Motion in One Dimension*

Motion along the s-axis (why s? s here stands for either y or x):

$\mathbf{S}=$ object's position coordinate along the s-axis (can be + , - , or 0)
$\mathbf{V}_{\mathbf{s}}=$ object's velocity along the s-axis (can be + , -, or 0)
$\mathbf{a}_{\mathbf{s}}=$ object's acceleration along the s-axis (can be,+- , or 0)
*Note, in one dimension, we can drop the vector notation. Looking ahead, these are the s-components of the vectors \vec{r}, \vec{v}, and \vec{a}

Motion in One Dimension

In Chapter 1, we introduced motion diagrams to describe motion. Now, we want to represent the motion as mathematical functions of time

$$
s(t), v_{s}(t), \text { and } a_{s}(t)
$$

e.g. we may have something like this, i.e. graphs of the functions:

Note, these are graphs - not pictures. The object is still moving in one dimension along the s-axis. Our goal in Chapter 2 is to develop the mathematical relations between $\mathrm{s}(\mathrm{t}), \mathrm{v}_{\mathrm{s}}(\mathrm{t})$, and $\mathrm{a}_{\mathrm{s}}(\mathrm{t})$.

General 1D Motion: Average Velocity

$\left(a_{s}=a_{s}(t) \neq\right.$ constant $)$

Average Velocity between $t_{1} \& t_{2}=v_{s_{\mathrm{avg}}}=\frac{\Delta s}{\Delta t}=\frac{s\left(t_{2}\right)-s\left(t_{1}\right)}{t_{2}-t_{1}}$
= slope of the line connecting points $1 \& 2$

Whiteboard Problem: 2-1

The figure below is the position vs. time graph of a jogger. What is the jogger's velocity at
a) $t=10 \mathrm{~s}$ (LC)
b) $t=25 \mathrm{~s}$
c) $\mathbf{t}=\mathbf{3 5} \mathrm{s}$ (LC)

General 1D Motion: Instantaneous Velocity

$$
\left(a_{s}=a_{s}(t) \neq \text { constant }\right)
$$

So, we have:
Average Velocity between $t_{1} \& t_{2}=v_{s_{\text {avg }}}=\frac{\Delta s}{\Delta t}=\frac{s\left(t_{2}\right)-s\left(t_{1}\right)}{t_{2}-t_{1}}$
$=$ slope of the line connecting points $1 \& 2$
$s(t)$

How do we find the velocity at at a given instant of time t ?

We let t_{1} and t_{2} get closer and closer together until they're infinitesimally close to t.

The line connecting t_{1} and t_{2} when they are infinitesimally close to t is the tangent line.

General 1D Motion: Instantaneous Velocity

$s(t) \quad\left(a_{s}=a_{s}(t) \neq\right.$ constant $)$

$$
\begin{aligned}
\text { Instantaneous velocity at } \mathrm{t}, v_{s}(t) & =\frac{d s}{d t}=\text { slope of the tangent line at } \mathrm{t} . \\
& =\text { instantaneous rate of change of } \mathrm{s}(\mathrm{t}) \\
& =\text { derivative of } \mathbf{s}(\mathbf{t}) \text { evaluated at } \mathbf{t}
\end{aligned}
$$

Note: $d s$ and $d t$ are Δs and Δt when the points are infinitesimally close.

Derivatives (from Calculus*)

Slope of a straight line:

Curve: what is the slope at x ?

As the two points used for the slope get closer together

$\frac{d y}{d x}$ is called the derivative of the function y
It gives the slope of the tangent line at the point x, or the instantaneous rate of change of the function at the point x.
*If you haven't seen this in Calculus yet - you will very soon. There, you'll do all the theorems, proofs, etc. Here, we just need to understand what a derivative is and how to calculate some very simple ones.

What kinds of derivatives will we need to do?

Graphical:

Analytical:

Horizontal straight line:

$$
y(x)=\text { constant } \quad \frac{d y}{d x}=0
$$

Straight line with slope m :

$$
y(x)=m x+b \quad \frac{d y}{d x}=m
$$

Power law function:

$$
\underset{(c \& n \text { are constants })}{y(x)=c x^{n}} \quad \frac{d y}{d x}=c n x^{n-1}
$$

Sum of two functions:

$$
\frac{d}{d x}[f(x)+g(x)]=\frac{d f(x)}{d x}+\frac{d g(x)}{d x}
$$

We'll have other rules as we need them.

Whiteboard Problem 2-2

Determine expressions for the derivatives of the following functions.* (Enter your expressions on LC)

$$
\begin{aligned}
& \text { a) } f(x)=10 x^{3} \\
& \text { b) } f(x)=\frac{6}{x}+5 x
\end{aligned}
$$

Now, a quick review for what this means for velocity:
*If you have seen this before in Calculus, show all of the steps on your WB, and help your group members who might be taking Calculus I now.

A Quick Review of What We Have for Velocity

Instantaneous Velocity At Some Time t:

$$
v_{s}(t)=\frac{d s}{d t}
$$

$=$ derivative of $s(t)$ evaluated at t
$=$ slope of the tangent line at t .
$=$ instantaneous rate of change of $s(t)$

Acceleration is the Rate of Change of Velocity

Now that we know a little about slopes and derivatives, the acceleration is obtained from the velocity in a similar manner.

