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Spatial quasiperiodic driving of a dissipative optical lattice and the origin of directed Brillouin
modes in a randomly diffusing cold atom cloud
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Atoms confined in a three-dimensional dissipative optical lattice oscillate inside potential wells, occasionally
hopping to adjacent wells, thereby diffusing in all directions. Illumination by a weak probe beam modulates the
lattice, yielding propagating atomic density waves, referred to as Brillouin modes, which travel perpendicular
to the direction of travel of the probe. The probe is made incident at a small angle relative to a lattice
symmetry axis, yielding a driving potential perturbation whose spatial period is not a multiple of the period
of the underlying optical potential, thus enabling exploration of the regime of space quasiperiodic drive. A
theory, based on the Fourier decomposition of the current into its atomic density wave contributions, reveals
that, unlike the previously studied time quasiperiodic case, wherein a lattice driven by two incommensurate
frequencies may exhibit abrupt suppression in directed current as the driving transitions from quasiperiodic to
periodic, a spatial-quasiperiodically driven lattice exhibits no such abrupt response. Further, detailed modeling
of spatial-quasiperiodically driven lattices reveals that directed propagation occurs not only as a consequence of
velocity matching between the propagating modulation and the average velocity of the atom oscillating inside
a well, as was previously reported in the literature, but also as a distinct consequence of another mechanism,
namely, frequency matching between the modulation frequency and the oscillation frequencies. A systematic
measurement of the transmitted probe spectra as a function of off-axis probe angle is presented, which is
consistent with the velocity- and frequency-matching predictions from the detailed model.

DOI: 10.1103/PhysRevA.109.053312

I. INTRODUCTION

Light-induced forces on matter over wavelength and sub-
wavelength spatial scales have wide applicability in quantum
sensing and metrology [1], ranging from the design of peri-
odic potential landscapes [2–4] to the innovative transport and
sorting of particles [5]. Considerable interest has been focused
on the Brownian noise-induced directed motion of particles in
the absence of a net force [6–8]. These Brownian ratchets are
central to any discussion of nanoscale transport, ranging from
how natural biomolecular protein motors fuelled by stochastic
collisions with surrounding water molecules transport intra-
cellular cargo to the design of artificial nanomachinery that
can efficiently convert random environmental fluctuations to
useful work [6]. On a fundamental level the study of these
Brownian ratchets enables an analysis of limitations imposed
by the second law of thermodynamics in nonlinear stochastic
processes [7,8]. Cold atoms confined in dissipative optical
lattices, where environmental noise in the form of spon-
taneous emission is significant, serve as ideally controlled
models that offer key insights into understanding Brownian
ratchets [6,9–30].
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A dissipative optical lattice consists of counterpropagat-
ing laser beams tuned near atomic resonance that yield AC
Stark-shifted ground-state potential wells [31]. Atoms in the
lattice undergo the well-known process of Sisyphus cooling
and settle into these wells, where they oscillate with a vi-
brational frequency that is determined by the well- depth
[13]. The stochastic optical pumping processes associated
with Sisyphus cooling also cause the atoms to occasionally
transfer between adjacent wells, leading to spatial diffusion
of the cold atom sample [13,32]. The introduction of a
weak probe beam along a symmetry axis of the lattice re-
sults in a time-periodic driving of the lattice that breaks the
symmetry, causing directed atomic density waves to be set
up. The directed propagation proceeds in the absence of a
net force. These propagating atomic density waves are re-
ferred to as Brillouin modes in analogy to acoustic waves
rippling through a fluid [10,15,17,30]. However, as noted
earlier, whereas in fluids the particle interactions are suffi-
ciently strong to support the acoustic wave propagation, in
the dilute optical lattice, the directed density wave propaga-
tion proceeds without involving any interaction between the
atoms [10]. Recently, a noise-induced resonant enhancement
of this directed propagation was observed [30], and a theory
based on the Fourier decomposition of the current into its
atomic density wave contributions [33] was developed to ex-
plain this stochastic resonance. This theory was also able to
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successfully predict the thresholds for the transition to the
regime of infinite density in the cold atom setup [33,34].

In this paper, we investigate the driving of the lattice by
illuminating the cold atoms with a probe beam propagating at
a slight angle to the lattice symmetry axis. In this case, the
spatial period of the driving perturbation is now not an integer
multiple of the period of the underlying lattice potential. This
allows, at least theoretically, for the possibility of the two spa-
tial driving frequencies to be in irrational ratio, which permits
the exploration of spatial quasiperiodic driving in these sys-
tems, in analogy with the time quasiperiodic case, wherein the
lattice is driven by two incommensurate frequencies [6,9,35–
37]. In the present spatial quasiperiodic case though, we will
show that the generated directed current is not as sensitive to
the nature of the driving as in the time quasiperiodic case,
where true quasiperiodicity can suppress the directed motion.
Here, the transition from periodicity to quasiperiodicity is not
observed to be sharp. However, the chosen setup, where the
spatial periods of the underlying lattice and the driving are
basically uncoupled, sheds light on how the Brillouin modes
are generated. Detailed modeling reveals that there are two
distinct mechanisms responsible for the origin of directed
propagation. The velocity-matching mechanism, where a cur-
rent is generated when the propagating modulation coincides
with the average velocity of the atom oscillating inside a
well, was identified [10,15,17,30]. Here, we identify another
mechanism, where a directed current is produced when there
is frequency matching between the modulation and oscilla-
tion frequencies. We present a systematic measurement of the
pump-probe spectra as a function of off-axis probe angle (the
lattice beams collectively serve as the pump), which corrob-
orates the predictions from both mechanisms, without being
able to rule out any one of them or resolve whether one is
more dominant. Indeed, our investigation suggests that both
mechanisms are equally at play.

This paper is organized as follows. In Sec. II, we define the
system model studied. Analytical results based on a Fourier
decomposition of the current are discussed in Sec. III. Numer-
ical simulations and experiments are discussed in Secs. IV and
V, respectively. Finally, Sec. VI ends with the conclusions.

II. SYSTEM MODELS

We consider atoms confined in a so-called three-
dimensional (3D)-lin ⊥ lin optical lattice [13], formed by
the superposition of four red-detuned laser beams �k1−4 of
identical amplitudes E0 and frequency ωl in a tetrahedral
configuration, see Fig. 1(a). For Fg = 1

2 → Fe = 3
2 atoms,

the lattice is formed by just two light-shifted ground-state
± 1

2 -spin potentials, denoted by U+ and U−. An additional
weak probe laser of amplitude Ep and frequency ωp, forming
an angle θp with the z axis and with its polarization parallel to
the y axis, is added to drive the system out of equilibrium and
put the atoms in directed motion [10], θp = 0 in Figs. 1(a) and
1(b) and θp �= 0 in Figs. 1(c) and 1(d). In the experiments, this
model is already a simplification since the atoms have a more
complex transition than Fg = 1

2 → Fe = 3
2 , but the theoretical

results are still expected to provide good qualitative insight
[38].

