for reflectivity values going from unity in the total
internal reflection regime to nearly zero when almost all the light is transmitted. Evidence that our model is accurate
is provided by extraction of the particle size, followed by independent verification with dynamic light scattering.
Our methodology is in direct contrast with the prevalent approach in turbid media of focusing on only the critical
angle region, which is just a small subset of the entire reflectance data. © 2013 Optical Society of America
OCIS codes: (120.0280) Remote sensing and sensors; (170.7050) Turbid media; (290.7050) Turbid media; (280.1415)

Biological sensing and sensors; (120.5820) Scattering measurements; (260.6970) Total internal reflection.
http://dx.doi.org/10.1364/OL.38.004888

Light propagation in turbid media, i.e., colloidal suspen-
sions of particles comparable in size to the optical wave-
length, has been carefully explored over the past several
decades due to this topic’s fundamental importance in
science and technology. Regardless of the particle size
and density, the concept of an effective refractive index
for turbid media is established to be meaningful [1].
Remarkably, a verifiably accurate determination of the
complex refractive index of a highly turbid medium
has, to date, eluded researchers. This is because
transmission-based methods fail in highly turbid media
owing to extreme attenuation, and refractive index deter-
mination is typically based on the measurement of total
internal reflection (TIR) from the sample surface. To the
best of our knowledge, there has not been a single case
reported where the entire reflectance data from the sur-
face of a highly turbid medium, spanning both TIR and
non-TIR regimes, has been accurately described by
any theoretical model, though some progress was made
recently [2].
Previous attempts to accurately model the reflectance

data and measure the complex refractive index suffered
from at least one of three important shortcomings:
first, extraneous fitting parameters were introduced to
account for hard-to-estimate factors such as multiple
scattering in the turbid medium [4–6], or, in the case
of [7], the volume fraction of the suspended particles,
even though the goal is to determine just two parameters:
the real and imaginary refractive index. This resulted in
overfitting of the data. Second, fitting was performed
of only the critical angle region [2,8,9] (e.g., reflectance
data only between 1 and 0.75 was fitted while important
information between 0 and 0.75 was simply ignored [2]).
Third, no reliable reference data exist for the medium
investigated (e.g., milk-cream [2,8], intralipid [9]).
Furthermore, reliable in situ particle sizing is a long-

sought goal in colloidal science. Standard sizing methods
such as optical microscopy and dynamic light scattering
(DLS) are not in situ since they require heavy dilution of
turbid samples in order to avoid multiple scattering.
Theoretical models enabling in situ measurement of

complex refractive index are desired, as one may extract
particle size from the index using Mie calculations [10].

Rigorous theoretical frameworks for light propagation
in turbid media carry formidable computational/time cost
[11], necessitating a search for an empirical, simpler
model. However, the most widely used empirical method
of “differentiation,” which associates the point of maxi-
mum slope of the reflectance-versus-incident-angle curve
with an effective critical angle [4,6,8,9], is significantly
inaccurate even after error correction is attempted [12].

In this letter, we demonstrate, for the first time, a
verifiably accurate method for in situ (i.e., no sample
dilution) measurement of the complex refractive index
and particle size in highly turbid media. Our method
relies upon an empirical model of TIR in turbid media,
first proposed by us in [2], which quantitatively accounts
for the loss in TIR intensity during angle-dependent pen-
etration by incident light into the medium. We achieved
this by introducing in our model the concept of an angle-
dependent imaginary component of refractive index.
Verification is provided by using our model to extract
the particle size via Mie calculation, and finding excellent
agreement with independent DLS size measurements.
Note that while DLS is unreliable in colloidal suspensions
of unknown composition owing to the requirement that
the refractive index of the dispersion medium be
known, DLS is reliable in well-characterized stable sus-
pensions. Our samples comprise aqueous monodisperse
(i.e., particles of well-defined singular size) solutions of
polystyrene microspheres. However, in DLS, dilution is
necessary in order to satisfy a key assumption behind
Mie theory; namely, that no multiple scattering events
occur. On the other hand, in our experiments this
assumption is well-satisfied despite our use of undiluted
highly turbid samples. We test our model extensively in
solutions of different particle sizes and concentrations.