Suppose that the velocity vs. time looks like this:

Average Acceleration between t_{1} and t_{2}

$$
=a_{s_{\mathrm{avg}}}=\frac{\Delta v_{s}}{\Delta t}=\frac{v_{s}\left(t_{2}\right)-v_{s}\left(t_{1}\right)}{t_{2}-t_{1}}
$$

Instantaneous Acceleration at $\mathbf{t}=a_{s}(t)=\frac{d v_{s}}{d t}$
$=$ derivative of $\mathrm{v}(\mathrm{t})$ evaluated at t
$=$ slope of the tangent line at time t
$=$ instantaneous rate of change of $v_{s}(t)$

Whiteboard Problem: 2-3

A particle moving along the x-axis has its position described by

$$
x=\left(2 t^{2}-t+1\right) \text { meters }
$$

where t is in seconds.

At $t=2 s$, what are the particle's
a) position in m (LC)
b) velocity in m / s (LC)
c) acceleration in $\mathrm{m} / \mathrm{s}^{2}$ (LC)

How to get Position from Velocity

We've seen how to get velocity from position: $v_{s}(t)=\frac{d s}{d t}$
How do we get position from velocity? This is something you do everyday, e.g. suppose you're driving in your car at constant velocity:

$$
s_{1} \text { at } t_{1}
$$

s_{2} at t_{2}

At time t_{1}, you're at $s=s_{1}$. You drive at constant velocity until $t=t_{2}$; how far did you travel? i.e. what is s_{2} ?

$$
\begin{aligned}
s_{2} & =s_{1}+v \times(\text { time travelled }) \\
\text { Or, } s_{2} & =s_{1}+v \Delta t \quad \text { where } \quad \Delta t=t_{2}-t_{1}
\end{aligned}
$$

What does this look like on a graph of velocity vs. time?

How to get Position from Velocity

$$
s_{2}=s_{1}+v \Delta t \quad \text { where } \quad \Delta t=t_{2}-t_{1}
$$

Or, $s_{2}=s_{1}+\left(\right.$ area under the $v(t)$ curve from t_{1} to $\left.t_{2}\right)$

If you have velocity for some time, you accumulate position. In calculus, we call this accumulation, integration.
(area under the $v(t)$ curve from t_{1} to $\left.t_{2}\right)=\int_{t_{1}}^{t_{2}} v(t) d t$

How to get Position from Velocity - General

(i.e. $v_{s} \neq$ constant)
$v_{s}(t)$
Know: position s_{i} at time t_{i}
What is the position s_{f} at time t_{f} ?
t

$$
\begin{aligned}
& \text { The position at time } t_{f}=s_{f}=s_{i}+\int_{t_{i}}^{t_{f}} v_{s}(t) d t \\
& \qquad=s_{i}+\text { Area under the } v_{s}(t) \text { curve from } t_{i} \text { to } t_{f}
\end{aligned}
$$

What about Integrals?

What kind of integrals will we need to do?

Graphical: e.g. straight lines
$f(x)$

$$
\int_{0}^{10} f(x) d x=\text { area }
$$

$$
=\frac{1}{2}(2)(5)+(4)(5)+\frac{1}{2}(2)(5)+\frac{1}{2}(2)(-4)
$$

$$
=26
$$

Analytical:

$$
f(x)=c x^{n}
$$

(where n and c are constants and $n \neq-1$)

There are many more, but, for now, that's all we'll need!

Whiteboard Problem 2-4

Evaluate the following integrals*, sketch the function, and shade in the integral:

$$
\begin{aligned}
& \text { a) } \int_{2}^{4} 5 x^{2} d x \\
& \text { (LC sketch, then calculate) } \\
& \text { (Answer: } \left.\frac{280}{3}=93.33\right) \\
& \text { b) } \int_{0}^{10}(3-6 x) d x \\
& \text { (LC sketch, then calculate) } \\
& \text { (Answer: }-270)
\end{aligned}
$$

*If you have seen this before in Calculus, show all of the steps on your WB, and help your group members who might be taking Calculus I now.

How to get Velocity from Acceleration - General

As you might guess, we get the velocity from the acceleration in a similar way:
$a_{s}(t)$

Know: $v_{s_{i}}$ at time t_{i}
What is $v_{s_{f}}$ at time t_{f} ?

The velocity at time $t_{f}=v_{s_{f}}=v_{s_{i}}+\int_{t_{i}}^{t_{f}} a_{s}(t) d t$
$=v_{s_{i}}+$ Area under the $a_{s}(t)$ curve from t_{i} to t_{f}

Table Challenge Problem 2 (8/30/23)

You are to solve the following problem as a group of your entire table. Work together on your whiteboards and the wall whiteboards. No computers or cell phones are permitted; use only your equation sheet and calculator. When the group has arrived at an answer, write it below and turn this sheet in.
Only your answer will be graded.

Table:
Names:

Three particles move along the x-axis, each starting with $v_{x 0}=10 \mathrm{~m} / \mathrm{s}$ at $\mathrm{t}_{0}=0 \mathrm{~s}$. In the figures below, the graph for A is a position vs. time graph; the graph for B is a velocity vs. time graph; the graph for C is an acceleration vs. time graph. Find each particle's velocity at $\mathbf{t}=\mathbf{7 . 0} \mathbf{~ s}$. (Work with the geometry of the graphs, not any kinematic equations.)

Answer: \qquad Answer: \qquad Answer : \qquad