FIG. 1. Three-dimensional (3D)-lin ⊥ lin tetrahedral lattice il-
luminated by a weak probe. (a) and (b) depict the case of
space-periodic driving: The probe propagates along the z axis, which
is the lattice symmetry axis. (c) and (d) show the case where the
space period of the driving is not a multiple of the period of the
underlying optical lattice: The probe propagates along a direction
forming an angle θp with the z axis. Here, |��k1| = k0 + kl sin θp

and |��k2| = k0 − kl sin θp, where kl is the laser wave number, and
k0 = kl sin θx .

Following previous studies [10,15–17,30,33,39], we focus
on movement along one of the directions, taken as the x axis.
The optical potential in each ground state, associated with
the above setup is then given by (after taking y = z = 0, see
Appendix A)

U±(x, t ) = U0

2

[
− 3

2
− 1

2
cos(2k0x) ± cos(k0x)

+ εp cos(k0x + kl sin θpx − δpt )

+ εp cos(−k0x + kl sin θpx − δpt )

± εp cos(kl sin θpx − δpt )

]
, (1)

where k0 = kl sin θx, kl = ωl/c is the laser beam wave num-
ber, δp = ωp − ωl is a small probe detuning relative to the
lattice (δp/ωl � 1) [40] which modulates the lattice and is
also referred to as the driving frequency, U0 = −16h̄�′

0/3,
with �′

0 (< 0) being the light-shift per lattice field, and εp =
Ep/(2E0). The optical well depth U0 defines a vibrational
frequency associated with an atom of mass ma oscillating at
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the bottom of a well:

�x = k0

√
3U0

2ma
= 4 sin θx

√
|�′

0|ωr, (2)

where ωr = h̄k2
l /(2ma) is the recoil frequency.

The probe perturbation in Eq. (1) appears in three terms:
For θp < θx, the first probe term in Eq. (1) represents a
modulation propagating to the right with phase velocity v1 =
δp/(k0 + kl sin θp), the second probe term a modulation prop-
agating to the left with velocity v2 = −δp/(k0 − kl sin θp),
and the final probe term a modulation moving with velocity
v3 = δp/(kl sin θp) to the right or left depending on which side
of the z axis θp lies on; for θp, as indicated in Figs. 1(c) and
1(d), v3 is to the right. Each of these terms will excite atomic
density waves. The contributions of v1 and v2 to Brillouin
propagation were discussed in Refs. [10,41], but the role of v3

in directed propagation has not been emphasized in the litera-
ture. The reason is that most of the previous works focused on
the case of θp = 0 [15,17,30,33], which causes the last term in
Eq. (1) for the potential to reduce to a pure function of time. In
this case, no force is associated with the last term, and the term
is neglected. For the sake of simplicity in keeping track of the
contribution from v3 vs the contributions from v1 and v2, we
consider them separately in the theoretical considerations that
follow.

Thus, the first system model to consider, denoted as case
(a), is the following optical potential, which accounts for the
third probe term in Eq. (1) moving with velocity v3, and is
given by

U (a)
± (x, t ) = U0

2

[
− 3

2
− 1

2
cos(2k0x) ± cos(k0x)

± εp cos(kpx − δpt + φp)

]
, (3)

where kp = kl sin θp is the driving wave number, and φp is
a probe phase which has been introduced for convenience in
the analytical calculations to be presented below. Here, the
potential perturbation changes sign with the specific atomic
state. Terms of this kind are also generated with a x-polarized
probe.

Next, we consider the case of the following optical poten-
tial, denoted as case (b), which accounts for the first two probe
terms in Eq. (1), and is given by

U (b)
± (x, t ) = U0

2

[
− 3

2
− 1

2
cos(2k0x) ± cos(k0x)

+ εp cos(kpx − δpt + φp)

]
, (4)

where by setting the driving wave number kp to now be kp =
|��k1| = k0 + kl sin θp or kp = |��k2| = −(k0 − kl sin θp), we
can study the effects introduced by the first and second probe
terms, respectively. See Figs. 1(b) and 1(d) for an illustration
of ��k1 and ��k2. Clearly, if θp = 0, |��k1,2| = |��k| = k0.

Note that the on-axis case θp = 0, recently investigated in
Refs. [30,33], produces a space-periodic perturbation because
the wave number of the driving field kp is the same as that
of the underlying lattice k0. On the other hand, a probe angle

0 < θp < π/2 such that kp/k0 is an irrational ratio produces a
space quasiperiodic drive.

We shall see below in Sec. IV that, if we wish to deter-
mine whether the directed propagation changes abruptly as we
transition between space-periodic and quasiperiodic driving,
as was observed in the previously studied time quasiperiodic
case for a lattice driven by two incommensurate frequencies
[6,9,35–37], it is advantageous to focus on system model (a).
On the other hand, if the focus is on trying to understand
how modes of directed propagation are generated (as was the
case in previous works, e.g., Refs. [10,41]), we may choose
to study either system model (a) or (b) because they both
yield similar results—in fact, we shall see in Sec. IV that
system model (b) is mathematically simpler to analyze, hence
the more favorable choice. This is probably another reason
why the role of the v3 term and system model (a) has been
historically underemphasized—the abovementioned previous
works were focused on Brillouin transport, not on the transi-
tion to quasiperiodicity where the v3 term deserves the most
attention.

In the semiclassical approximation [38], the atoms in the
ground state |±〉 are described by the phase space density
P±(x, p, t ) at the position x with momentum p, which satisfies
the following coupled Fokker-Planck equations:[

∂

∂t
+ p

ma

∂

∂x
− U ′

±(x)
∂

∂ p

]
P±

= −γ±(x)P± + γ∓(x)P∓ + ∂2

∂ p2
[D0P±], (5)

where U ′
± = ∂U±/∂x and

γ±(x) = g0 ± g1 cos(k0x) + g2 cos(2k0x) (6)

are the transition rates between the ground-state sublevels,
defined in terms of �′, the photon scattering rate per lat-
tice beam, as g0 = 2�′/3, g1 = 8�′/9, g2 = 2�′/9, and D0 =
5h̄2k2

0�
′/18 is a noise strength describing the random momen-

tum jumps that result from the interaction with the photons.
As in Ref. [33], we are neglecting the probe contribution to
the transition rates, the radiation forces, and noise terms since
their effect is observed to be small in the simulations. Note
that this approach is in contrast with the qualitative arguments
presented in Ref. [41], where the Brillouin-like directed mo-
tion was attributed to a synchronization of the probe-induced
potential well depth modulation with the probe-modified tran-
sition rates between the ground-state sublevels of the Fg =
1
2 → Fe = 3

2 atom.
Directed motion is characterized by the current, defined as

the average atomic velocity:

〈v〉 = lim
t→∞

〈[x(t ) − x(0)]〉
t

= lim
t→∞

1

t

∫ t

0
dt ′

∫
dx

∫
d p

× p

ma
[P+(x, p, t ′) + P−(x, p, t ′)]. (7)

In Sec. III below, we present analytical expressions for
the current which enable us to quantify the individual con-
tributions from various atomic density modes excited by the
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probe. These analytical expressions help us understand the
plots generated by numerical solution of Eq. (5), which are
presented in Sec. IV.