Our experimental setup, outlined in Fig. 1(a), consists
of a turbid sample of refractive index ns placed on a
glass prism of known refractive index, illuminated by a
divergent p polarized beam of ∼6 μW at 660 nm from
a diode laser pigtailed to a single-mode fiber. The use
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of a divergent beam eliminates the need for angular
scanning, suppressing mechanical noise. The design is
essentially identical to that described in detail earlier
[2,13], except that in [2] only a small subset of the entire
reflectance data was measured, leaving the authors in no
position to perform accurate particle sizing, and in [13]
only transparent samples were studied.
For turbid media, ns is complex ns ! nr " ini, where

the real part nr arises from the bending of light
at the interface, and the imaginary part ni is related to the
turbidity through the relation α ! 2niω∕c. Here α is the
attenuation coefficient given by I#z$ ! I0 exp#−αz$; I#z$
is the intensity of a light beam propagating through the
medium, I0 is the incident intensity at z ! 0, ω is the laser
frequency, and c is the speed of light in a vacuum. We
designate α ≥ 200 cm−1 “highly turbid” because conven-
tional transmission-based imaging methods typically fail,
and one must use reflectance-based methodologies [2].
In the traditional approach to modeling the refractive

index of turbid media, one simply allows ns to be com-
plex in Fresnel theory. Our approach is to use a modified
Fresnel theory we introduced in [2] that incorporates
angle-dependent penetration of the incident light into
the medium (which forms the basis for the well-known
Goos–Hänchen shift [14]) as seen in Figs. 1(b) and 1(c).
This yields an angle-dependent ni, i.e., ni#θi$ ! niκ#θi$
which is no longer a constant as is assumed traditionally.
The form of the angular factor κ is plotted in Fig. 2, top
inset. In the non-TIR regime ni is a constant, and κ is unity
for all angles, just as in the usual case of normal incidence.
But in the TIR regime κ is given by [2]

κ#θi$ !
!
4πnprism

""""""""""""""""""""""
#M − L$∕2

p #
−1
; (1)

which is a smoothly varying downward-sloping function
(the unseemly spike in the TIR–non-TIR transition region
is explained later). Here L ! %#n2

r − n2
i $∕n2

prism& − sin2 θi,

M !
"""""""""""""""""""""""""""""""""""""""""""""""""
P2

− 2L sin2 θi − sin4 θi
p

, and P ! #n2
r " n2

i $∕n2
prism.

Equation (1) for the angle-dependent component of
ni#θi$ is just the ratio of the penetration depth to the op-
tical wavelength. The angle-dependent penetration depth
of an evanescent wave in TIR iswell known in transparent
media [15–17]; a ray picture of this angle-dependent
penetration is depicted by invoking the Goos–Hänchen
shift [14] of the exit ray relative to the incident ray in
Figs. 1(b) and1(c).However, Eq. (1) gives the correspond-
ing explicit expression for the penetration depth (divided

by λ) in a turbid medium. The evanescent wave corre-
sponding to each plane-wave component of our divergent
beam scatters inside the turbid medium [16,18]. The
scattering-induced intensity loss in each evanescent
wave varies with the wave’s penetration, leading to an
angle-dependent loss in TIR intensity [expressed by the
angle-dependent ni in Eq. (1)].

Figure 2 shows Ir∕Ii curves as a function of incident
angle θi for a highly turbid aqueous solution of latex
microspheres. Each datapoint in the figure is represented
by a gray dot, which is an average over 100 measure-
ments. The size of the error bar on each datapoint is
smaller than the size of the gray dot. First we measure
the reflected intensity profile with no sample [this yields
Ii#θi$ provided TIR occurs at the prism-air interface for
all θi]. The measurement is repeated 100 times, and an
average profile is generated and stored—this process
takes 10 s. Next the sample is placed on top of the prism,
and the average reflected intensity profile is similarly
generated [this yields Ir#θi$; we choose the prism
material and angle so that the TIR non-TIR transition
occurs at some angle within the range of angles sub-
tended by the divergent beam]. Finally, the ratio of the
two profiles is taken. We checked that the gravity-
induced sedimentation during the time taken to generate
an intensity profile, such as in Fig. 2, is negligible. The
sedimentation velocity is proportional to the square of
the particle size, acceleration due to gravity, and the dif-
ference in densities between polystyrene and water, and
inversely proportional to the viscosity of water [19]. We
estimate the sedimentation velocity for the largest par-
ticles (dia ! 0.5 μm) used in our experiment to be
0.04 nm∕s, meaning that the particles move ≤1 nm dur-
ing the time taken to measure the intensity profile shown
in Fig. 2, which is a negligible fraction of the optical
wavelength.