III. ANALYTICAL RESULTS

Following the method presented in Ref. [33], we Fourier-
decompose the current in Eq. (7) into contributions arising
from atomic density modes excited by the probe. Using l , n,
and m to denote the mode numbers so that the mode has a
frequency ω = lδp and wave number k = nk0 + mkp, we ob-
tain, in terms of the amplitudes of the excited atomic density
waves,

P±[l, n, m] = δp

2π

∫ 2π/δp

0
dt exp(−ilδpt )

×
∫

dx exp[i(nk0 + mkp)x]
∫

d p P±(x, p, t )

(8)

expansions for the current.
The full expressions for the currents 〈v〉(a) and 〈v〉(b) for

the setups defined by Eqs. (3) and (4) for the U (a) and U (b)

systems, respectively, are given in Appendix B. Interestingly,
the expression for the special case kp = k0 in system U (a) has
extra terms, highlighted in blue (light gray) in Eq. (B5), that
cannot be obtained from the more general quasiperiodic case
(kp/k0 irrational) in Eq. (B3) just by simply taking the limit
kp → k0.

Before commenting further on Eqs. (B3)–(B5) for the U (a)

system, it is instructive to consider the analytic mode expan-
sion for, say, the case of U (b), which has been qualitatively
discussed previously in Refs. [10,41]: Below, we restrict our-
selves to those terms that are O(εp):

〈v〉(b) = 〈v〉(0) + ma

maF0g1 − 2D0k0

×
[

Im(eiφpP+[1,−2, 1])F0Fp(2k0 − kp)

2makp

+ Im(eiφpP+[1,−1, 1])F0Fp(−k0 + kp)

makp

+ Im(eiφpP+[1, 0, 1])2Fpk0δ
2
p

k2
p

+ Im(eiφpP+[1, 1, 1])F0Fp(k0 + kp)

makp

− Im(eiφpP+[1, 2, 1])F0Fp(2k0 + kp)

2makp

]
, (9)

where 〈v〉(0), given in Eq. (11), contains intrinsic terms not
related to the probe, and the force amplitudes are given by
F0 = k0U0/2 and Fp = U0εpkp/2. Equation (9) is valid for an
arbitrary kp, including the periodic case kp = k0, which was
validated numerically in Ref. [33].

The expansion in Eq. (9) provides a precise analytical
decomposition into the contribution of each excited atomic
wave toward the current. Despite its apparent complexity,
when combined with a numerical calculation of the atomic

wave amplitude, it is of great use to highlight the behavior of
an individual atomic mode when a parameter is varied in the
system, thus providing valuable physical insight, as will be
shown in the following section.

From simple inspection, one can deduce from Eq. (9)
that the current diverges when the common denominator
maF0g1 − 2D0k0 vanishes, a phenomenon known as going
into the regime of infinite density [33,34]. On the other hand,
the current contributions from all modes except [1,0,1] are
seen from Eq. (9) to vanish for specific values of the probe
wavelength kp (the contribution of [1,−2, 1] at kp = 2k0 and
so on).

Finally, we shall see in the following section that the [1,0,1]
term in Eq. (9), traveling at the same speed as the probe
perturbation, is the dominant Brillouin mode.

We may now compare the expansion in Eq. (9) for case
(b) with the expansions in Eqs. (B3)–(B5) for case (a). We
conclude that the main difference between cases (a) and (b),
defined by Eqs. (3) and (4), respectively, is that case (a)
provides different expressions for the generic case kp/k0 ir-
rational and the special case kp = k0: In the expansion for the
periodic case kp = k0, given in Eq. (B5), there are more terms,
highlighted in blue (light gray) in Eq. (B5)—thus more atomic
wave modes activated—than in the quasiperiodic case, where
kp/k0 is an irrational ratio, Eq. (B3).

Furthermore, Eq. (B3) shows some apparent singularities
in the form of coefficients with denominators proportional
to k0 − kp or k0 − 2kp, thus apparently problematic in the
periodic limits kp → k0 and kp → 2k0. Importantly, this could
suggest a special sensitivity to the periodic/quasiperiodic
transition, like that observed in the case of time quasiperiod-
icity [6,9,35–37,42], where the large sensitivity in the system
response to time quasiperiodic forces is known to yield sub-
Fourier resonances. However, our numerical results, reported
in the following section, show that this is not the case, and the
transition is smooth. The analytical expansions, though, still
provide a useful decomposition into atomic waves of directed
transport and are used in the following sections to interpret the
atomic transport provoked by the probe.

IV. NUMERICAL RESULTS

Numerical solutions of Eq. (5) are obtained by generating
a large number of individual atomic trajectories x j (σ j (t ), t ),
where σ j (t ) = +1 or −1 is the occupied state at time t in
that trajectory, using a stochastic algorithm [43]. Averages
are computed using over 1.5 × 106 trajectories. Following
Ref. [33], the atomic mode amplitudes in Eq. (8) are calcu-
lated via the formula:

P±[l, n, m] = lim
l ′→∞

δp

2π l ′N

N∑
j=1

∫ 2π l ′/δp

0
dt

× exp(i{(nk0 + mkp)x j[σ j (t ), t] − lδpt})

×δσ j (t ),±1. (10)

In all simulations, units are defined such that ma = h̄ =
kl = 1, so that the atomic recoil velocity vr = h̄kl/ma = 1
and recoil frequency ωr = h̄k2

l /2ma = 1
2 . In these units, the

optical lattice parameters were fixed to U0 = 200, �′ = 2.85.
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FIG. 2. Smooth space quasiperiodicity. Current and mode con-
tributions to the current as a function of the driving wave number
kp = kl sin θp for the U (a) system in Eq. (3) [i.e., case (a)], with
δp/(2ωr ) = 7.5, εp = 0.8, θx = 300 (thus, k0 = 0.5kl , shown by the
dotted vertical line), and φp = 0. Each mode (l, n, m) has a frequency
ω = lδp and wave number k = nk0 + mkp. Mode amplitudes are
measured in the simulation via Eq. (10), and their precise contri-
bution to the current determined using Eq. (B3). All the modes in
Eq. (B3) must be plotted to be sure of the smoothness of the transition
between space periodicity and quasiperiodicity. The dashed line is
the sum of all current contributions, and the diamonds are the current
calculated from its definition in Eq. (7).

We start by first studying the system sensitivity to the
transition between space-periodic and quasiperiodic driving.
We choose the U (a) system in Eq. (3) [i.e., case (a)], be-
cause it gives different expansions in the periodic kp = k0 and
quasiperiodic (kp and k0 incommensurate) cases. Specifically,
Eq. (B3) indicates a potential singularity when kp → k0 in the
mode Re(P+[1,−1, 1]) due to the presence of (k0 − kp) in
the denominator of the coefficient [this term is highlighted in
blue (light gray) in Eq. (B3)]. Potential singularities may also
surface when kp → −k0,±2k0 due to (k0 + kp) and (2k0 ± kp)
occurring in the denominator of several terms in Eq. (B3), as
mentioned above.

Figure 2 shows the current and the mode contributions to
the current, given by Eq. (B3), as a function of kp in the
vicinity of k0.

No mode or contribution in Fig. 2 is observed to act
abruptly; on the contrary, they all are seen to behave smoothly.
The potential singularity in the mode Re(P+[1,−1, 1]) [the
blue/light-gray highlighted term in Eq. (B3)] does not actu-
ally occur because the mode amplitude itself tends to zero in
the limit kp → k0, such that its current contribution is finite,
as illustrated by Fig. 2.

Similar features are observed near kp = 2k0, demonstrating
that the transition from space quasiperiodicity to periodicity is
smooth.

Next, to understand how Brillouin resonant modes are gen-
erated, we study the atomic waves when varying the driving
frequency δp. We may study either one of the U (a) or U (b)

systems because they both yield similar behavior. Here, we
choose system (b) because it has a simpler expression for the
current than system (a): Eq. (9) is valid for arbitrary kp and

FIG. 3. Space-periodic driving of the U (b) system in Eq. (4) [i.e.,
case (b)]: The atomic current (open diamonds) is plotted for the
case of space-periodic driving as a function of the driving frequency
δp = ωp − ωl , in the U (b) system defined by Eq. (4), with θx = 250,
φp = π , for several values of the driving amplitude εp. The solid lines
are merely to guide the eye. The driving wave number is fixed to kp =
k0 = kl sin θx . Dotted vertical lines are placed at ω0/(2ωr ) = 5.75,
ω0/2, and 2ω0, where ω0 is identified with the intrinsic vibrational
frequency �x of the lattice (see text). We see that resonances at mul-
tiples and submultiples of the intrinsic frequency ω0 are predicted.

has fewer terms than the expressions in Eq. (B3) or (B5).
The U (b) system yields a series of resonances, that is, local
maxima at certain values of the driving frequencies, allowing
for a proper rationalization of the transport mechanisms and
the experimental results.

We plot the current in Eq. (9) for the U (b) system, as
a function of δp, in Fig. 3 at several values of the driving
amplitude εp for the case of space-periodic driving kp = k0,
and in Fig. 4 at several values of the driving wave number kp

for the case of space quasiperiodic driving.
In Fig. 3, a peak at δp = ω0 = 5.75 is observed, common to

all curves, except the one corresponding to the largest value of
εp, which is shifted to higher-frequency values. These peaks
are not far from the vibrational frequency associated with
linear oscillations in the optical wells �x = 7.3 [as evaluated
from Eq. (2) using θx = 250, which is the value employed
in our experiment]. Therefore, we identify this frequency ω0

with the intrinsic vibrational frequency �x of the lattice. In
Fig. 3, we see that the presence of additional peaks at about
ω0/2 and 2ω0 are predicted by the simulations. This behavior
is not uncommon; in rocked ratchets, the current is also ob-
served [35] to peak at multiples and submultiples, in general
a fractional number, of an intrinsic frequency.

As the driving wave number kp is varied, so does the
phase velocity of the propagating perturbation vp = δp/kp. It
is expected [10] that a peak in current is produced when this
phase velocity matches the velocity:

v0 = ω0

k0
. (11)

The intrinsic velocity v0 is associated with an average drift
in one direction due to half-oscillations in a well, followed
by transitions between the atomic states [10,41]. This velocity

053312-5



DAVID CUBERO et al. PHYSICAL REVIEW A 109, 053312 (2024)

0 5 10 15 20
δp / (2ωr)

0

1

2

3

4

cu
rr

en
t /

 v
r

ω0/4ωr ω0/2ωr 2ω0/2ωr 3ω0/2ωr

FIG. 4. Space quasiperiodic driving of the U (b) system in Eq. (4)
[i.e., case (b)]: Same as in Fig. 3, but this time the atomic current
is plotted for space quasiperiodic driving with kp0 = k0/

√
5. The

current is plotted for several values of the driving wave number,
kp = 0.5kp0, kp0, 1.5kp0, 2.5kp0, 3.5kp0, and 4.5kp0. In all cases the
driving amplitude εp was varied so that εpkp/kl = 0.8, thus keeping
fixed the value of the force amplitude Fp, which is defined in the text
immediately following Eq. (9). As in Fig. 3, dotted vertical lines are
placed at ω0/(2ωr ) = 5.75, ω0/2, and 2ω0, plus an additional one
at 3ω0. The truncated vertical dashed lines correspond to the shifted
values (δp)vm = ω0kp/k0.

matching (vm) mechanism thus yields a peak at

(δp)vm = ω0kp

k0
. (12)

The positions of these velocity-matched current resonances
(δp)vm are indicated in Fig. 4 for six kp/k0 values, by the trun-
cated vertical dashed lines. As explained below, the numerical
results, presented in Fig. 4, indeed predict current resonances
at or near these (δp)vm values. However, a clear picture is
obscured by the fact that these current resonances also hap-
pen to lie near frequencies that are equal to fractional ratios
of the intrinsic vibrational frequency ω0—these frequencies
are indicated by the vertical dotted lines in Figs. 3 and 4.
For example, let us consider the case of space-quasiperiodic
driving with kp = 0.5kp0, where kp0 ≡ k0/

√
5. In this case, the

red current-vs-δp curve in Fig. 4 displays a peak near (δp)vm

(red truncated vertical dashed line), but it is also leaning
toward ω0/2. The curves for kp = kp0 and kp = 1.5kp0 show
no velocity-matching shift, just peaking at the value ω0. The
curve kp = 2.5kp0 peaks at (δp)vm (yellow truncated vertical
dashed line), but this value is very near ω0 in this case. It
also shows small peaks at ∼1.5ω0 and 2ω0. In the case kp =
3.5kp0, the frequency (δp)vm lies between the peaks at ω0 and
2ω0. The corresponding curve peaks near ω0, (δp)vm (or 1.5ω0

since they are close by here), and 2ω0. The curve kp = 4.5kp0

offers a clear confirmation of the velocity-matching mecha-
nism because it shows no clear peak at ω0 but a distinct one at
(δp)vm, which happens to practically coincide with 2ω0.