The light-orange and dark-blue curves in Fig. 2 are
best possible fits obtained by traditional Fresnel theory
(denoted by F from here on) and by our angle-dependent
model [denoted AM, given by Eq. (1)], respectively. Each
fit is optimized by minimizing its mean-square-deviation
(MSD). Note that Eq. (1) describes a new angle-
dependent ni in terms ofM and L that themselves depend

Fig. 1. (a) Prism-sample interface for measuring Ir∕Ii#θi$with
a divergent incident beam. For low values of θi, light mostly
refracts through (It), but TIR occurs for higher values.
(b) and (c) depict angle-dependent penetration in TIR for trans-
parent samples. The penetration is maximum at the critical
angle. In a turbid medium, the picture is similar, but θc is not
defined. G-H, Goos–Hänchen. Fig. 2. Reflectance data (1000 datapoints) for aqueous solu-

tion of polystyrene spheres (dia 0.356' 0.014 μm). Solid lines
are theoretical fits; dots are data. Both the angle-dependent
model [dark blue; see text for explanation of spike (bold)]
and traditional Fresnel theory (light orange) fit data closely,
yet only one is correct.
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on ni. Therefore, we start with a constant-value best-
guess for nr and ni in the expressions for L, M , and P,
then construct an angle-dependent ni!θi" from Eq. (1).
Next we substitute this new ni!θi" into the Fresnel reflec-
tion coefficient and perform again a best fit of Ir∕Ii to the
data; the only two fitting parameters we adjust are the
first best-guess values used for nr and ni. In a few iter-
ations, we obtain the best possible fit yielding our final nr
and ni (or α) values.
Table 1 shows that even though both the F and AM

models fit the data in Fig. 2 almost equally well, the
two models yield significantly different values for α and
particle size (and also nr since a difference of 0.001 is
significant for most applications).
Which model should we trust? In answer, we used par-

ticle sizing by DLS as the benchmark for comparison with
each model’s sizing predictions [20]. DLS is especially
reliable when sizing in monodisperse stable aqueous
solutions: errors are minimized since the refractive index
and viscosity of deionized water and refractive index of
polystyrene are well-known. In order to determine par-
ticle size from the F and AM fits, we use a Mie numerical
calculation [10] at 660 nm, which outputs α and requires
as input parameters certain well-known quantities such
as the refractive index of deionized water at the experi-
ment temperature (25°C in our case), the real and imagi-
nary refractive indices of polystyrene microspheres and
density of polystyrene [7,21], and microsphere concen-
tration (determined from weight/volume supplied by
manufacturer). The particle size appears as an input
parameter and is iteratively adjusted until α yielded by
the Mie program agrees with α predicted by each model.
Note that we have made the usual assumption of spheri-
cal particle shape for application of Mie theory.
Note that in our experiment, the optical depth (OD # α

times the sample length traversed), is ≤0.04 even for our
most highly turbid sample (α # 578 cm−1 in Table 2)
owing to the evanescent light merely penetrating on the
order of λ into the medium [see Figs. 1(b) and 1(c)]. Thus
the probability that an incident photon is scattered once
is ≤0.04, and the probability of multiple scattering is at
least the square of that. The single scatterings cause the
reflectance to decrease below unity in the TIR regime

for a highly turbid medium. However, the probability
for multiple scattering in our experiment is negligible
[18], thus validating our use of Mie theory for the
evaluation of the attenuation α. In order to estimate
the range of turbidities for the validity of our model,
we note that the simple probability-based argument
above may be used only as long as the OD is signifi-
cantly less than unity. For example, for turbidities
≥10; 000–15; 000 cm−1, the OD for the thin λ deep pen-
etration layer approaches unity, and the interpretation
of OD as a probability breaks down. Multiple scattering
within the penetration depth will occur, precluding the
use of Mie theory. On the other hand, our lowest turbid-
ity data (first row, Table 2) indicate that for α ≤ 5 cm−1,
there is no significant difference between predictions
from our model and from traditional Fresnel theory.

Table 2 presents particle-size measurements for five
different particle sizes and several different turbidities
(i.e., concentrations). Error bars on particle size were
provided by the manufacturers for just two samples:
the 0.054 μm spheres were specified to have error
$0.007%, and the 0.356 μm spheres $0.014%. Residual
error in DLS values (Malvern Instruments Zetasizer) from
imprecision in temperature measurement (leads to error
in viscosity) is ≤1–2%, confirmed by multiple measure-
ments on samples with the same particle size but differ-
ent concentrations (see the 0.2 μm data in Table 2).
Statistical errors from multiple measurements result in
error bars on the particle size measurements using the
AM and F models: They were found to range from a
minimum of $0.001 μm in the case of the 0.054 μm
spheres to a maximum of $0.018 μm for the 0.1 μm
spheres. Column 6, Table 2 shows the particle sizes
extracted from our AM model to be in good agreement
with DLS; the discrepancy is less than 10% in all cases.
This implies the α values extracted by AM are correct
as well (as should be the nr values, which we do not show
for brevity). By contrast, it is only for the sample with the
lowest turbidity (and lowest particle size) that particle
sizing from F theory (Column 7) has similar agreement
with DLS as our AM model. For all other samples, dis-
agreement of F with DLS is significantly large, tending
to grow with rising turbidity and/or particle size, exceed-
ing 40% for 0.5 μm particles at αAM # 578 cm−1. Note that
F theory’s prediction for α in this case differs from AM by
more than a factor of two. Interestingly, from the last col-
umn in Table 2, we see that, despite yielding inaccurate
particle sizes, the traditional F model actually fits the
data better for half the samples, i.e., the ratio of the