Overall, the simulation results in Fig. 4 suggest that the
discussed shift due to velocity matching is clearly at play in
the system, but the shift takes place through local maxima at
a fractional ratio of the intrinsic frequency ω0.
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FIG. 5. Fourier mode contributions to the current as a function of
the driving frequency δp = ωp − ωl , for the quasiperiodic case kp =
3.5kp0 shown in Fig. 4 [for the U (b) system in Eq. (4), case (b)]. The
total current (dashed curve) is obtained by summing all the mode
contributions. The diamonds represent the current calculated directly
in the simulation, and their plot is identical to the kp = 3.5kp0 curve
in Fig. 4. As in Fig. 4, dotted vertical lines are placed at ω0/(2ωr ) =
5.75, ω0/2, 2ω0, and 3ω0.

We may then wonder how a particular atomic Fourier mode
is affected by the above discussed resonances. Figure 5 shows
the calculations for the case kp = 3.5kp0, which was chosen
because the current shows three peaks in Fig. 4, at ω0, 1.5ω0 ≈
(δp)vm, and 2ω0.

The plot shows peaks at these frequency values at most of
the atomic Fourier modes, behaving very similarly for all of
them. Moreover, an extra peak in most of them is also visible
at δp = 3ω0, a peak which is discernable in the overall current
(dashed curve). The good agreement between the current ob-
tained directly in the simulations (diamonds) and the sum of
all the mode contributions (dashed line) serve as validation of
the analytical calculations.

Looking closely at Fig. 5, one can find subtle differences
between the modes. First, it can be seen that the curve of
the total current follows closely the curve of mode [1,0,1],
confirming this atomic mode as the dominant one. Many other
modes, such as [0,1,0], [0,3,0], or [1,2,1], curiously show a
larger peak at ω0 than at 2ω0. Mode [1,1,1] shows a similar
behavior to the dominant [1,0,1], with a larger peak at 2ω0 but
with the current always in the opposite direction.

V. EXPERIMENT

Our experiments are performed on 85Rb atoms in a di-
lutely occupied dissipative 3D lattice in a tetrahedral lin ⊥ lin
configuration, as in Fig. 1. Directed motion is produced by
the weak ŷ-polarized probe which makes an angle θp with
the z axis. The probe frequency ωp is scanned around the
(fixed) frequency ωl of the lattice beams (which collectively
serve as the pump), and probe transmission is measured as
a function of probe detuning δp = ωp − ωl . As in Ref. [30],
δp/ωL < 10−9 for all pump-probe spectra presented in this
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FIG. 6. Probe transmission spectra measured for (a) θp = 0
(space-periodic case kp = k0) and (b) 17.50 (kp not a multiple of
k0). The resonance peaks are identified as �z, �B, �x , and �B±
(see text for explanation). The probe completes a frequency scan of
±300 kHz in 10 ms, generating a single-shot spectrum. The lattice is
then reloaded with atoms, a process that takes us ∼5 s, and the scan
repeated. Each spectrum displayed here is an average over 16 single-
shot spectra. The transmitted probe is incident on a photodetector
(Thorlabs DET10A2), which is connected to an oscilloscope. The
size of �V is typically 100–120 mV in our experiments. Both plots
are on the same vertical scale.

paper. Here, the intensity ratio of probe to lattice (sum of all
four beams) is <3%.

In accordance with the notation used in Refs. [13,30],
�′

0 ≡ �s0/2, and �′ ≡ �s0/2, where s0 ≡ (I/Isat )/(1 +
4�2/�2) is just the saturation parameter. For the Fg = 3 →
Fe = 4 transition in 85Rb, Isat = 1.67 mW/cm2 for σ light,
�/2π is the natural linewidth for 85Rb (6.07 MHz), and
ωr/2π is the recoil frequency (3.86 kHz). In our experiment,
θx = θy = 25◦, and each lattice beam has intensity I = 6.22 ±
0.22 mW/cm2, a 1/e2-diameter 5.4 mm (the probe diameter
is 1.4 mm), and red-detuning � = 8.75�. To determine the
intensity I that actually illuminates the atoms, care is taken
to account for the intensity loss through the windows of the
vacuum cell that houses the lattice and the background Rb
vapor. These values yield �′/2π = 36.8 ± 1.3 kHz and a well
depth U0 = 445 ± 15 h̄ωr . Using the definition of the recoil
frequency just after Eq. (2) and setting h̄ = ma = kl = 1 as in
the simulations, we find this U0 value corresponds to 223 ± 8,
and �′, in units of the recoil frequency, corresponds to 4.77 ±
0.17—these values are comparable with those assumed in the
simulations in Sec. IV. The pump-probe spectra measured
for the probe beam propagating through the lattice cannot be
directly compared with the theory curves in Figs. 3–5 which
plot the directed atomic currents. However, as described be-
low, some of the observed peaks and dips in the measured

spectra correspond to probe detuning values at which directed
atomic transport occurs. These observed δp values may be
profitably compared with the δp values in Figs. 3–5, where
resonant peaks in atomic current are predicted.

Figures 6(a) and 6(b) show distinctly different probe
transmission spectra for θp = 0 and 17.50, respectively. The
peaks in the spectra correspond to photons absorbed from a
lattice beam and emitted via stimulated emission into the
probe, while dips correspond to photons absorbed from
the probe and emitted into a lattice beam. Note that the
pump-probe spectra only show features arising from the in-
teraction of the ŷ-polarized probe with the copropagating
ŷ-polarized lattice beams �k1, �k2 depicted in Fig. 1. Contribu-
tions to the pump-probe spectrum from the other two lattice
beams �k3 and �k4 are suppressed due to Doppler broadening in
the z direction, as pointed out earlier [11,30].

We discuss first the periodic case shown in Fig. 6(a), in
which the probe is aligned with the z axis (θp = 0). This
system was analyzed in detail in Ref. [30], where it was
confirmed that the spectral features denoted as �z arise from
probe-induced Raman transitions between adjacent vibra-
tional levels corresponding to oscillations along the z axis
in each well, and the �B features arise from Brillouin-like
directed transport along the ±x directions.

Indeed, the vibrational frequency in the z direction is de-
termined in the system model by [30]

�z = 2(cos θx + cos θy)
√

2|�′
0| ωr, (13)

thus yielding �z = 2π (180 kHz), which is in reasonable
agreement with the observed value of ∼200 kHz. More-
over, Eq. (2) yields a vibrational frequency �x/2π = 60 kHz,
which is very close to the observed value for �B/2π . This �x

value equals 15.5 ωr , which in simulation units corresponds
to 7.8, not far from the 7.3 value calculated from Eq. (2), as
indicated in Sec. IV. The agreement between the predicted
and observed values for �x and �B is remarkable considering
that the theory assumed a Fg = 1

2 → Fe = 3
2 atom.

It is important to note that, even though �B coincides with
�x, the spectral features at �B in Fig. 6(a) cannot arise from
intrawell oscillatory motion in the x direction, owing to the
fact that adjacent vibrational levels are of opposite parity,
and hence, the overlap integral of the probe operator (i.e.,
the lattice-probe interference term) between these two levels
is zero. This is because the interference term goes as �E0 · �E∗

p
and is quadratic in x for a probe that propagates purely along
ẑ [30].

In this space-periodic case θp = 0, the three probe terms
of Eq. (1) reduce to a single perturbation propagating with
phase velocity v0 = δp/k0, like in the one-dimensional (1D)
model in Eq. (4) with kp = k0, whose numerical results are
shown in Fig. 3. In agreement with the experimental results
of Fig. 6(a), the theoretical model predicts a dominant peak
at about ω0, which we identified with �x in Sec. IV. The
secondary peaks predicted at other multiples of ω0 in Fig. 3
for certain values of the driving amplitudes are absent in
Fig. 6(a). This may be because the theory and simulations are
performed in a 1D lattice using a Fg = 1

2 → Fe = 3
2 atom with

a simple ground-state bipotential described by U± in Eq. (1),
whereas the experiment is performed in a 3D lattice using
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a Fg = 3 → Fe = 4 atom, with a significantly more complex
ground state manifold.

Let us turn our attention to the case where kp �= k0, shown
in Fig. 6(b). We see that the �B = �x peak (dip) in Fig. 6(a)
splits into a central peak (dip) still located at �x, flanked by
two side peaks (dips) at �B+ and �B−. We have carried out
several measurements with varying values of the probe angle
θp. The data, shown in Fig. 7(a) (only half the scan range
depicted in Fig. 6 is necessary), are pump-probe spectra that
have been systematically measured in the probe-lattice geom-
etry of Fig. 1(c), for several different off-axis probe angles θp.
In Ref. [10], for example, data are presented for just one off-
axis angle. In Ref. [16], an auxiliary pump-probe beam pair
was introduced, completely separate from the lattice beams,
which allowed for separation of purely lattice characteristic
frequencies such as �z and �x from pump-probe induced
effects such as �B and �B±; however, the signal-to-noise of
the Brillouin spectral features is significantly reduced.

To extract the resonant frequencies �x,z and �B± from the
spectra in Fig. 7(a), we initially used a fitting function:

A�Z exp

[
− (δp − �z )2

2σ 2
�z

]
+ A�X exp

[
− (δp − �x )2

2σ 2
�x

]

+A�B+exp

[
− (δp − �B+)2

2σ 2
�B+

]

+A�B−exp

[
− (δp − �B−)2

2σ 2
�B−

]
+ a1 + a2δp. (14)

This function consists of a constant term, a linear term,
and four Gaussian functions, one for each resonant peak
in Fig. 7(a). When analyzing on-axis spectra (θp = 0), the
Gaussian functions corresponding to �B± were removed.
The above analysis works well for the on-axis spectra where
the features are well defined but becomes less reliable when
the features are less well resolved, such as �B−, for example,
in the off-axis spectra (where θp �= 0). Therefore, we also
employed a different analysis method for the off-axis spectra,
which utilized the numerical first derivative of the spectra at
each point. The absolute value of the derivative was taken, and
the minimum value was found in the vicinity of each resonant
feature.

The �B+ resonances are stronger than �B−, so we consider
those for convenience, without any loss of generality. For
the �B+ resonance, kp = k0 + kl sin θp, yielding kp/kp0 values
corresponding to the four angles from 12.5◦ to 20◦ as 3.4, 3.6,
3.8, and 4.1, respectively. Note that the first two values are
close to the kp/kp0 value of 3.5 in Fig. 5, which predicts peaks
in the directed propagation at ω0, (δp)vm ≈ 1.5ω0, and 2ω0.
The peak at ω0 = �x ≈ 2π (60 kHz) is certainly observed in
Figs. 7(a) and 7(b), as are single peaks at ∼105 and 110 kHz
for θp = 12.5◦ and 15◦, respectively. The experiment does not
further resolve each of these single peaks, but these observed
values lie not too far from the predicted kHz values of 60, 90,
and 120. Thus, the experimental findings in Figs. 7(a) and 7(b)
and the detailed, rigorous numerical simulations in Fig. 5 are
consistent with each other, suggesting that the frequency- and
velocity-matching mechanisms are equally at play.

FIG. 7. (a) Pump-probe spectra taken at different probe angles
θp for the lattice in Fig. 1(a). The vertical lines demarcate the fixed
vibrational frequencies �z and �x . At θp = 0, the gray arrow de-
notes the Brillouin resonance �B that coincides with �x . At θp �= 0,
the black and white arrows denote Brillouin resonances �B+ and
�B−, respectively. The curves for θp = 00 and 17.50 are just the
δp < 0 half of the spectra in Fig. 6. (b) From velocity-matching
considerations, �B+ and �B− depart from �x in accordance with
Eqs. (15) and (16), respectively: The solid lines are the theoretical
predictions from the equations. Our simulations in Sec. IV reveal that
Brillouin propagation proceeds not just due to the velocity-matching
considerations above but also due to frequency-matching with the
intrinsic frequency and its multiples (see text). The two black-circled
data points in (b) correspond to the spectrum in Fig. 6(b).