Table 1. AM and FModels Yield Different Particle Sizes

Model nr α (cm−1) MSD ×10−4 Particle Diameter (μm)

AM 1.33740 379 1.51 0.387$ 0.010
F 1.33837 193 2.64 0.254$ 0.007

Table 2. Comparison of Particle-Sizing by AM and F Models for Different Particle Sizes and Concentrations (Size
Errors in Columns 6 and 7 are Calculated Relative to the DLS Sizes in Column 3)

Manu. Size (μm) Vol. Frac. (%) DLS Size (μm) α AM (cm−1) α F (cm−1) Size Error AM Size Error F MSD Ratio AM/F

0.054 2.48 0.059 4 6 −8% %7% 1.1
0.1 0.95 0.124 17 30 %2% %30% 1.0
0.2 2.38 0.185 91 82 −6% −10% 1.3
0.2 4.76 0.185 223 146 %3% −14% 1.4
0.2 9.52 0.187 475 247 %5% −21% 1.2
0.356 2.51 0.385 379 193 %0.5% −34% 0.6
0.5 0.95 0.477 172 109 −7% −31% 0.5
0.5 2.86 0.477 578 252 %3% −42% 0.2
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MSD value for our AM model to the MSD value for tradi-
tional F theory exceeds unity in four of the samples with
smaller particle size. This proves that “goodness of fit” as
a sole criterion for validity of a model is misleading.
Nevertheless, Table 2 shows that with rising turbidity
and particle size the AM model yields more accurate
particle sizing than F, and fits the data better. An MSD
ratio of 0.6 for the 0.356 μm sample means AM fits the
data 2X better than F, visibly so already in Fig. 2.
The insets in Fig. 2 underline the importance of fitting

the entire reflectance data-curve and elucidate the origin
of the unseemly spike, or glitch, in the theoretical AM
fit, as explained immediately below. The top inset illus-
trates how we switch between a constant value for ni!θi"
in the non-TIR regime and a downward-sloping angle-
dependent value in the TIR regime. But in highly turbid
media, where there exists no critical angle, how does one
decide at which specific angle to apply this switch? In
transparent media, the critical angle is unambiguously
the angle at which L!θi" # 0. Therefore, as our initial
guess, we choose the location of the switch as the angle
at which L!θi" changes sign from positive (non-TIR
regime) to negative (TIR). We now perform a best fit
of Ir∕Ii to the data by iteratively optimizing nr and ni
and permitting the switch-point to vary around the initial
location. The theoretical AM fits in the non-TIR and TIR
regimes do not match continuously, resulting in a spike
(bold blue curves in Figs. 2). Clearly, the spike is an
unavoidable artifact of our AM-fitting procedure and
does not show up in the data or, indeed, in traditional
F theory, which treats ni the same (constant) through
both TIR and non-TIR regimes. However, while our
AM model may be outperformed by F theory in fitting
20 datapoints that span a small fraction of the murky
transition region between TIR and non-TIR (see bottom
inset, Fig. 2), the AM fit is unprecedentedly excellent
over the remaining 1000 datapoints.
We believe that slight errors in the weight in grams of

polystyrene spheres per 100 ml of colloidal solution
quoted to us by the manufacturer (this number is con-
verted to a volume-fraction% by dividing by the density
of polystyrene) is one contributing factor to the residual
discrepancy of under 10% between the particle sizes
measured by our AM method relative to DLS. These
errors would also contribute to the slight, but significant,
difference in particle sizes measured by our AM method
for different concentrations of the same particle. For
example, an error bar of $5% in the concentrations
quoted by the manufacturer would lead to an error of
$4.5% in the particle size extracted for the two 0.5 μm
solutions by our method and an error of $2.5% for the
three 0.2 μm solutions. Another possible factor that
contributes to the residual discrepancy in particle size
measurement by AM versus DLS is that there may be

slight changes in the refractive index measured by the
AM method owing to density gradients forming at the
glass interface due to the colloidal particles developing
slightly charged surfaces. Of course, the size extracted
by the DLS method on the Zetasizer is independent of
concentration; hence the DLS particle sizes are identical.

In conclusion, we have demonstrated a verifiably accu-
rate methodology for in situ particle sizing and complex
refractive index measurement of highly turbid media.
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