On the other hand, if we ignore the frequency-matching
mechanism and only follow the velocity-matching argument
discussed in Sec. IV and in previous works [10,41], we expect
a peak for the driving frequency values where the intrin-
sic velocity ±v0 in Eq. (11) matches the velocity of the
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propagating perturbation, thus leading to two possible values
for the probe detuning δp, located on either side of �x [10,41]:

δ1 = �x
sin θx + sin θp

sin θx
, (15)

δ2 = �x
sin θx − sin θp

sin θx
, (16)

where recall that we have identified the vibrational frequency
ω0 with �x. The solid lines in Fig. 7(b) depict the analytical
predictions of Eqs. (15) and (16), with δ1 and δ2 predicting
the observed peaks �B+ and �B−, respectively, that are seen
in Figs. 7(a) and 6(b). Thus, the predictions from arguments
based on velocity matching alone are consistent as well with
the data.

In other words, the locations of the resonances in the
pump-probe spectra are explained by the previously known
qualitative arguments based on velocity matching alone as
well as by the detailed modeling developed here that reveals
an equal role for the mechanism of frequency matching.
We further note that the quantitative agreement between the
data and theory—both the detailed numerical simulations in
Sec. IV and the previous qualitative arguments that focused
on velocity matching alone—is remarkable, considering that
the theoretical arguments are based on a 1D model with a
simplified atomic transition.

To complete this discussion, we point out that the theory
offers an explanation for why the amplitudes of the �B−
resonances are seen to be smaller than the �B+ ones [11]:
Since the spatial period 2π/(k0 − kl sin θp) associated for the
�B− motion is larger than that of �B+, 2π/(k0 + kl sin θp),
the sequence of half-oscillations and well transfers for �B−
is more likely to be interrupted by random photon recoils as-
sociated with the Sisyphus process, causing a larger damping
of the directed propagation. Finally, we comment on the peak
at the intrinsic frequency ω0, seen consistently in data such
as shown in Figs. 7(a) and 7(b) at δp = �x, regardless of the
specific value of θp: Previously [10,41], it was pointed out
that the symmetry considerations for θp = 0 that forbid the
appearance of a resonance in the spectrum due to localized
vibrations about the well bottoms [these considerations were
mentioned above while discussing Fig. 6(a)] no longer apply
for the case of θp �= 0. However, as shown by the detailed
numerical simulations in Sec. IV (see, for example, Fig. 4),
the observed peak may also arise from directed motion due to
frequency matching.

VI. CONCLUSIONS

We have studied the atomic waves generated in a dissipa-
tive optical lattice under a weak beam that produces a directed
current which travels perpendicular to the direction of travel
of the probe.

On the theoretical side, a minimal 1D model of the exper-
imental setup is studied in detail to elucidate the mechanisms
of transport. An analytical method based on a Fourier de-
composition of the current is applied to study the case when
the driving potential perturbation has a spatial period which
is the same as that of the underlying lattice, the regime of

space-periodic driving, and when both periods are incommen-
surate, the regime of space quasiperiodic driving.

It is numerically demonstrated that the transition between
both regimes is smooth, despite the fact that the expansion
for one of the probe perturbations is different in each regime.
When the frequency of the probe is varied, the current and,
more specifically, the mode amplitudes that contribute to
the current show several peaks. One set is identified with
a multiple of the intrinsic frequency ω0, and another is as-
sociated with a velocity matching mechanism, in which the
velocity of the propagating modulation matches up with the
average velocity of the atom in its intrawell oscillation. Both
mechanisms are seen at play in both the space-periodic and
space quasiperiodic regime and even at play at the same
time since the shift due to velocity matching takes place
through local maxima at a fractional ratio of the intrinsic
frequency ω0.

The pump-probe experiments confirm many of the above
predictions. In the case of space-periodic driving kp = k0,
with a weak beam that is aligned with the lattice symme-
try axis, the probe transmission spectrum indeed reveals a
dominant peak at an intrinsic lattice frequency ω0 that cor-
responds to a propagating Brillouin-like mode in a direction
perpendicular to probe propagation. These observations are
borne out by the numerical predictions in Fig. 3. In the case
of driving with the weak beam incident at angle θp relative
to the lattice symmetry axis, the spectrum reveals a peak
at ω0 and additional peaks where both the frequency- and
velocity-matching mechanisms above are satisfied. The an-
gle dependence of these additional spectral features, which
correspond to two distinct propagating modulations with dif-
ferent spatial periods, is shown in Fig. 7 to be in accordance
with the analytical predictions. These findings are consistent
with the numerical predictions in Figs. 4 and 5, although it
was not experimentally possible to tease apart the relative
contributions to the observed resonances arising from causes
that were known previously [10,41] vs those arising from the
frequency-matching condition revealed here by our detailed,
rigorous numerical simulations.

For example, the observed peaks near the intrinsic fre-
quency ω0 = �x = 60 kHz for all the off-axis probe spectra
in Figs. 6(b) and 7 arise not only from contributions due to
atoms oscillating inside localized wells as known previously
but also from atoms undergoing directed Brillouin propa-
gation via the frequency-matching condition (see Fig. 4).
Similarly, the observed �B+ peaks, say, in Figs. 6(b) and 7, for
θp = 12.5◦ and 15◦ at ∼105 and 110 kHz, respectively, arise
from contributions due to directed Brillouin propagation not
only via the previously known velocity-matching mechanism
in Eq. (15) but also via the frequency-matching mechanism
which predicts a directed current at 2ω0 = 120 kHz, close to
the observed frequencies. Thus, our investigation has shed
light on the origin of directed Brillouin modes propagating
in a modulated dissipative optical lattice and advanced our
understanding of how Brownian ratcheting works in cold atom
lattices. We hope that the understanding of Brillouin transport
modes gained here would pave the road toward ratcheting of
cold atoms confined in a weakly modulated optical lattice,
along a precisely predictable, arbitrary direction [9].
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APPENDIX A: FULL OPTICAL POTENTIAL

The full optical potential that is obtained when the 3D-lin ⊥ lin tetrahedral lattice is illuminated by a weak probe laser of
amplitude Ep and frequency ωp, forming an angle θp with the z axis and with its polarization parallel to the y axis, is given by

U±(x, y, z, t ) = U0

2

{
− 1 − 1

2
cos(2k0x) − 1

2
cos(2kyy) ± cos(k0x) cos(kyy) cos(kzz) + εp cos[−k0x + kl sin θpx

+ (cos θp − cos θx )klz − δpt] + εp cos[k0x + kl sin θpx + (cos θp − cos θx )klz − δpt]

± εp cos(kyy) cos[kl sin θpx − (cos θp + cos θy)klz − δpt]

}
, (A1)

where ky = kl sin θy and kz = kl (cos θx + cos θy)/2. By taking y = z = 0 in Eq. (A1), we obtain Eq. (1).

APPENDIX B: FURTHER ANALYTICAL RESULTS

The setup defined by case (a) in Eq. (3) requires different expressions for the quasiperiodic (kp/k0 irrational) and periodic
kp = k0 cases. The calculation proceeds along the same lines sketched in Ref. [33]. The atomic state symmetry produced by the
probe for the setup in Eq. (3) is given by

P−[l, n, m] = (−1)n+lP+[l, n, m], (B1)

which can be also written as

P−[l, n, m] = (−1)n+mP+[l, n, m], (B2)

the latter being a useful expression in the special (periodic) case kp = k0.
In the quasiperiodic case (kp/k0 irrational), we find

〈v〉(a) = 〈v〉(0) + ma

maF0g1 − 2D0k0

{
+ Im(eiφpP+[1,−4, 1])

(
2Fpg2

2k0
)

(2k0 − kp)kp
+ Im(eiφpP+[1,−3, 1])2Fpg1g2k0

(2k0 − kp)kp

+ Im(eiφpP+[1,−2, 1])

(2k0 − kp)k2
p

[
8Fpg0g2

(−k2
0 + k0kp

) + F0Fp
(
2k2

0kp − 2k0k2
p + k3

p/2
)

ma

]

− Re(eiφpP+[1,−2, 1])4Fpg2k0(k0 − kp)δp

(2k0 − kp)k2
p

+ Im(eiφpP+[1,−1, 1])

(2k0 − kp)k2
p

× Fp

[
4g0g1k0(−2k0 + kp) + 2g1g2k0kp + F0

ma

(−2k2
0kp + 3k0k2

p − k3
p

)]

− Re(eiφpP+[1,−1, 1])2Fpg1k0(k0 − 2kp)δp

(k0 − kp)k2
p

− Im(eiφpP+[1, 0, 1])

(2k0 − kp)k2
p(2k0 + kp)

× Fp
[
g2

0

(
32k3

0 − 8k0k2
p

) − 4g2
2k0k2

p + δ2
p

(−8k3
0 + 2k0k2

p

)]
− Re(eiφpP+[1, 0, 1])8Fpg0k0δp

k2
p

+ Im(eiφpP+[1, 1, 1])

(2k0 + kp)k2
p

× Fp

[
−4g0g1k0(2k0 + kp) − 2g1g2k0kp + F0

(
2k2

0kp + 3k0k2
p + k3

p

)
ma

]

− Re(eiφpP+[1, 1, 1])2Fpg1k0(k0 + kp)δp

(k0 + kp)k2
p

+ Im(eiφpP+[1, 2, 1])

(2k0 + kp)k2
p

×
[

8Fpg0g2
(−k2

0 − k0kp
) + F0Fp

(−2k2
0kp − 2k0k2

p − k3
p/2

)
ma

]
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− Re(eiφpP+[1, 2, 1])4Fpg2k0(k0 + kp)δp

(2k0 + kp)k2
p

− Im(eiφpP+[1, 3, 1])2Fpg1g2k0

(2k0 + kp)kp

− Im(eiφpP+[1, 4, 1])
(
2Fpg2

2k0
)

(2k0 + kp)kp
+ Im(ei2φpP+[2, 0, 2])F 2

p k0

makp

}
, (B3)

where 〈v〉(0) contains no probe-related terms and is given by

〈v〉(0) = ma

maF0g1 − 2D0k0

{
− Im(P+[0, 1, 0])F0

[
8g2

0 − 4g2
2/3 + F0k0/(2ma)

]
k0

+ Im(P+[0, 2, 0])F0(−4g0g1−8g1g2/3 + F0k0/ma)

k0

+ Im(P+[0, 3, 0])F0
[−16g0g1/3 − 2g2

2 − 3F0k0/(2ma)
]

k0

+ Im(P+[0, 4, 0])F0[−2g1g2/3 + F0k0/(2ma)]

k0
− Im(P+[0, 5, 0])F02g2

2

3k0

}
. (B4)

The term highlighted in blue (light gray) in Eq. (B3) is the contribution of the real part of the [1,−1, 1] mode, referred to
while discussing Fig. 2 in Sec. IV.

Equation (B3) is not valid when the ratio kp/k0 is a rational number. In this case, there are resonances which require a special
derivation [33]. An indication of this fact is that the coefficient associated with the mode amplitude Re(P+[1,−1, 1]) goes to
infinity in the limit kp → k0, whereas the actual coefficient when computed directly in the case kp = k0 remains finite, as shown
in Eq. (B5).

The full expansion in the periodic case kp = k0 is given by

〈v〉(a) =〈v〉(0) + ma

maF0g1 − 2D0k0

{
−Re(P+[0, 1, 0])F0

(
F 2

p g1
)

maδp
+ Im(eiφpP+[1,−4, 1])

(
2Fpg2

2

)
k0

+Re(eiφpP+[1,−3, 1])F0Fpg1

maδp
+ Im(eiφpP+[1,−3, 1])2Fpg1g2

k0

+ Im(eiφpP+[1,−2, 1])F0Fp

2ma
−Re(eiφpP+[1,−2, 1])F0Fpg1

maδp

+ Im(eiφpP+[1,−1, 1])

k0
Fp(−4g0g1 + 2g1g2)−Re(eiφpP+[1,−1, 1])2Fpg1δp

k0

− Im(eiφpP+[1, 0, 1])

3k0
2Fp

(
12g2

0 − 2g2
2 − 3δ2

p

) − Re(eiφpP+[1, 0, 1])(−F0Fpg1k0/δp + 8Fpg0δp)

k0

+ Im(eiφpP+[1, 1, 1])

3k0
Fp

[
−12g0g1 − 2g1g2 + 6F0k0

ma

]
− Re(eiφpP+[1, 1, 1])(FpF0g1k0/δp + 3Fpg1δp)

k0

+ Im(eiφpP+[1, 2, 1])

6k0
Fp

(
−32g0g2 − 9F0k0

ma

)
− Re(eiφpP+[1, 2, 1])8Fpg2δp

3k0
− Im(eiφpP+[1, 3, 1])2Fpg1g2

3k0

− Im(eiφpP+[1, 4, 1])
(
2Fpg2

2

)
3k0

+ Im(ei2φpP+[2,−1, 2])F 2
p g1

δp
+ Im(ei2φpP+[2, 0, 2])F 2

p

ma

}
, (kp = k0). (B5)

Terms in Eq. (B5) which are not directly obtained from Eq. (B3) after taking the limit kp → k0 have been highlighted in blue
(light gray). Note there are also terms in the quasiperiodic case in Eq. (B3) which are singular when kp → 2k0. However, again,
this singularity is removed in the exact limit kp = 2k0.
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